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Abstract: Insulator extraction from images or 3D point clouds is an important part of automatic power
inspection by unmanned airborne vehicles (UAVs), which is vital for improving the efficiency of
inspection and the stability of power grids. However, for point cloud data, many challenges, such as
the diversity of pylon shape and insulator type, complex topology, and similarity of structures, were
not tackled with the study of power element extraction. To efficiently identify the small insulators
from complex power transmission corridor (PTC) scenarios, this paper proposes a robust extraction
method by fusing multi-scale neighborhood and multi-feature entropy weighting. The pylon head is
segmented according to the aspect ratio of horizontal slices following the locating of the pylons based
on the height difference and continuous vertical distribution firstly. Aiming to quantify the different
contributions of features in decision-making and better segment insulators, a feature evaluation
system combined with information entropy, eigen entropy-based optimal neighborhood selection, and
designed multi-scale features is constructed to identify suspension insulators and tension insulators.
In the optimization step, a region erosion and growing method is proposed to segment complete
insulator strings by enlarging the perspectives to obtain more object representations. The extraction
results of 82 pylons with 654 insulators demonstrate that the proposed method is suitable for different
pylon shapes and sizes. The identification accuracy of the whole line achieves 98.23% and the average
F1 score is 90.98%. The proposed method can provide technical support for automatic UAV inspection
and pylon reconstruction.

Keywords: insulator extraction; point clouds; power inspection; quantification; information entropy

1. Introduction

Insulators are core components attached to high-voltage pylons and play a decisive
role in supporting overhead conductors. Insulator inspection is an essential work in regular
patrol inspection because they are prone to damage caused by extreme environments and
self-degeneration. Likewise, insulators tend to be self-exploding and lose insulation follow-
ing a surge due to switching and lighting sometimes, leading to discharge, short circuits,
and large-scale power failure [1,2]. However, frequent defect detection is a challenging task
mainly caused by the long mileage and complex geographic environments.

In recent years, with the rapid development of small unmanned aerial vehicles (UAVs),
or UAV systems, became more flexible and low-cost, and then some traditional and heavy
manual inspections were gradually replaced by UAVs [3]. UAV systems typically integrate
with technologies of multiple remote sensing sensors, such as thermal cameras, optical
cameras, and light detection, and ranging (LiDAR) systems are widely used to help period-
ically monitor the vast network of power lines, which are more convenient and economical
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compared with traditional measures, such as helicopter and manual patrol [2,4]. Gen-
erally, due to inaccessible mountainous areas, the tall and multi-layer characteristics of
transmission pylons and the small size of insulator components, close-range photogra-
phy, and detailed path planning for the safety of UAVs are accepted. The camera can
capture images taken at close range, which can provide abundant details to improve the
accuracy and reliability of defect detection [5–7]. The LiDAR systems can directly and
efficiently obtain high-precision terrain information and coordinates of inspection objects
to build high-precision 3D maps. Furthermore, LiDAR offers more convenience, stability,
and fewer limitations of environmental texture in the acquisition of target point clouds
compared to photogrammetric methods. To that end, taking advantage of the fact that
the LiDAR system can provide the location of inspection objects, once the insulators are
segmented, the key points of inspection can be extracted to guide safety route planning
to capture clear insulator images [5,8]. The segmented insulator point clouds are also
helpful for high-precision insulator modeling and fine reconstruction of the pylons. There-
fore, it is particularly important to accurately extract and locate the insulators from 3D
point clouds.

Currently, insulator extraction from point clouds still relies on manual work, requiring
repetitive and heavy operations; hence an automatic extraction method is desired. However,
the data volume of vast power transmission corridors (PTCs) and external environmental
objects affect efficiency. More importantly, their geometric features produce significant
interference for the extraction of particularly small insulators. Insulators have connec-
tivity with power lines and pylons from a large-scale perspective, but they have similar
performance in terms of structures of electricity elements and pylons in 3D point clouds
from a small-scale perspective. Especially when the pylon size becomes larger, the wider
spacing of the tower structure results in more steel structures being similar to insulators.
Moreover, automatic extraction algorithms are susceptible to complex topology structures
and system noise. Studies showed that the use of multi-scale features can eliminate or
mitigate the impact of noise and high similarity between different objects on extraction
accuracy and robustness [9–13]. However, there are few reports on how to use multi-scale
geometric features and perform fusion and quantitative evaluation of these features to
solve the problems in insulator extraction.

Efficient, high-precision, and robust insulator extraction was not effectively addressed,
so this paper proposes an automatic insulator extraction method by quantifying the multi-
scale performance of geometric features. A pylon extraction method was introduced to
exclude most of the non-pylon elements and improve efficiency [14]. For cases in which the
connectivity and similarity with other structures and system noise jointly impact the high-
precision result, the multi-scale features are utilized to obtain significant representations.
Further, for cumbersome feature threshold selection brought by multi-scale features and
the decisive role of inappropriate scale, a specific entropy weighting method (EWM) is
introduced to quantify the different contributions of features in decision-making, which
solves the above problems and achieves robust results. Finally, according to the string
characteristics, a region erosion and growing algorithm is used to refine candidate insulator
point clouds and obtain complete insulators, which introduces the concepts of morphology
opening operation. The main contributions are:

• Applying multi-scale features to provide significant representations of shape and struc-
ture information, mitigating the impact of noise and similarity on extraction accuracy.

• Introducing the EWM to quantify the multi-scale performance of geometric features,
producing robust results.

• Developing an automatic data-driven method to extract insulators from pylons with
various shapes and sizes, where tension and suspension insulators can be distin-
guished as well.

This paper is outlined as follows: Section 2 reviews the state-of-art method related
to insulator extraction using point cloud data. Section 3 introduces experiment datasets
and describes the proposed approach in detail. Section 4 provides a sensitivity analysis
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and experimental results. Section 5 analyzes the possible conditions and performance of
multi-scale neighborhoods. Section 6 concludes this work and provides plans.

2. Relate Works
2.1. Insulator Extraction

Multiple solutions that focus on image-based insulator extraction and point cloud-
based insulator extraction appeared for many years with continuous studies and their
importance was repeatedly emphasized in related reviews [4,5,8,15]. Extracting insulators
from images such as optical aerial images and thermal images is a hot topic with enormous
practical significance. Some studies developed algorithms based on image processing to
achieve accurate insulator segmentation [16–18]. Recently, many learning technologies were
applied to insulator defect inspection, and the first step is to accurately locate the position of
the insulator from the complex background [1,2,19–22]. Among these studies, one common
problem is that the missing insulators in images reduce the accuracy. Moreover, the 3D
location of faulty insulators cannot be determined by images alone, and high-resolution
insulator images are also much desired. Therefore, an automatic way that can guide the
taking of close photographs from multiple directions and can also be applied to periodic
inspections will significantly improve the accuracy and efficiency of fault detection [8].

Point cloud-based power element extraction mainly focuses on objects with notable
characteristics on large scales, such as power lines and pylons [14,23–26]. With the popu-
larization and upgrading of LiDAR technology, the details of objects that the point cloud
can express became richer, and they are widely used to extract other small electric tower
components. Arastounia and Lichti proposed an approach based on a priori knowledge
of the main directions to extract insulator point clouds in substation scenarios [27], and
a subsequently improved method classified six types of components in which the insulators
were extracted by detecting non-planar point clouds [28]. In the PTC scenario, Qin et al.
extracted suspension insulators based on cylinder segment recognition by vertical angle
and image processing from cable inspection robot (CLR) LiDAR data [29]. Ortega et al.
proposed a contextual feature in the k-nearest neighbor point cloud and used verticality
clustering to extract suspension insulators, only the tension insulators were not taken into
account [24]. Zhang et al. identified the points between the end of power lines and the
pylon center as tension insulators, which rely on multiple-stage preprocessing and the
accuracy of power line extraction [14]. Guan et al. argued that the linear connector–tension
insulator is easy to obtain after the segmentation of pylons and power lines based on the
template matching approach [8]. However, they also concluded that it involves manual
operations and usually aims for specific conditions.

All these studies seldom considered the type of insulators and the shape, size, and
function of pylons, which differ in how the conductors or jump wires attach to them
and how they distribute in different types of pylons, such as suspension and anchor.
What is more, they did not evaluate absolute statistical accuracy. The reasons for this
perhaps are that there are no standard performance metrics and poor data quality results in
sparse insulator points. In our study, various pylons that differ in size, shape, type, and
voltage level are taken into account, and we develop an automatic data-driven algorithm
to accurately extract insulators in possible conditions.

2.2. Multi-Scale Feature Fusion

Multi-scale features can provide additional structural information and perform ro-
bustly in the presence of noise [12]. Brodu and Lague proposed a multi-scale dimensionality
analysis that improves spatial resolution by combining multi-scale features, which perform
better than a single scale, especially for small objects [13]. An appropriate neighborhood
scale for each point could provide a more accurate prescription. Demantke et al. pro-
posed an optimal neighborhood selection by determining scales when ones of linearity
(1D), planarity (2D), and sphericity (3D) have the maximum proportion [30]. Weinmann
et al. proposed an eigen entropy-based scale selection strategy, which chooses scales with
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minimum eigen entropy, arguing that the optimal neighborhood improves the distinctive-
ness of features [31]. In the following review, the classification of wire and pole/trunk
performs better than constant scales and dimensionality-based scale selection [32]. Huang
et al. combined multi-scale geometrical features to provide a better representation of point
clouds and revealed a classification improvement [33]. Si et al. fused multi-scale features
to enrich contextual information, which significantly improved the denoising precision
in urban areas [9]. Other recent studies were keen to use multi-scale for classification
in classifiers and networks and brought positive and beneficial impacts [34–36]. In our
study, the multi-scale neighborhoods and multiple features address the scale selection and
improve the robustness when applied to small components.

3. Materials and Methods
3.1. Datasets

Insulators generally can be divided into two types based on their connection modes in
overhead PTCs: suspension insulators (SIs) and tension insulators (TIs). As illustrated in
Figure 1, the SIs colored in red are installed vertically under cross arms and utilized to hang
power lines. The TIs rendered in blue are installed to horizontally mount on the cross arms
and are used to withstand the lateral tension of power lines. Their distribution and length
vary depending on pylon shapes, function, and PTC voltage. To test the performance of the
proposed method in different pylon shapes and sizes, a large number of pylons are accessed
and applied. Their details are listed in Table 1. The pylon (d) in higher-voltage PTCs has
a larger size and longer insulators. The tension pylons have tension insulators, but some
of this type of towers have suspension insulators, while others do not. The suspension
pylons (g–j) have only suspension insulators. The T-type pylons (a–g) have different floors
and sometimes asymmetry, and O-type pylons (h, i) have different insulator distributions.
Although the portal pylon (j) has a simple shape, there are some linear structures similar to
the insulators.
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Figure 1. Pylon point clouds. (a–g) T-type pylons; (h,i) O-type pylons; and (j) a portal pylon.
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Table 1. Details of the power pylons.

Pylon Length (m) Width (m) Height (m) Number of SIs Number of TIs

a 13.32 10.66 29.77 2 6
b 14.48 10.10 44.59 3 12
c 8.7 4.5 45.10 6 12
d 23.43 14.48 53.87 6 6
e 14.15 9.58 34.20 3 6
f 13.41 5.09 24.41 2 6
g 12.49 12.46 44.97 6 /
h 9.56 6.30 37.25 3 /
i 16.06 7.64 40.65 3 /
j 1.28 13.85 23.24 3 /

To test the accuracy of the proposed method in complete PTCs, we experimented
with PTC point clouds acquired by using the CBI-300P (http://www.a-lidar.com/Home
(accessed on 1 May 2023)) as shown in Figure 2. The CBI-300P with a laser scanner
XT32 from HESAI (https://www.hesaitech.com/cn/zh (accessed on 1 May 2023)) is
a centimeter-scale lightweight and high-precision LiDAR mapping system. There are
32 laser beams, higher point density, and less occlusion, which can provide more informa-
tion on such small components as insulators. The relative accuracy is 5 cm and its scan
rate is 1,920,000 points/s. The flight height is about 15 m above the power lines and the
slant distance is about 15–30 m. It was widely used in power inspection thanks to its high
precision and adaptability to multiple UAV platforms.
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3.2. Methodology

A data-driven method is proposed to automatically extract insulators from PTC point
cloud data. As shown in Figure 3, in the stage of extraction, pylons are detected from PTCs
in the XOY plane and then the pylon heads with attachments installed are segmented to
improve efficiency and reduce effects from the surrounding environment. After that, in the
stage of multi-scale feature evaluation, according to the different types of insulators, two
feature sets with multiple neighborhood scales are designed to extract both insulators and
constrain the performance of other objects, and an entropy weighting system is added to
obtain comprehensive scores. In the stage of refinement, the region erosion and growing
algorithm is utilized to erode noises and grow the insulator along its principal direction. The
results are complete point clouds of suspension insulator strings and tension insulator strings.
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3.2.1. Pylon Head Segmentation

It is difficult to extract such small insulators from vast PTCs with huge data volumes
and to eliminate interference from surrounding environments. In the first step, an approach
proposed by reference [14] is introduced to extract the pylons. The main ideas are illus-
trated in Figure 4, which identifies the pylons by analyzing features for whether there is
continuous vertical distribution as shown in Figure 4a (the 2nd floor) and higher heights
as shown in Figure 4a (the 3rd floor) in sparse grids, and then the centers are determined
through vertical slice analysis. It can be seen that there is a larger relative height difference
in the areas of power lines and pylons. Moreover, within these regions, the point clouds of
pylons are dispersed across various height levels. The extraction results are pylon point
clouds including the main bodies and components. Then, voxel sampling is utilized to
further reduce the data volume of pylons and to make the point density more uniform
without loss of details.

The pylon bodies with wider spacing structures could decrease the efficiency and
potentially reduce the accuracy. Generally, most common pylon bodies have relatively
regular quadrangular frustum pyramid structures. The XOY plane projection of their
horizontal slices is a regular square. A characteristic of the square is that its aspect ratio
is close to 1, which can be used to remove the horizontal slices until meeting the head
with a lower aspect ratio as shown in Figure 4b. In special cases, the arbitrary orientation
of pylons may result in head slices being incorrectly removed. A principal component
analysis (PCA) algorithm is used to calculate the eigenvalues and eigenvectors of the point
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clouds, in which an eigenvector corresponding to the maximum eigenvalue is the principal
direction [37]. By rotating the X-axis to the principal direction around the Z-axis, the cross
arms can be reoriented along the X-axis to prevent the insulators from being removed.
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3.2.2. Feature Construction

A specific feature cannot completely distinguish the insulators from other objects, but
the constraint of multiple features can better classify the insulators. The structures of the
pylon bodies and insulators are prone to having high linearity on a small scale, but the
former has higher planarity on a larger scale. There is significant surface variation in the
connection parts between both ends of the insulator and the pylons or power lines as well.
On the strength of the above rules, by analyzing the object characteristics and connection
mode, two different feature sets are designed to extract insulators including tension and
suspension insulators. Limited by different scan distances and uneven point density, it
is necessary to retrieve the radius sphere neighborhood to compute geometric features
instead of k-nearest neighbors. The features are mainly divided into three categories:
eigenvalue-based features, density features, and projection features. The designed features
for different pylon types and details are listed in Table 2.

The eigenvalue features are widely used in feature estimation [32,38] and object
extraction in the PTC scenario [23,24,39], which can better represent the local 3D shape
features. For the tension insulators, the ME changes sharply as the neighborhood radius
scale changes, which can be used for following multi-scale fusion. The SVs are significantly
different from others at both ends of insulators, which can be used to remove the connection
between insulators and other objects. The PCA1 and PCA2 are salient features for tension
insulator extraction. The WI and PD are applied based on the specific characteristics of
insulators for optimization. By rotating the principal direction of neighborhood point
clouds to be in line with the X-axis, the width of the insulator string is usually between
0.6 m and 1.2 m. The suspension insulators have high VE compared with other objects.
However, on small scales, other vertical structures complicate the extraction. The LS
is used to distinguish suspension insulators that benefit from their simple surrounding
distribution of point clouds. The PCA2 helps to accurately obtain linear structures such as
suspension insulators.
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Table 2. The designed features. The first column represents the feature categories, the second column
represents the features, the third column listed the equations on how to compute these features, the
fourth column represents applied features in TIs extraction, and the fifth column represents applied
features in SIs extraction.

Category Feature Equation TIs SIs

Eigenvalue features

Minimum eigenvalue (ME) λ3 X
Planarity (PL) (λ2 − λ3)/λ1 X
Linearity (LI) (λ1 − λ2)/λ1 X

Surface variation (SV) λ3/(λ1 + λ2 + λ3) X
PCA1 λ1/(λ1 + λ2 + λ3) X
PCA2 λ2/(λ1 + λ2 + λ3) X X

Verticality (VE) 1−
∣∣∣∣ →
(0, 0, 1)•

→
V1

∣∣∣∣ X

Density features Point density (PD) num(points) X

Projection features Width (WI) Ymax −Ymin X
Length–width Sum (LS) (Xmax − Xmin) + (Ymax −Ymin) X

Description: λ1, λ2, and λ3 (λ1 > λ2 > λ3) represent the three eigenvalues calculated by the PCA algorithm.
→
V1

represents the principal direction vector of the point cloud, and • represents the dot operation. Xmax, Ymax Xmin,
and Ymin represent the maximum and minimum x and y coordinates, respectively.

3.2.3. Quantification of Multi-Scale Feature

The hierarchical thresholds of multiple features in extraction are commonly used,
which set an empirical threshold for each feature step by step [11,24]. However, there are
higher requirements for the performance of features and experience in the approach. As it
is hard to find the optimal thresholds of features and error thresholds playing a decisive
role, the EWM can better determine the contribution of each feature to the extraction that is
desired to improve the robustness and flexibility. A concept called information entropy,
which extended from the entropy theory proposed by Shannon, is applied to quantify
the importance [40], which refers to the variation degree of indicators. If an indicator
has a small information entropy, it means that the greater the variation degree it has, the
more information it can provide, hence its weight is greater in decision-making. The
EWM weakens the influence of abnormal values and makes the results more accurate
and reasonable.

Insulators are particularly small, so it is difficult to find an appropriate neighborhood
scale to exactly describe their characteristics, especially for such complex topology and
similarity. The selection of radius parameters is fussy as well. Accordingly, applying small
scales on small objects to accurately portray features while applying large scales to obtain
more representation is desired for insulator extraction. The eigen entropy-based optimal
neighborhood selection, which favored scales corresponding to the minimum eigen entropy,
proved that the adoptive neighborhoods improved the distinctiveness of geometric features,
especially for wire-like and pole/trunk-like objects [32]. The eigen entropy is calculated as
Equation (1).

E = −
3

∑
i=1

ei ln ei = −e1 ln(e1)− e2 ln(e2)− e3 ln(e3) (1)

where e1, e2, and e3 (ei = λi/∑ λ) are normalized eigenvalues. The eigen entropy can
represent the order/disorder of points within the local 3D neighborhood. The different
performances of components at optimal neighborhood radius scales are shown in Figure 5,
where the insulators tend to apply a larger neighborhood radius scale to accurately rep-
resent their linearity, while at the connection between insulators and other objects, the
insulators tend to apply a small neighborhood radius scale to avoid being represented
as other objects. The more complex pylon structures are applied with relatively small
neighborhood scales.



Remote Sens. 2023, 15, 3339 9 of 19

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 20 
 

 

that is desired to improve the robustness and flexibility. A concept called information 

entropy, which extended from the entropy theory proposed by Shannon, is applied to 

quantify the importance [40], which refers to the variation degree of indicators. If an in-

dicator has a small information entropy, it means that the greater the variation degree it 

has, the more information it can provide, hence its weight is greater in decision-making. 

The EWM weakens the influence of abnormal values and makes the results more accu-

rate and reasonable. 

Insulators are particularly small, so it is difficult to find an appropriate neighbor-

hood scale to exactly describe their characteristics, especially for such complex topology 

and similarity. The selection of radius parameters is fussy as well. Accordingly, applying 

small scales on small objects to accurately portray features while applying large scales to 

obtain more representation is desired for insulator extraction. The eigen entropy-based 

optimal neighborhood selection, which favored scales corresponding to the minimum 

eigen entropy, proved that the adoptive neighborhoods improved the distinctiveness of 

geometric features, especially for wire-like and pole/trunk-like objects [32]. The eigen 

entropy is calculated as Equation (1). 

3

1 1 2 2 3 3

1

ln ln( ) ln( ) ln( )i i

i

E e e e e e e e e
=

= − = − − −  (1) 

where 1e , 2e , and 3e  ( /i ie  =  ) are normalized eigenvalues. The eigen entropy 

can represent the order/disorder of points within the local 3D neighborhood. The 

different performances of components at optimal neighborhood radius scales are shown 

in Figure 5, where the insulators tend to apply a larger neighborhood radius scale to ac-

curately represent their linearity, while at the connection between insulators and other 

objects, the insulators tend to apply a small neighborhood radius scale to avoid being 

represented as other objects. The more complex pylon structures are applied with rela-

tively small neighborhood scales. 

 

Figure 5. Performance of different components at optimal neighborhood radius scales. 

An improved EWM is utilized, which combines with optimal neighborhood radius 

selection and multi-scale fusion. In the first step, the features (PCA2, SV, PCA1, and VE) 

corresponding to the optimal neighborhood radius should be extracted. We traversed 

the range of neighborhoods [0.8–2 m] with an interval of 0.1 m to compute the eigen en-

Figure 5. Performance of different components at optimal neighborhood radius scales.

An improved EWM is utilized, which combines with optimal neighborhood radius
selection and multi-scale fusion. In the first step, the features (PCA2, SV, PCA1, and VE)
corresponding to the optimal neighborhood radius should be extracted. We traversed
the range of neighborhoods [0.8–2 m] with an interval of 0.1 m to compute the eigen
entropy at each scale. Then, we selected the feature values of neighborhood radius scales
corresponding to the minimum eigen entropy, noting that the steel bar structures of pylons
and insulators perform high linearity on a small scale but the former perform high planarity
on a larger scale. To obtain more representation, the ME within 0.8 m, LI within 1.3 m,
and PL within 1.8 m are added to the feature matrix of tension insulators. The LS within
1.5 m is added to the feature matrix of suspension insulators. For cases in which there are
different dimensions of features and their positive and negative contributions, the features
should be normalized as Equation (2).

negative feature : αj =
vmax−vj

vmax−vmin

positive feature : αj =
vj−vmin

vmax−vmin

(2)

where (vmin, vmax), respectively, represent the minimum and maximum values of the feature
and αj represents the normalized value of the j-th point. For tension insulators, negative
features, such as the ME, PL, PCA2, and SV, are distributed in a lower range. The positive
features, such as PCA1 and LI, are distributed in a larger range. For suspension insulators,
the negative features PCA2 and LS are distributed in a lower range, and the positive VE
is distributed in a larger range. In this paper, we replace the normalization operation of
negative features with “−” and replace the normalization operation of positive features
with “+”. The feature evaluation for different types of insulators is shown in Equation (3).

STI =



wME
wPL

wPCA2
wSV

wPCA1
wLI



>

·



−ÃME(r∼0.8m)

−ÃPL(r∼1.8m)

−ÃPCA2(r∼minEλ)

−ÃSV(r∼minEλ)

+ÃPCA1(r∼minEλ)

+ÃLI(r∼1.3m)


SSI =

 wPCA2
wLS
wVE

>·
 −ÃPCA2(r∼minEλ)

−ÃLS(r∼1.5m)

+ÃVE(r∼minEλ)

 (3)
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where w represents the weight of each feature, Ã ∼ (α1, α2, · · · αn) represents the feature
value sets, and r ∼ minE represents the optimal neighborhood radius scale when minimum
eigen entropy is reached. To obtain the weight of each feature, taking the feature evaluation
of suspension insulators as an example, the information entropy of each feature should be
calculated as Equation (1). Then, the final weights of features are calculated as Equation (4).

wi =

1
ln n−E(Ãi)

6
∑

i=1

1
ln n−E(Ãi)

(4)

where E(Ãi) represents the information entropy of the i-th feature and n represents the
number of values in the feature.

3.2.4. Optimize Extraction of Enlarged Perspective

In this stage, aiming to obtain complete insulator strings, most noise can be removed
on the one hand, and then the perspective by growing point clouds can be enlarged to obtain
more characteristics on the other hand. This operation can segment complete insulators
while removing other objects through more characteristics. Noting that the candidate
insulator point cloud extracted from the set interval contains noise points, while the noise
points are different from the insulator points in some characteristics, the region erosion
and growing method that introduces the concept of morphological opening operation [41]
is proposed for optimization. Its basic ideas are: (1) Each type of insulator has fixed
characteristics; for instance, width and high point density, which can be used to erode
non-insulator points from the candidate insulator point cloud. (2) Growing along the
principal direction of the insulator from both ends until meeting the junction of the pylon
body or power line, the insulator point clouds can be completely extracted. Benefiting
from the grown point clouds with more characteristics, such as verticality and length on
a larger scale, the similarity with other objects will be further weakened. The steps are
illustrated in Figure 6. We calculate the width and normalized point density of the spherical
neighborhood point cloud of a 0.6 m radius for each point. Then, the points that do not
belong to a set interval of width and point density can be removed and the remaining
points are considered as points of the tension insulator. In our experiments, the width
interval and the normalized point density range are set to 0.6–1.4 m and 0.6–1, respectively.
After the erosion operation, we grow the cube region along the principal direction of each
insulator from both of its ends until the cube point clouds belong to the pylon body or
power line as shown in Figure 6c.
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4. Results and Analysis

Recall, precision and F1-score are utilized to evaluate the extraction performance of
our approach according to the past approach [9,23,39]. Likewise, we consider an insulator
as correctly identified when the number of extracted insulator points is greater than half of
the validation insulator. The identification rate is represented by Equation (5) [24].

Ri =
nidenti f ied

nvalidation
(5)

where nidenti f ied represents the number of correctly identified insulators and nvalidation
represents the number of validation insulators.

The proposed approach was mainly realized in Point Cloud Library Version 1.8.1 and Mi-
crosoft Visual Studio 2015. The program was operated on a computer with the Win 11× 64 system,
i5-12400H CPU, and NVIDIA GeForce RTX 3050Ti, and with general performance.

4.1. Parameters Analysis

In our approach, the input parameters are obtained in two different ways: most
are adaptive and few are empirical. In the step of pylon head segmentation, we set the
aspect ratio to 0.8 to completely remove the most common pylon bodies according to the
experiments. The voxel sampling with a voxel of 0.2 m, which comes from experiments,
is applied to obtain uniform point density while improving efficiency. In the step of
EWM evaluation, the weight of each feature is determined by its contribution to decision-
making. In a case where there are two different types of suspension insulators, twin and
single, their characteristics are different from each other. Hence, we apply the normalized
feature threshold scope instead of the fixed threshold scope to avoid misidentification.
The neighborhood scales within a range of 0.8–2.0 would be discussed in 5.2. For the
extraction threshold, they are obtained by traversing the comprehensive scores when there
are the highest scores in 5.2. The comprehensive scores of tension insulators are mainly
concentrated at 0.85–0.95 in the frequency distribution, and the comprehensive scores of
suspension insulators are mainly concentrated at 0.8–1. In the step of optimization, we
normalized the point density of insulator point clouds and set thresholds from 0.6 to 1 to
erode non-insulator points.

4.2. Pylon Head Segmentation

Head segmentation can remove many useless parts while improving accuracy. Since
our approach needs to find an optimal neighborhood for each point, the excessive points
would seriously reduce efficiency, especially when applied to numerous pylons. Thus, it is
an important part of improving efficiency and accuracy. For general pylons, their bodies
are usually regular quadrangular frustum pyramids and the aspect ratio is close to 1 at
any angle in each transversal slice. Even with the arbitrary orientation, the regular pylon
body can be completely removed. However, the body of the portal pylon (j) is not a regular
quadrangular frustum pyramid. Fortunately, thanks to the relatively simple structure, in the
subsequent stage, its presence does not affect the final results of extraction. By testing the
performance of pylon head segmentation on 82 pylons, 79 pylons are correctly segmented
and 3 pylons are wrongly segmented. The wrong segmentation is due to the interference
of power lines, where two insulators in one of the pylons are mistakenly removed by
coincidence while the bodies in the other pylons are not removed. Pylons that are still
over-segmented after they are reoriented indeed affect the final results, but in rare cases.
By experimenting with the pylons where bodies fail to be removed, the insulators are still
extracted correctly. The results of segmentation are illustrated in Figure 7. Except for the
rare pylon shapes, the most common pylons perform better in head segmentation. On that
basis, massive interferences are excluded and the rest come from pylon components only.
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4.3. Insulator Extraction

After the optimized extraction, the results and accuracy of tension insulators and
suspension insulators for multiple pylon shapes are illustrated in Table 3. In general,
the extraction accuracy of tension insulators is better, while the extraction accuracy of
suspension insulators (pylon (c, f)) is sometimes reduced due to their fewer points. For such
small components, fewer validation points would result in greater accuracy fluctuations
than changes in correctly extracted points and falsely extracted points. For example,
the point number of suspension insulators in pylon (c) and pylon (f) is 837 on average.
However, in terms of length, 1.5 m-long insulators are extracted by 1.35 m in pylon (c),
and 1.94 m-long insulators are extracted by 2.2 m in pylon (f). The end and center points
regarded as key points for inspection would not deviate too far. Apparently, it can be seen
that our approach is applicable to various pylon shapes and sizes. Regarding different
voltage levels, such as 500 kv (pylon (d)) and 220 kv (pylon (a)), the former pylons and
insulators are larger and longer than the latter. In terms of the benefits from the application
of multi-scale neighborhoods and EWM, both have good results.

In our datasets, 82 pylons, which include 359 tension insulators and 295 suspension
insulators, were tested. The processing efficiency is 0.08 million points per second. We
consider an insulator as identified when half of its points are extracted. The recall and
precision of identified tension insulators are 99.16% and 98.88%. The recall and precision of
identified suspension insulators are 97.29% and 97.63%, respectively. The PTCs perform
better thanks to the fact that the pylon shapes and sizes are not diverse. It is noteworthy
that the poor results mainly include the following factors: (1) missing insulator points,
and (2) very rarely, the similar performance of insulators and other objects in point clouds.
As shown in Figure 8, when the insulator point clouds are not complete, they are not
extracted because of the changed feature information. The missing insulator performs
a higher linearity, resulting in a higher comprehensive score as shown in Figure 8a. With
the current advantage of radar high density, such as with the CBI-300P system, this situ-
ation can be completely avoided. In another case, a few power lines are extracted when
their characteristics, comprehensive scores, and point density are similar to the insulators.
However, because the connected part is better removed, the power lines can be removed
by setting a distance threshold from the pylon center as in reference [14]. In fact, for the
existing research and algorithms with high accuracy on power line extraction, the results,
such as in case (b), will be further improved after power lines are already extracted.
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Table 3. Results and accuracy of the proposed approach for insulator extraction.

Pylon Accuracy of
SIs

Accuracy of
TIs Pylon Accuracy of

SIs
Accuracy of

TIs

Recall (%)
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5. Discussion
5.1. Influences Come from Possible Conditions

Provided that there are three cases, poor point density, unusual pylon shape, and
surrounding environment would potentially affect the extraction. Figure 9 presents some
examples of extracted insulators and noise points. For poor point density, insulators usually
contain only a few points and perform poor characteristics, which toughens their extraction.
After testing several pylons with poor point density, as shown in Figure 9a, most insulator
points are extracted. While twin power lines are also extracted due to the same performance
as shown in Figure 9(a5). It can be avoided by pre-extracting power lines as illustrated in
Figure 9(a4). For unusual pylons, comparing with the model-driven method, a data-driven
approach with broad applicability to most possible insulator extractions is much desired.
As shown in Figure 9b, the pylons are not common in PTCs; besides, the data quality is not
very good. In these pylons, most insulators are correctly extracted. Partial pylon bodies
are falsely extracted due to the similarity. It is noteworthy that three suspension insulators
inside the pylon are extracted in such complex structures as Figure 9(b3), which means that
the proposed approach is able to extract insulators with more complex distributions. There
are too many insulators in the pylon as shown in Figure 9(b4). Every insulator is extracted,
but the vertical structures complicate the extraction. Fortunately, their width is significantly
greater than the width of insulators and can be removed in subsequent processing. For
surrounding environments, because we extract pylon heads by roughly determining their
centers on the XOY plane, the surrounding objects were not taken into account. Assuming
that the failed pylon head segmentation would cause an accuracy decrease, Figure 9c shows
some results and noise points. It can be seen that most interferences come from vertical
trunks and poles. Some poles are extracted as seen in the green circle, and some insulators
of terminal supports also are extracted as shown in the blue circle. A height and distance
threshold is helpful to refine the results.

We conducted a point-wise estimation of the insulator extraction results and ana-
lyzed them under multiple pylon shapes and conditions in order to demonstrate a higher
extraction accuracy and applicability than what is found in the existing literature. The
reference [24] devised a pipeline for extracting suspension insulators. Some limitations of
their method include the exclusion of tension insulators, reliance on power line extraction,
and the experimental variation in the nearest neighbors parameter (n). They also argued
that the point density could affect the final results. The references [8,14] briefly identify
the transversal insulators between the end of power lines and pylons, which encounters
difficulties when applied in scenarios involving unusual pylons, such as in Figure 9b
and a complex environment such as in Figure 9c. Furthermore, they also impose higher
requirements for pylon extraction and power line extraction.
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Figure 9. The proposed method applied to various conditions: (a) the sparse point density of pylons,
(b) the unusual pylons, and (c) the complex environment. Suspension insulators are colored in red
and tension insulators are colored in blue. Misidentified suspension insulators are marked in green
circles and misidentified tension insulators are marked in blue circles.

5.2. Advantages of Multi-Scale Neighborhood

In this study, the shape and structure feature information of multiple scales is fused to
extract insulators. To verify the improvements of multi-scale in the quantification, every
single scale in a range [0.8–2.0 m] with an interval of 0.1 m, optimal neighborhood scale, and
multi-scale fusion are tested on pylons from (a) to (f) with a tension insulator. Expecting
more extraction and fewer omissions, a result with the highest F1-score is considered the
best. The highest F1-score is obtained by traversing the comprehensive scores. They are
illustrated in Figure 10.
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Figure 10. Performance evaluation of single-scale and multi-scale features. Description: Ropt,λ

represents the optimal neighborhood and Rmulti represents the multi-scale neighborhood.

It can be seen that the extraction accuracy gradually increases and then decreases as
the scale increases and perform sensitivity to scale changes. A scale of 1.1 m has the highest
F1-score in pylon (a), but a scale of 1.5 m has the highest F1-score in pylon (d), indicating
that a neighborhood scale with the highest accuracy changes in different pylons. It is clear
that applying the same scale in different pylons will significantly reduce the accuracy,
especially such small insulators. Through multi-scale feature fusion, the results consistently
maintain a higher or the highest accuracy, avoiding the appropriate neighborhood scale
selection and the decisive role of an inappropriate scale. What is more, taking advantage
of the optimal neighborhood and multi-scale neighborhood, the results are significantly
improved by 17.34% when extracting insulators in complex pylons such as pylon (d).
A poor result in pylon (f) is mainly caused by excessive noise because we did not calculate
features under optimal neighborhoods only. One reason for this is that the structures of
pylons are prone to represent linearity and have smaller scales, so the features represented
are relatively singular. The lower accuracy for optimal neighborhoods can prove that.
These results highlight that the multi-scale neighborhood usually has wide applicability
and higher accuracy.

6. Conclusions

In this paper, a data-driven insulator extraction method is proposed for various types
of pylons and insulators. We discussed the complexity and the effect of scale change on
insulator extraction. Pylon head segmentation, which locates the plane position of pylons
and segment pylon heads by slices’ characteristics, is a key step in reducing the data volume
while improving accuracy. Then, the eigen entropy-based optimal neighborhood selection
and multiple scales are fused to calculate various designed features and the information
entropy-based weighting method improves the robustness of feature evaluation. The region
erosion and growing method corrode the noise points and grow the principal direction,
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which provides more representation of other objects, achieving a complete insulator string
segmentation. The results given by the method tested on 82 different pylons are expected,
with an F1-score of 99.12% for tension insulator extraction and an F1-score of 97.46% for
suspension insulator extraction. The proposed method suggested that using the multi-scale
neighborhood and different weights for features improved the applicability and robustness
compared with the use of a constant neighborhood scale in related works.

This paper casts a new light on high-precision insulator extraction that should consider
the effect of scales and point-based accuracy evaluation. However, there is a limitation
in our study: it is difficult to completely constrain the representation of the linearity
of the pylon structures, resulting in noise points in feature evaluation. Future lines of
work will consider utilizing the cylinder neighborhood to calculate features instead of
the current sphere neighborhood. According to the string characteristics of insulators, we
expect that the cylinder neighborhood could bring more salient features. The balance of
two parameters’ radius and height complicates this intention. Another intention is to apply
learning technologies to achieve higher accuracy.
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