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Abstract: Rock detection on the surface of celestial bodies is critical in the deep space environment
for obstacle avoidance and path planning of space probes. However, in the remote and complex deep
environment, rocks have the characteristics of irregular shape, being similar to the background, sparse
pixel characteristics, and being easy for light and dust to affect. Most existing methods face significant
challenges to attain high accuracy and low computational complexity in rock detection. In this paper,
we propose a novel semantic segmentation network based on a hybrid framework combining CNN
and transformer for deep space rock images, namely RockSeg. The network includes a multiscale low-
level feature fusion (MSF) module and an efficient backbone network for feature extraction to achieve
the effective segmentation of the rocks. Firstly, in the network encoder, we propose a new backbone
network (Resnet-T) that combines the part of the Resnet backbone and the transformer block with a
multi-headed attention mechanism to capture the global context information. Additionally, a simple
and efficient multiscale feature fusion module is designed to fuse low-level features at different scales
to generate richer and more detailed feature maps. In the network decoder, these feature maps are
integrated with the output feature maps to obtain more precise semantic segmentation results. Finally,
we conduct experiments on two deep space rock datasets: the MoonData and MarsData datasets.
The experimental results demonstrate that the proposed model outperforms state-of-the-art rock
detection algorithms under the conditions of low computational complexity and fast inference speed.

Keywords: deep space exploration; planetary rover; rock segmentation; semantic segmentation

1. Introduction

Obstacle detection is a crucial component of space exploration to assure rover patrol
safety of deep space probes. Particularly, on the surface of most celestial bodies, rocks are
the main obstacle that interfere with landing probes and rover missions [1–3]. To obtain
suitable path planning and ensure the safe driving of planetary rovers, it is important for
planetary rovers to perceive and avoid these rock hazards when carrying out a deep space
exploration mission. However, the deep space environment is complex and unknown; some
rocks have irregular morphology and different size on the surface of the planet. Compared
to other nearby targets such as sand, soil, or gravel, they have no distinct distinguishing
features, and some rocks may also be affected by changes in illumination, different lighting
angles, and the resulting shadow causing a false visual perception. These conditions
undoubtedly increase planetary rovers’ difficulty in perceiving and understanding the
surroundings. Therefore, the exploration of autonomous rock detection on the surface of
planets still faces great challenges [4,5].

Recently, autonomous technology has been used for a range of planetary scientific
missions, including autonomous landing location [6–8], rover navigation [2,3,9], and au-
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tonomous path planning [1,10]. As the distance of deep space exploration increases,
autonomous technology becomes the key and necessary technology to support deep space
exploration in the future [11]. In deep space environments, edge-based digital image
processing methods [12–14] are a common method to achieve rock autonomous detection.
Most of them use the local strength gradient operator or the gradient difference in illumina-
tion direction to detect the target boundary, which is sensitive to noise and illumination
conditions. In order to deal with the influence of sunlight and noise, some studies [15–17]
try to classify regional objects by using a super-pixel segmentation region method based on
pixel clustering to improve the performance in rock detection. In addition, some machine
learning classifiers [18,19] are also used to classify planetary terrain. However, the complex-
ity of super-pixel segmentation increases with the size of the input image, and how to adjust
its convergence and detection performance is a challenge. Although most machine-learning
techniques are successful at terrain classification, they fall short in accurately identifying
rock boundaries and locations.

Convolutional neural network (CNN)-based deep learning technology has achieved
great success in the semantic segmentation of 2D images [20,21]. Some efforts towards
semantic segmentation-based methods have been made to achieve automatic rock detection.
For the deep space autonomous rock segmentation network, when the rover captures an
image, it is passed to a semantic segmentation network and the network output is the
classification at the pixel level, which is fed back to the detector to sense the surrounding
environment information. In order to realize high-precision rock detection in the deep
space environment, acquiring multiscale context information of rock images is essential
in a semantic segmentation network. Some studies propose convolution pooling, dilated
convolution [22], spatial pyramid pooling (SPP) [23], pyramid pooling module (PPM) [24],
and atrous spatial pyramid pooling (ASPP) [25] to obtain a larger receptive field and inte-
grate multiscale context information [26]. A U-shape network [27] is a common multiscale
semantic segmentation network widely applied to medical image segmentation and analy-
sis, which uses upsampling in the decoder to expand the feature map to the same size as
the original image. In addition, there has recently been increased focus on other multiscale
semantic segmentation networks, such as FCN [28], PSPNet [24], and DeepLabV3+ [25],
for planet rock detection [4,5,29,30].

Convolutional pool operation is a common operation in the encoder of semantic
segmentation networks, which is used to obtain the multiscale feature map, expand the
field of perception, and reduce the amount of calculation to some extent. However, using
convolutional pool operations may cause a loss of information, which causes blurry output
results in the process of the network decoder. It is very important to consider how to reduce
information loss to restore the clarity output feature mapping for improving the accuracy
of rock semantic segmentation. Some works [24,25] use a direct upsampling operation in
the network decoder to obtain the output feature map. Although this approach is easy to
implement, some details may be lost, resulting in blurred segmentation boundaries. To
enhance the clarity of the rock detection boundary, other researchers [5,29–32] recommend
fusing low-level feature details and using skip connections and stepwise sampling to
generate more rich feature output in the upsampling process. These strategies can improve
the clarity of the rock segmentation boundary to a certain extent. However, some overlaps
and redundant information may be added to the output feature map in the upsampling
process, which affects the accuracy of network segmentation [11]. In addition, the multiple
sampling and connection process may increase unnecessary network parameters and
computational complexity [33,34]. Most rock detection methods do not consider how to
balance accuracy and complexity.

Obtaining local and global context dependencies is the key to extracting the target
object [35,36]. CNN can obtain the local context dependencies using multiscale context
information in semantic segmentation networks. However, the local feature of the con-
volution layer of the CNN limits the ability of the network to capture global information.
Recently, a transformer network based on a multi-headed attention mechanism has been
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successful in the field of computer vision. Vision Transformer (ViT) can effectively obtain
global information using a self-attention mechanism and enhance the model expression
through the multi-head spaces map. Some researchers have applied vision transformers
(ViT) in image classification and segmentation [5,29,37]. The VIT model often relies on pow-
erful computing resources and a pre-training model, which limits its use in many tasks. To
apply the strong global feature extraction ability of the transformer, some studies propose a
new combination of CNN and transformer networks to fuse both advantages for capturing
local and global contextual information. Hybrid networks combining CNN and transformer
have been attempted in some fields, such as image change detection [38,39], medical image
segmentation [35,36], person re-identification [40], and image super-resolution [41].

In previous work, we have proposed [31] an onboard rock detection algorithm based
on a spiking neural network to reduce the calculation energy consumption. In this paper,
we explore a novel network based on a hybrid framework combining CNN and vision
transformer for deep space rock images to improve the efficiency and accuracy of rock
detection; the proposed model contains an efficient backbone feature extraction block and
a multiscale low-level feature fusion module. Firstly, to efficiently extract rock features,
we propose a new backbone (Resnet-T), which utilizes part of the Resnet backbone and
combines it with a visual transformer block to capture the global context information of the
rock. Secondly, a simple and effective multiscale low-level feature fusion (MSF) module
is designed to obtain more rich semantic features, and they are fused into the output
feature map in the upsampling process to improve the quality of the output feature map.
Last, we use two deep space rock image datasets (MoonData and RockData) to verify the
performance of the proposed model. The experimental results show that our model has
higher detection accuracy and faster model reasoning speed than other methods when the
model parameters and computational complexity are lower.

In summary, our main contributions are as follows.

• We propose a novel semantic segmentation network (RockSeg) based on the combined
CNN and transformer framework, which contains an efficient feature extraction
backbone and a multiscale low-level feature fusion module to effectively detect rocks
on the surface of celestial bodies.

• We combine Resnet blocks and visual transformer blocks to construct an efficient
Resnet-T backbone network to extract the global context information. In addition, we
design MSF to obtain rich multiscale fusion features and fuse them into the output
feature map to improve the segmentation clarity of the target boundary.

• The experiment is conducted on the PyTorch platform with two rock datasets to
verify the performance of the RockSeg. The results show that our method outper-
forms the state-of-the-art rock detection models in terms of detection accuracy and
inference speed.

The rest of this paper is organized as follows: Section 2 describes related work.
Section 3 describes the proposed network architecture, the design of the feature extraction
backbone, and the multiscale low-level feature fusion module. The experimental results
and analysis are provided in Section 4. In Section 5, we conclude our work.

2. Related Work
2.1. Deep Learning-Based Obstacle Detection in Space Exploration

Obstacle detection is crucial for rover navigation and path planning of space rovers.
Recently, some deep learning-based approaches for improving the accuracy and practicality
of obstacle detection have been developed. Craters are a conspicuous and well-preserved
feature of star surfaces, with the majority of them being registered. Researchers used CNN
to detect the crater pictures obtained during the probe’s descent to gain visual global local-
ization [7,8], which helps the lander in locating and selecting a safe landing place. Moreover,
other studies concentrate on applying deep learning to terrain classification [42,43], terrain
segmentation [33,44], and rock segmentation [4,30] for Mars rovers. (i) Terrain classification.
Li et al. [43] suggest using transfer deep learning techniques for autonomous classification
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of Martian rock images with seven different types of terrain. In order to enhance the clarity
of the output feature map texture, Liu et al. [45] also combine a number of modules with
generative adversarial networks, attention mechanisms, and a feature pyramid structure to
build the detection network. (ii) Terrain segmentation. In order to increase the accuracy of
the segmentation result, a hybrid attention semantic segmentation network is proposed [44]
for unstructured terrain on Mars, which combines the global and local attention branches
to aggregate the contexts for the final segmentation. In addition, Dai et al. [33] propose a
lightweight ViT-based terrain segmentation approach with low computational complexity
and power consumption for onboard satellites. Furthermore, the semi-supervised learning
framework [46,47] is proposed for Mars terrain segmentation to address the lack of training
data and training complexity. (iii) Rock segmentation. In previous work, we propose an
efficient rock detection algorithm on the surface of the Moon to reduce the complexity of
the calculation [31], which uses a spiking neural network with a new brain-like paradigm to
achieve onboard rock detection. In Martian rock detection methods, the work [4] employs
the Unet convolutional neural network to obtain a segmented rock image by training
different sizes, shapes, and textures of rock images in a Mars-like environment. The pa-
per [5] build a U-shaped transformer network that uses a hierarchical encoder–decoder
architecture and multiscale features based on an improved vision transformer to capture
global dependencies for Martian rock segmentation. In addition, the authors of [30] also
design automatic rock segmentation based on deep learning using enhanced Unet-based
architecture combined with a visual geometry group and dilated convolutional to improve
the accuracy of the rock segmentation.

In general, the above models for deep learning-based obstacle detection have promoted
the progress of autonomous technology in deep space exploration to some extent. However,
the terrain classification method only divides terrain categories to detect the terrain, which
is a coarse-grained recognition and detection of the surroundings. Semantic segmentation
methods are fine-grained recognition and detection methods based on pixel classification,
which is vital for deep space probes to know the surroundings. Moreover, deep space is
far from the Earth, and the probe carrying resource is limited. To achieve autonomous
technology in complex and changeable deep space, the deep space spacecraft must meet
safety, high recognition accuracy, and low complexity computing requirements. Due to most
semantic segmentation methods for planet rock detection only paying attention to detection
accuracy or low computational complexity, few of them consider both computational
complexity and precision, so most autonomous rock detection methods do not yet have the
capability to be used in deep-space environments. In this paper, we propose an effective
rock detection network to balance accuracy and computational complexity, and make it
more suitable for deep space environments.

2.2. Improved Segmentation Accuracy and Performance

A semantic segmentation network is usually composed of an encoder and a decoder;
the encoder is used to extract multiscale features from the input image, and the decoder is
used to convert the features into pixel-level segmentation results. In the network encoder,
a convolution pool is a common method to enhance the receptive field and reduce the
model parameters. However, this may lead to the loss of some information, which has a
negative impact on the accuracy of the segmentation results. In order to reduce the loss
of information, Yu et al. [22] propose a novel dilated convolution to aggregate multiscale
contextual information without losing resolution, which achieves an increase in the recep-
tive field without additional parameters of the network. Inspired by [22], the work [24]
utilizes a dilated convolution and pyramid pooling module to integrate contextual infor-
mation from different regions and embed it in fully convolutional networks. In addition, a
stronger encoder–decoder network to refine the result of segmentation is proposed in [25],
in which they apply atrous convolution at multiple scales to encode multiscale contextual
information in the encoder module and in the decoder module they use spatial information
to recover the feature map to refine the object boundary.
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Another approach is to improve segmentation accuracy by incorporating more details.
When researchers use the simple and direct one-time upsampling methods [24,28] to obtain
the output feature image, the edge of the output feature image may be blurred, which may
have a bad effect on the segmentation results. In order to obtain a clear segmentation of
the boundary, some works [5,7] use skip connections and step-by-step sampling methods
to merge more rich fine-grained information and increase the quality of an output feature
map. Sun et al. [32] propose the HRNet network using repeated fusion of the high-to-low-
resolution representations to obtain rich high-resolution representations. However, multiple
upsampling and connection operations may increase unnecessary network parameters and
computational complexity. In this paper, a new semantic segmentation network based on
a hybrid framework combining CNN and vision transformer is constructed which has
an efficient backbone feature extraction module and a multiscale low-level feature fusion
module. Similar to [32], we design a more simple and efficient multiscale low-level feature
fusion module to fuse more detailed features to the output feature map during upsampling
on the network to obtain more fine-grained segmentation results.

To improve the semantic segmentation network’s capability in capturing global fea-
tures, some studies have presented a hybrid framework network combining CNN and
transformer to enhance the ability of the network to capture local and global features. In an
image change detection task, the authors of [38] construct a new model combining vision
transformer and UperNet to effectively transfer the pretrained model. Zhang et al. [39]
propose an asymmetric cross-attention hierarchical network by combining CNN and trans-
former in a series-parallel manner to improve effectiveness in a change detection task. In
medical image segmentation, Xiao et al. [35] design a new teacher–student semi-supervised
learning optimization strategy fusing CNN and transformer, which improves the utilization
of a large number of unlabeled medical images and the effectiveness of model segmentation
results. The paper [36] links CNN and a swin transformer as a feature extraction backbone
to build a pyramid structure network for improving the quality of breast ultrasound lesion
segmentation. To improve the image super-resolution, Fang et al. [41] propose a hybrid
network of CNN and transformer for lightweight image super-resolution. In these hybrid
networks, most of them embedded the transformer block by image patch in the CNN layer
as a new feature extraction block to capture the global context information. However, the
CNN and transformer block have their own advantages; the later decision fusion may be
more beneficial to the representation of features. In this paper, to fully fuse these advan-
tages, we propose a new hybrid network combining CNN structure and transformer blocks
without image patches to apply them to deep rock detection.

3. Methods

In this section, we describe the detail of the novel semantic segmentation network
based on a hybrid framework combining CNN and vision transformer, namely RockSeg, the
efficient feature extraction backbone, and the multiscale low-level feature fusion module.

3.1. RockSeg

We propose a hybrid framework combining CNN and vision transformer for rock
image semantic segmentation in deep space and the whole network includes two parts, an
encoder process and a decoder process. Figure 1 depicts the RockSeg network structure.
The network input is the rock images on the surface of celestial bodies and the output is
the classification results at the pixel level. In the network encoder, the input rock images
are first processed through the feature extraction backbone, which contains the two Resnet
blocks from the Resnet-34 network and four transformer blocks to extract the important
features of the rock. Simultaneously, five different scales of low-level feature maps Li are
obtained from the network encoder, where Li = {l1, l2,l3, l4, l5}, 1 ≤ i ≤ 5, and i ∈ N. In the
network decoder, to improve the quality of the final output feature map, the five low-level
feature maps are fused by a simple multiscale feature fusion module; the fused results are
denoted as ms f1 and ms f2 shown in Figure 1. Then, the fusing results are added to the
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output feature map by two upsampling processes, Decoder1 and Decoder2, to enhance the
clarity of semantic segmentation object boundaries.

Decode1

1×1 Conv

𝑙1 𝑙2 𝑙3

MSF MSF

𝑙4

×2

Decode3

×2

Decode3

×4

1×1 Conv

1×1 Conv

𝑙5

Resnet-T

Upsample

×n

C

Decode

3×3Conv

3×3Conv

3×3Conv

𝑚𝑠𝑓1
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Pool
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b2

Tb3

1×1 Conv

MLF module

Decode block

×n Upsample n times

Low level features

3×3 Conv

Upsample block

Transformer block Tb

Resnet blockb

C Concatenate

Figure 1. Framework overview of the proposed RockSeg.

3.2. Efficient Backbone Network

In deep space with limited carrying resources, low computing complexity and com-
putational cost are important considerations for the rover to achieve the mission. Deep
residual networks [48] have been shown to easily gain accuracy from rapidly increasing
depth networks and the results are often superior to those of other networks. However, their
network complexity may not apply to deep-space environments with limited resources.
To balance the accuracy and complexity of the network model, we design a new efficient
backbone network based on a hybrid framework, which combines Resnet-34 blocks and
transformer blocks with a multi-head self-attention mechanism to extract the rock’s features.
The original Resnet-34 backbone and the new proposed backbone structure Resnet-T are
shown in Figure 2. Figure 2a shows the original backbone of Resnet-34 with four Resnet
blocks. In comparison, Figure 2b is the proposed backbone of Resnet-T with two resnet
blocks b1, b2, and one transformer block Tb3. The details of the parameters of Resnet-34
and the Resnet-T are shown in Table 1 and Table 2, separately.

Conv

Pool

b1

b2

Tb3

Resnet-T
Conv

Resnet-34

b1

b2

b3
b4

Pool

(a) Resnet-34 backbone (b) Resnet-T backbone 

Figure 2. The backbone structure comparison of Resnet-34 and Resnet-T.

In most semantic segmentation networks, full convolution networks without linear
fully connected layers are used to extract the object features. So, in Table 1, we remove the
linear fully connected layers of the final layer from Resnet-34 as the backbone to extract
the object image features. We suppose the input of the network is an RGB image with
256 × 256 pixels, and the output size is obtained by the convolution or pool operation of
different blocks. In Table 1, The backbone of Resnet-34 has a 33-layer convolution structure
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which mainly includes four Resnet blocks, where s is the stride of the convolution operation,
k denotes kernel size, B represents the resnet block, B = {b1, b2, b3, b4}, and n is the number
of times repeated for each Resnet block, n = {3, 4, 6, 3}.

We discovered that using four Resnet blocks to extract rock features is redundant and
inefficient in our studies. Feature redundancy may degrade the quality of the output feature
map and redundant Resnet extraction blocks also consume additional processing and
storage resources. Recently, transformers [37] have achieved significant success in the field
of computer vision of 2D image classification. A transformer network is a deep learning
mode that uses a self-attention mechanism to better capture long-distance dependencies,
compute global dependencies, and more easily interpret predictive results. In particular,
some studies have achieved success in the semantic segmentation field [29]; they use the
self-attention transformer blocks to build the semantic segmentation networks to improve
the performance of object detection. Inspired by the transformer network, in this paper, we
design a novel hybrid architecture, which combines Resnet-34 blocks and a transformer
block to build a lightweight backbone Resnet-T to effectively extract rock features. In
Table 2, we delete the b3 and b4 blocks from Resnet-34 and replace them with a transformer
block Tb3 with a multi-headed attention mechanism to create a new backbone Resnet-T for
feature extraction.

Table 1. The network parameters of the Resnet-34 backbone.

Layer Name Output Size Resnet-34

Conv 128 × 128 k = 7 × 7, 64, s = 2

b1 64 × 64
k = 3 × 3 maxpool, s = 2

3 × 3, 64
33 × 3, 64

b2 32 × 32
3 × 3, 128

43 × 3, 128

b3 16 × 16
3 × 3, 256

63 × 3, 256

b4 8 × 8
3 × 3, 512

33 × 3, 512

Table 2. The network parameters of the Resnet-T backbone.

Layer Name Output Size Resnet-T

Conv 128 × 128 k = 7 × 7, 64, s = 2

b1 64 × 64
k = 3 × 3 maxpool, s = 2

3 × 3, 64
33 × 3, 64

b2 32 × 32
3 × 3, 128

43 × 3, 128

Tb3 16 × 16

1 × 1, 256, avgpool, s = 2

Transfm, 256 4

In Table 2, we can see the Resnet-T network framework is simpler than Resnet-34,
where Conv, b1, and b2 are the same as Resnet-34. On the other hand, in order to reduce
the computational complexity and obtain good performance, we use Tb3 to replace the
b3 and b4 blocks as the enhanced feature extraction block. And we downsample the final
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output feature map to 1/16 times the input feature map using the Resnet-T backbone. In
the proposed Resnet-T backbone, the blocks b1 and b2 can efficiently extract the basic rock
features, and the transformer blocks TB3 with multi-headed self-attention mechanisms
can weigh features; this hybrid network structure can satisfactorily enhance the feature
extraction and reduce the backbone parameters.

In the Tb3 block, we first use 1 × 1 convolution to raise the channel, then, we utilize
the average pool to enlarge the receptive field and reduce the size of the feature map,
simultaneously. This process can be described as follows:

Ẋ = AvgPool(Conv1×1(X)) (1)

where X is the input of TB3, Ẋ is the output of the raising channel, and X and Ẋ ∈ RC×H×W .
Then, Ẋ is processed by layer normalization [49] over a mini-batch of inputs, after it is sent
to the layer transformer block (Transfm) with multi-headed attention mechanisms (MHead)
and multi-layer perceptions (MLP) to obtain the output of the feature map. In the Trans f m
block, we flatten the feature map to one dimension without the patch and we use the four
transformer blocks to extract rock features. The transformer block Trans f m can be defined
as follows:

Ẍ = Trans f m(Norm(Ẋ))

= (MLP(MHead(Norm(Ẋ))) (2)

where Norm represents the layer normalization operation, MHead is the operation of multi-
headed attention mechanisms, MLP denotes the operation of the multi-layer perception,
and Ẍ presents the final feature map output of Resnet-T.

3.3. Multiscale Low-Level Feature Fusion

In CNN networks near the input layer, the network layer becomes shallow and has
rich local detail features, the resolution of feature mapping is high, and the receptive field is
small [50]. Otherwise, the layer has a large receptive field and high dimension when closer
to the output layer, and has abstraction features and global information [51]. In order to
keep consistent with the input image, the semantic segmentation network must restore the
size of the feature map. The traditional methods of recovering an output feature map are to
use upsampling methods once or many times. Although the one-time sampling method is
simple and direct, the obtained feature map lacks fine-grained information, which leads to
blurring the target boundary. The method of using upsampling multiple times fuses more
low-level feature maps by skipping connections and using stepwise sampling to restore the
feature size. However, most of these algorithms are complex and inefficient; they need to
spend more computation and multiple upsampling to keep the final output feature map
clear and detailed.

In this paper, we present a simple and efficient multiscale low-level feature fusion
module for fusing more detailed features into the output feature map during the network
upsampling process. The diagram of the feature fusing process is shown in Figure 3.
We obtain five low-layer feature maps using the feature extraction layers in the network
encoder process. The five low level features are denoted L, where L={l1, l2, l3, . . . , li, . . .},
i = {1, 2, 3, . . .}, i ∈ N+. Due to the closer input layer, the network layer is richer in local
detail features, so we use adjacent feature maps to fuse more different detailed information.
In our network, i ∈ [1,5], the two groups of low-level feature maps {l1, l2, l3} and {l3, l4, l5}
are fused to output ms f1 and ms f2 by MSF, respectively.

In Figure 3, we show the fusing process of the three adjacent low-level features X
to obtain more detailed information, where X={X1, X2, X3} and, for each Xj ∈ X, Xj ∈
RBj×Cj×Hj×Wj . The green arrow, yellow arrow, and blue arrow represent the different fusion
branches of X. In order to describe the fusion process more clearly, we set batch B as 1, so
Xj ∈ RCj×Hj×Wj . Due to Xj being next to each other and obtained from the network encode
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process, they meet these constraints, C1 ≤ C2 ≤ C3, H1 ≥ H2 ≥ H3, W1 ≥ W2 ≥ W3, and
Hj ≡Wj.

(𝐶1, 𝐻1,𝑊1)

(𝐶2, 𝐻2,𝑊2)

(𝐶3, 𝐻3,𝑊3)
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C

Feature Fusion

𝑋3
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1×1Conv C Concatenation Element-wise additionUpsamplingMaxpool

(𝐶2, 𝐻1,𝑊1) (𝐶2, 𝐻1,𝑊1)

(𝐶2, 𝐻2,𝑊2) (𝐶2, 𝐻2,𝑊2)
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2

𝑋1
𝑝

𝑋2
𝑢

𝑋3
𝑢

𝑋2
𝑝

Figure 3. Illustration of the multiscale low-level feature fusion.

In the MSF module, Xj first is processed by 1 × 1 convolution to achieve channel
consistency; the channel consistency is computed as follows:

X1
j =

{
Conv1×1(Xj), Cj! = C2

Xj, otherwize
(3)

where X1
j is the output result of the j-th low feature map using the channel consistency

process. After, X1
j has the same channel C2 and X1

j ∈ RC2×Hj×Wj . Then, the results of the
channel consistency are processed by the Maxpool or Upsampling operation to achieve size
consistency of the feature map. The size consistency is described as follows:

X p
j = Maxpool(X1

j ), Hj! = Hj+1

Xu
j = Upsampling(X1

j ), Hj+1! = Hj

X1
j = X1

j , otherwise

(4)

where Maxpool is the maximum pool operation, which is used to reduce the length and
width of the feature map to 1/2 of the original size. The Upsampling operation denotes
sampling the image to a higher resolution and we use bilinear interpolation to obtain the
upsampling results. X p

j is the output result of the j-th feature map by Maxpool and Xu
j

denotes the output result of the j-th feature map by Upsampling. After the consistency
operation has adjusted the different sizes of the feature map, we use element-wise addition
to fuse the neighborhood information of different branches. This simple method can fuse
other additional information on the basis of the original information; the fusion process is
characterized as follows: 

X2
1 = X1

1⊕ Xu
2

X2
2 = X1

2⊕ X p
1 ⊕ Xu

3

X2
3 = X1

3⊕ X p
2

(5)

where the output results of the three branches are X2
1, X2

2, and X2
3, where X2

j ∈ RC2×Hj×Wj .
In the feature fusion process, we first use the Maxpool and Upsampling operations

to adjust X2
1, X2

2, and X2
3 to the same height H2 and width W2 to obtain X2

j , where
X2

j ∈ RC2×H2×W2 . Then, we connect the three branches in channel dim and use the 1×1
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convolution to obtain the final fusing output result X ′, X ′ ∈ RC2×H2×W2 ; this is computed
as follows:

X ′ = Conv1×1(Concat(X2
1 , X2

2 , X2
3 )) (6)

In our model, we obtain two fusion feature map ms f1 and ms f1 using the MSF module.
The two fusing feature maps are connected with the upsampling feature map one by
one in the decoder process to enhance the clarity of the object boundary of the output
segmentation result. The pseudo-code of the multiscale low level feature fusion is described
in Algorithm 1. The input parameters of the MSF are X, C, W, H. X is processed by pre-
processing, channel consistency, size consistency, and feature fusion in turn to obtain the
final segmentation result X ′.

Algorithm 1: Multiscale low-level feature fusion
Input: Input parameters X, C, W, H
A set of feature maps X = {X1, X2, . . . , Xj}, Xj ∈ RCj×Hj×Wj ;
A set of feature channels C = {C1, C2, . . . , Cj},C1 ≤ C2 ≤ Cj ;
The high of feature maps H = {H1, H2, . . . , Hj}, H1 ≥ H2 ≥ Hj;
The wide of feature maps W = {W1, W2, . . . , Wj},W1 ≥W2 ≥Wj;
Constraints: Hj = Wj, j ∈ N+, j = 1, 2, 3, . . .;
Pre-processing: Xsub = sub(X), Xsub ← {X1, X2, X3}, and Xsub ⊂ X ;
Output: The output result of the fusion feature X′

begin
// step 1:channel consistency
Xnsub= [];
for Each feature map Xj in Xsub do

if Cj! = C2 then
X1

j = Conv1×1(Xj);
else

X1
j = Xj;

end
Xnsub.add(X1

j );
end
// step 2:size consistency
for Each feature map Xj in Xnsub do

if Hj! = Hj+1 then
X p

j = Maxpool(X1
j ) ;

end
if Hj+1! = Hj then

Xu
j = Upsampling(X1

j ) ;
else

X1
j = X1

j ;
end

end
X2

1 = X1
1⊕ Xu

2 ;
X2

2 = X p
1 ⊕ X1

2⊕ Xu
3 ;

X2
3 = X1

3⊕ X p
2 ;

// step 3:feature fusion

X2
1

Maxpool←−−−−− X2
1, X2

2 ← X2
2, and X2

3
Upsamping←−−−−−− X2

3;
X′ = Conv1×1(Concat(X2

1 , X2
2 , X2

3 ));
end
Return X′

In the network decoder, we employ the three times upsampling operations to restore
the output feature map size to the input size shown in Figure 1. In Decoder1 and Decoder2,
we first upsample the feature map to 2 times scale and fuse the low-level feature (ms f1,
ms f2) with detailed information by concatenation in the channel dimension, then use the
two 3 × 3 convolutions to scatter converged information. In Decoder3, we upsample the
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feature map to 4 times the size, utilize the 3 × 3 convolution to reduce the chance to 64 and,
lastly, use a 1 × 1 convolution to obtain the segmentation results of N categories.

4. Experiments

In this section, we describe the experimental setup, including the experimental envi-
ronment and parameter settings, experimental datasets, evaluation measures, comparison
algorithms, and experiment results and analysis.

4.1. Experiment Setting

We conducted the experiments on a single GPU (GeForce RTX 3080Ti, 12 GB RAM, 8
CPU/4 core) with Pytorch 1.8.1 + CUDA 11.1. During network training, we set the initial
learning rate to 10−4, and used the Adam [52] optimizer and cross-entropy loss function
to train the network model. The size of the network training batch was set to 16 and the
maximum number of training iterations was 200 epochs. The sign of the end of network
training is that the training reaches the maximum number of iterations, or the network is
stagnant in 20 epochs. In the experiment, the network input is an RGB image; the image is
normalized and processed by a resizing method without distortion to 256 × 256 pixels. All
the image label is transformed into gray labels with linear pixel mapping and the output of
the network is a grayscale image with different category values.

4.2. Datasets

We used two rock detection datasets in this paper, a lunar rock dataset called Moon-
Data (https://www.kaggle.com/datasets/romainpessia/artificial-lunar-rocky-landscape-
dataset (accessed on 9 December 2022)) and a Martian rock dataset called MarsData [17].
The details of the two datasets are as shown in Table 3.

Table 3. Parameter details of two rock datasets.

DataSet Training Validation Testing

MoonData 7812 977 977
MarsData 22,279 5541 3092

MoonData: This lunar rock dataset is a sample of artificial yet realistic lunar landscapes,
which was used to train rock detection algorithms. The Moon rock dataset contains 9766
realistic renders of rocky lunar landscapes, which are labeled into four classes: background,
sky, smaller rocks, and bigger rocks. MoonData is an RGB image with 480 × 720 pixels
and the label is also a three-channel RGB image. In this experiment, we convert the three-
channel RGB label to grayscale by linear pixel mapping, and we partition the dataset 8:1:1
into 7812 training images, 977 validation images, and 977 testing images. The details of the
Mars dataset are described in Table 3.

MarsData: The Martian rock dataset (https://dominikschmidt.xyz/mars32k/ (ac-
cessed on 13 September 2021)) consists of about 32,000 color images collected by the
Curiosity rover on Mars with a Mastcam camera between August 2012 and November
2018. All images have been scaled down using linear interpolation to 560 × 500 pixels;
unfortunately, they don’t have semantic segmentation labels. In previous work, the pa-
per [17] completed a total of 405 labeled rock images of more than 20,000 rocks and the
data were augmented to 30,912 images by cropping and rotating. In our experiment, we
use the augmented Mars rock dataset to train and evaluate rock segmentation methods.
Moreover, we repartitioned the dataset 9:1 according to the train–validation images with
22,279 training images, 5541 validation images, and 3092 testing images.

4.3. Evaluation Criteria

In order to report the research results in the field of semantic segmentation, most
researchers used simple and representative measures of pixel accuracy (PA), class pixel

https://www.kaggle.com/datasets/romainpessia/artificial-lunar-rocky-landscape-dataset
https://www.kaggle.com/datasets/romainpessia/artificial-lunar-rocky-landscape-dataset
https://dominikschmidt.xyz/mars32k/


Remote Sens. 2023, 15, 3935 12 of 23

accuracy (CPA), mean pixel accuracy (MPA), intersection and union (IoU), and mean
intersection and union (MIoU). In this paper, we employ the standard evaluation standards
for semantic segmentation to confirm the effectiveness of our model. We computed PA,
MPA, Recall, and MIoU based on the corresponding confusion matrix to evaluate the
quality of network predictions.

In the confusion matrix, the PA denotes the sum of the true positives and true negatives
divided by the total number of queried individuals. The PA is computed as follow:

PA =
TP + TN

TP + TN + FP + FN
(7)

where true positive (TP) represents the number of positive samples that are correctly
predicted as positive ones. True negative (TN) denotes the number of negative samples
that are correctly determined as negative ones. False positive (FP) represents the number of
negative objects that are incorrectly predicted as positive samples and false negative (FN)
is the number of positive samples that are incorrectly classified as negative samples.

The class pixel accuracy is the percentage of the total predicted value that is correct for
a category and MPA is the mean of CPA; CPA is represented as follow:

CPA =
TP

TP + FP
(8)

where TP is the prediction accuracy of the category and TP + FP is all predictions in this

category. MPA = 1
n

n−1
∑

i=0
CPAi, where n denotes the number of categories and CPAi is the

value of CPA in the i-th class. The recall is the probability that a category is predicted
correctly, which is calculated by TP divided by TP + FN as follows:

Recall =
TP

TP + FN
(9)

The IoU is the ratio of the intersection and union of the predicted results and the true
values for a given classification. The IoU is computed as follows:

IoU =
TP

TP + FN + FP
(10)

where TP denotes the intersection set and TP + FN + FP is the union set of the predicted
results and true values for a category. Moreover, MIoU is the mean of the IoU of the n

classes; MIoU = 1
n

n−1
∑

i=0
IoUi, where IoUi represents the value of IoU in the i-th class.

4.4. Compared Methods

In our experiment, we compared with the six latest semantic segmentation networks
for rock detection, DeeplabV3+ [25], FCN [28], CCNet [53], DANet [54], PSPNet [24], and
Swin-Unet [29]. Simple descriptions of these compared methods are as follows. FCN [28]
is a basic model of classical semantic segmentation with the first full convolution network.
PSPNet [24] used a pyramid pooling module (PPM) and dilated convolutions to integrate
contextual information from different regions and embed it in FCN. DeeplabV3+ [25] used
the ASPP module to obtain multiscale context information. DANet [54] and CCNet [53]
employed a dual attention (DA) mechanism and criss-cross attention (CCA) mechanism
to improve the accuracy of segmentation. Swin-Unet [29] is a novel vision transformer
network-based semantic segmentation used to compare.

The main parameter settings of the compared methods are in Table 4, which con-
tains the network backbone, downsampling multiple (dm), network encoder, and de-
coder. The dm represents the downsampling multiple of the input image in a network
encoder; FCN8 denotes using an eight-fold sampling to obtain the output feature map.
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The network decoder is divided into three methods to restore the output feature map: (1)
the one_upsamping method employing upsampling once, (2) the one_ f use + upsampling
method fusing fine-grained shallow features once and upsampling, and (3) the muti_ f use +
upsampling method utilizing multiple-fusion and upsampling. Resnet-34-2 is a combina-
tion of the proposed model, which consists of two Resnet-34 blocks and a transformer block
(T). It utilizes MSF to fuse more shallow features to obtain a finer-grained output.

Table 4. The main parameter settings of the compared methods.

Methods Backbone dm Encoder Decoder

DeeplabV3+ [25] Resnet-50 1/16 Resnet-50+ASPP one_fuse+upsampling
FCN [28] Resnet-50 1/8 Resnet-50+FCN8 one_upsamping
CCNet [53] Resnet-50 1/8 Resnet-50+CCA one_upsamping
DANet [54] Resnet-50 1/16 Resnet-50+DA one_upsamping
PSPNet [24] Resnet-50 1/16 Resnet-50+PPM one_upsamping
Swin-Unet [29] Resnet-50 1/16 Vision Transformer muti_fuse+upsampling
RockSeg (Our) Resnet-34-2 1/16 Resnet-34-2+MSF+T one_fuse+upsampling

4.5. Experiment Results

In this section, we compared the state-of-the-art methods for deep space rock detection.
All compared networks used the Resnet-50 backbone to extract the feature, and the input
image was processed to a uniform size of 256 × 256 pixels by image resize, padding, and
scale technology. In experiments, we not only used the evaluation metrics of PA, CPA,
MPA, Recall, IoU, and MIoU mentioned in Section 4.3, but we also calculated the network
parameters (Params) to evaluate the spatial complexity of the network, evaluated the
time complexity of the model by floating-point operations (FLOPs), and computed the
inference speed of the network in frames per second (FPS) to evaluate the performance of
the networks.

4.5.1. Results on MoonData

The rock detection results on the MoonData dataset are shown in Table 5; the bold
data represents the best prediction results. We can see that the proposed RockSeg obtained
the best prediction results in the PA, MPA, Recall, and MIoU indicators, and it achieved
a faster inference speed with fewer network parameters. Specifically, it improved by
about 5.3% and 11.2% on the PSPNet model in MPA and Recall evaluation indicators,
respectively. In the MIoU indicator, the proposed RockSeg improved about 2.2%, 6.1%,
1.4%, 6.7%, 10.5%, and 6.1% on DeeplabV3+, FCN, CCNet, DANet, PSPNet, and Swin-Unet,
respectively. Moreover, we found that RockSeg not only obtained a high detection precision
but the network also had a fast inference speed; the FPS was up to 52.90 HZ. The network
parameters of the proposed model were reduced by about seven times compared to the
CCNet model.

Table 5. The comparison results with other methods on MoonData.

Methods PA (%) MPA (%) Recall (%) MIoU (%) FLOPs (G) Params (M) FPS (HZ)

DeeplabV3+ 97.01 88.32 83.00 76.71 45.77 40.35 51.15
FCN 96.72 87.83 80.34 72.80 34.72 32.94 53.31
CCNet 97.05 89.33 83.26 77.49 59.93 52.27 38.12
DANet 96.29 86.42 77.86 72.18 14.30 47.55 51.98
PSPNet 95.86 84.01 73.95 68.37 14.84 46.70 43.43
Swin-Unet 96.54 85.75 79.28 72.78 40.06 17.25 33.26
RockSeg (Ours) 97.25 89.42 85.13 78.90 20.29 7.94 52.90

Furthermore, we used the CPA and IoU indicators to evaluate the different category
detection results shown in Figure 4. The MoonData dataset has four categories including
ground, sky, bigger rocks simplified “brocks”, and smaller rocks simplified “srocks”. In
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Figure 4, the horizontal axis represents four different categories and the vertical axis is the
value of CPA and IoU, respectively. The legend represents different methods and ranges
(R) in two categories of brocks and srocks; R is defined as

R = |Rbrocks − Rsrocks| (11)

where Rbrocks and Rsrocks denote the accuracy score in brocks and srocks classes and R
represents the difference between the two categories; the larger R, the more difficult it is to
distinguish between the two categories; otherwise, the easier it is to distinguish between
the two categories.

Figure 4. The comparison results of different network models with CPA and IoU on MoonData.

On the whole, we discovered that all compared methods could obtain better detection
accuracy in the ground and sky categories, but the detection results of different models
have a large gap in the brocks and srocks categories. For an input rock image of the
Moon, the pixel ratio of the ground and sky is large, and the pixel ratio of the rocks is
relatively small; there is an imbalance of categories in the MoonData data. In semantic
segmentation, category objects with different pixel proportions in an image have different
detection difficulties [55,56]. Category objects with small proportion pixels are difficult
to distinguish, while category objects with multi-proportion pixels are relatively easy to
distinguish [7]. So the ground and sky categories have a higher accuracy than the brocks
and srocks categories in CPA and IoU evaluation.

From Figure 4, we can see that the DANet model had the worst classification results;
the proposed model and the CCNet model had better detection accuracy than other meth-
ods. The DANet and PSPNet models obtained a large R between the brocks and srocks
classifications; the accuracy range was 0.226 and 0.102 in CPA, and 0.153 and 0.146 in IoU,
respectively. In the IoU evaluation, we found that RockSeg obtained the best scores in each
classification; in particular, it achieved 63.11% and 59.94% IoU scores in brocks and srocks
classifications, respectively. In the CPA evaluation, the RockSeg obtained high CPA values
in ground, sky, and brocks classification, in which the brocks and srocks were 63.11% and
59.94%, respectively. The CCNet network also achieved the highest accuracy in the srocks
class using the CPA evaluation, in which the brocks and srocks accuracy were 78.17% and
83.65%, respectively. However, RockSeg obtained a smaller R in CPA and IoU than the
CCNet model. The accuracy range of RockSeg was only 0.001 compared to 0.055 for CCNet
in the CPA evaluation and, in the IoU, the accuracy range of RockSeg was 0.032 and the R
was lower than CCNet in the CPA and IoU evaluations. Thus, the proposed RockSeg is
more robust than the CCNet model.

In addition, we show the confusion matrix of the probability of different categories
being predicted in Figure 5. We can see that most pixels with ground and sky categories can
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be correctly classified; the probability of brocks being incorrectly classified as the ground
category was 0.24 and the probability was only 0.02 of them being incorrectly classified as
the srocks category. In the srocks category, there was only a probability of 0.29 and 0.01 of
being incorrectly classified as the ground and brocks categories, respectively. Therefore,
RockSeg has strong robustness for detecting deep space rocks; both large and small rocks
can be detected correctly. Last, we show the visualization segmentation results of different
methods on MarsData in Figure 6. There are five visualization segmentation results with
different angles of sunlight and shadows in Figure 6. The yellow rectangle represents the
contrast of the local details. Figure 6a,d,e denote the vision that follows the sunlight and
Figure 6b,c are the visual angle against the sunlight on the surface of the Moon. When
the sun’s rays shine perpendicular to the surface of the Moon, the rock shadows are small
as shown in Figure 6d,e; otherwise, the rock shadows are big as shown in Figure 6a–c.
We can see that the proposed RockSeg could accurately obtain segmentation results with
different sunlight shadows and angles. Specifically, our model could clearly detect the
boundary of the object compared to the other models and some small rock objects could
also be accurately detected.

Figure 5. The confusion matrix of the RockSeg model on MoonData.

Image Label DeeplabV3+ FCN CCNet DANet PSPNet Swin-Unet RockSeg

(a)

(b)

(c)

(e)

(d)

ground (0,0,0) sky (255,0,0) brocks (0,0,255) srocks (0,180,0)

Figure 6. Comparison of the visualization segmentation results for different models on MoonData.
(a–e) show the different views of the rocks on the lunar surface from different Suns. (a,d,e) denote
the vision that follows the sunlight, and (b,c) represent the visual angle against the sunlight.
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4.5.2. Results on MarsData

The comparison results with other methods on MarsData are shown in Table 6; the bold
denotes the best prediction accuracy. The MarsData has two categories, the background and
rock objects. The pixel ratio of rocks and background is not much different, so it is relatively
easy to segment them. We can see that the compared methods are all above 96% accuracy
in the PA, Recall, and MIoU indicators. From Table 6, the FCN model obtained the best
inference speed compared with other models and the precision of the PSPNet model was
relatively low. Our proposed model obtained the best accuracy in each indicator compared
to the other methods. Moreover, the proposed model achieved a high inference speed with
low network parameters and computation complexity. Furthermore, we evaluated the CPA
and IoU of different categories on MarsData; the results of different methods are shown in
Table 7. We found that R was small in the CPA and IoU evaluations for all compared models.
Due to the classes being relatively balanced on MarsData data, they could be very well
detected. We can see that the RockSeg model achieved the best score in the IoU evaluation
and obtained the best PA value in ground classification compared to the other models. In
deep space rock detection, our proposed model had excellent portability and robustness.

Table 6. The comparison results with other methods on MarsData. The best result for each column is
in bold.

Methods PA (%) MPA (%) Recall (%) MIoU (%) FPS (HZ)

DeeplabV3+ 98.72 97.12 98.51 97.12 54.13
FCN 98.52 98.29 98.29 98.29 55.83
CCNet 98.74 98.53 98.53 98.53 40.18
DANet 98.03 97.73 97.73 97.73 54.26
PSPNet 97.69 94.85 97.29 96.05 55.10
Swin-Unet 98.39 98.21 98.10 96.39 34.55
RockSeg (Ours) 98.91 98.78 98.73 97.54 55.18

Table 7. Comparisons of CPA and IoU for different methods on MarsData. The best result for each
column is in bold.

Methods CPA (%) IoU (%)
Ground Rocks Ground Rocks

DeeplabV3+ 99.01 98.12 98.14 96.10
FCN 98.88 97.76 97.84 95.50
CCnet 98.17 98.32 98.37 96.59
Danet 99.02 98.17 97.14 94.06
PSPNet 98.19 96.62 96.65 96.18
Swin-Unet 98.71 97.71 97.66 95.11
RockSeg (Ours) 99.16 98.23 98.41 96.68

By comprehensive feature extraction and rich semantic feature fusion, the proposed
model could realize high-precision detection. The proposed RockSeg network used combining
the CNN and vision transformer to extract the rock features, in which the CNN network is
advantageous in obtaining local multiscale context features and the vision transformer block
is more suitable for capturing global features. The local and global rock features were fused
to achieve a comprehensive feature extraction by the proposed hybrid network, which is
beneficial for the detection of objects of different sizes. Moreover, the designed MSF module
fused multiscale low-layer features to the output feature map which could improve the
accuracy of the segmentation results. Furthermore, we eliminated the feature redundancy and
overlap by manually adjusting the network parameters to achieve a lightweight network; see
Section 4.6 for details of model parameters. Using the above policies, the proposed model
could achieve high accuracy and inference speed under low computation complexity.
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The visualization segmentation results of our model and the state-of-the-art methods
on MarsData are shown in Figure 7. In the label image, we labeled the object rock as
green and the other compared segment results as yellow for visual distinction. In the four
image visualization segmentations, we discovered that all of the comparison models could
accurately detect large rock objects. But, for some small gravel with burning in the soil and
some dense rocks, it is relatively more difficult to distinguish and identify them than big
rocks. In terms of accuracy and clarity of the border segmentation, the RockSeg results
were finer and closer to the label image than the other model, and we used the red box
in our model to show the finer boundary segmentation results. From the visualization
segmentation results, we can see that the Swin-Unet, PSPNet, DANet, CCNet, and FCN
models had poor detection results in small object detection; their segmentation results
show that the target boundary was blurred and rough. In Figure 7b,d, we can see that
the proposed model achieved accurate detection in big rocks, and also obtained accurate
segmentation in some dense small rocks or small rocks buried in the soil.

Image Label DeeplabV3+ FCN CCNet DANet PSPNet Swin-Unet RockSeg

(a)

(b)

(c)

(d)

ground (0,0,0) rocks (255, 255, 0)

Figure 7. Comparison of the visualization segmentation results for different models on MarsData.
(a–d) show the different rocky features of the Martian surface. (a,b) represent the surface of Mars as
composed of sparse mudstones and small boulders, and (c,d) denote dense large rocks and sandstone
partially buried in the sand.

4.5.3. Ablation Study

In this section, we ablated our network to validate the performance of the proposed
model. The results of the ablation study are shown in Table 8 and the best value in each
column is in bold. The MSF represents the multiscale low-level feature fusion module, the
transformer block is simplified as T, the X flag represents the module being used, and the
– flag denotes the module not being used. In Table 8, we can see that our model obtained
the best PA, MPA, and MioU compared to the other ablation models. The T module with a
multi-headed attention mechanism could capture the global context information of the rock
to improve the rock’s object detection accuracy. Thus, we discovered that RockSeg-T and the
RockSeg-MSF-T achieved a higher accuracy in PA, MPA, Recall, and MIoU than RockSeg-no-
MSF-T. Specifically, RockSeg-T obtained the best accuracy in Recall. The multiscale feature
fusion module obtained the rich fusion feature maps ms f1 and ms f2; they were added to the
output feature map using the upsampling process to accurately enhance the clarity of the
semantic segmentation object boundary and improve the accuracy of segmentation. In Table 8,
we found the RockSeg-MSF and RockSeg-MSF-T models also achieved an improvement over
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the RockSeg-no-MSF-T in the four evaluation indicators. On the whole, our model with T
and MSF modules obtained the best performance in rock detection.

Table 8. The ablation results of our model on MoonData.

Model MSF T PA (%) MPA (%) Recall (%) MIoU (%)

RockSeg-no-MSF-T – – 97.12 88.70 84.39 77.93
RockSeg-T – X 97.20 88.95 85.29 78.72
RockSeg-MSF X – 97.18 88.89 85.10 78.56
RockSeg-MSF-T (Ours) X X 97.25 89.42 85.13 78.90

Furthermore, we show the visual ablation results of the MSF and T modules with
the heatmap output shown in Figure 8. We compared the different channel activation
statuses with the different models of RockSeg-no-MSF-T, RockSeg-T, RockSeg-MSF, and
RockSeg-MSF-T. We used a blue–red color scheme to show the difference; the smaller the
value, the closer it is to blue, the larger the value, the closer it is to red. In Figure 8, the top
is the original rock image and label; Figure 8(1–6) show the two low-level feature maps
ms f 1 and ms f 2, where Figure 8(1–3) denote the output results of ms f1 and Figure 8(4–6)
are the output results of ms f2 with RockSeg-no-MSF-T, RockSeg-MSF, and RockSeg-MSF-T
(our model). Figure 8a–c show the feature map output results of the transformer block
using RockSeg-no-MSF-T, RockSeg-T, and RockSeg-MSF-T.

m
sf

1

(4)

(2)

(5)

(3)

(6)

m
sf

2

(1)

RockSeg-no-MSF-T RockSeg-T RockSeg-MSF-T

(a) (b) (c)

Image Label

RockSeg-no-MSF-T RockSeg-MSF RockSeg-MSF-T

T

Figure 8. Comparison of the visual results of the ablation study. (1–6) are the visual results of the MSF
module with different models; (1–3) denote the output feature map of the ms f1 module; (4–6) are the
output feature map of the ms f2 module. (a–c) represent the output feature map of the T module with
different models.
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For the whole network structure, ms f 1 is closer to the input network and ms f 2 is
relatively far from the network input. We can see that most information of the original
image was retained in the activation output ms f 1. From the activation output ms f 1 and
ms f 2, we discovered that, as the number of layers increased, the activation output became
more and more abstract. The density of activation decreased with the deepening of layers
and the information about categories was increased. For example, the density of activation
contrast, Figure 8(3) > Figure 8(6). In ms f 1 and ms f 2, we can see that RockSeg-MSF
and RockSeg-MSF-T had more channel activation statuses than RockSeg-no-MSF-T; the
proposed MSF module obtained more rich semantic information from the context. Due
to the T module being far from the network input in the whole network structure, the
activation output is very sparse and abstract as shown in Figure 8a–c. The RockSeg-T and
RockSeg-MSF-T used multiple attention mechanisms to activate important information
by setting different weights of attention. Thus, they had more red feature signatures than
the RockSeg-no-MSF-T model in Figure 8. On the whole, from different output feature
heatmaps, we found that the proposed semantic segmentation network based on a hybrid
framework combining CNN and vision transformer, using an efficient feature extraction
backbone and multiscale low-level feature fusion, had an excellent presentation of features
to achieve good performance in rock detection.

4.6. Impact of Different Backbones and Parameters on Models

In this section, we discuss the parameter impact on our model and tune them with the
MoonData data. The parameters contain the different backbone networks, the number of
backbone layers, and the number of layers and heads of the T block. The tuning process
is divided into three groups, denoted gps, gps = {gp1, gp2, gp3}. In the three groups, we
kept the same decoder process, normalized the size of the feature map in downsampling to
an input size of 1/16 times, and evaluated them by the indicators described in Section 4.3.
The tuning results are shown in Table 9. In Table 9, nbs is the number of Resnet blocks. The
backbone represents the network encoder with different modules and parameters, where
MSF and T denote the multiscale low-level feature fusion module and vision transformer
in the backbone, respectively. The T module has two import parameters, the number of
heads represented by h and the depth of the transformer layer denoted d. The – represents
the process of adjusting their parameters and the X denotes using this module.

Table 9. The impact of different backbones and parameters on models. The best result for each
column in gps is in bold.

gps Backbone nbs MSF T PA (%) MPA (%) Recall (%) MIoU (%) FLOPs (M) Params (G) FPS (HZ)

gp1
Resnet-50 4 X X 97.24 90.45 84.11 78.67 27.89 32.01 34.41
Resnet-34 4 X X 97.22 89.77 84.84 78.87 25.40 27.97 41.44
Resnet-18 4 X X 97.10 88.43 84.96 78.16 22.07 17.86 51.57

gp2
Resnet-34-4 4 X X 97.22 89.77 84.84 78.87 25.40 27.97 41.44
Resnet-34-3 3 X X 97.24 88.8 85.96 79.12 22.00 14.72 43.57
Resnet-34-2 2 X X 97.25 89.42 85.13 78.90 20.29 7.94 52.90

gp3
Resnet-34-2-88 2 X – 97.17 88.98 85.29 78.73 21.10 11.09 52.83
Resnet-34-2-44 2 X – 97.25 89.42 85.13 78.90 20.29 7.94 52.90
Resnet-34-2-14 2 X – 97.21 88.97 85.38 78.80 20.29 7.94 52.47

In gp1, we compared the impact of different Resnet backbones with four Resnet blocks
on deep space rock detection. We combined Resnet-50, Resnet-34, and Resnet-18 with the T
module as the backbone network separately, and used the same MSF module to decode
the network. In gp1, we found Resnet-50 obtained the best PA and MPA with maximum
parameters and a large amount of computation; Resnet-18 had low parameters, small
amounts of computation, and high FPS. Resnet-34 achieved the best MIoU compared to
Resnet-50 and Resnet-18; the detection accuracy in PA and MPA indicators was close to
Resnet-50, and the model parameters and computations were close to Resnet-18. In order
to balance the calculation complexity and accuracy of the rock detection model in a deep
space environment with limited resources, we chose Resnet-34 as the backbone for our
model. Too many feature extraction layers may cause feature redundancy and overlap. To
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obtain an efficient and lightweight feature extraction backbone network, after obtaining the
Resnet-34 backbone, we tuned the number of Resnet blocks in the backbone to optimize
our model. In gp2, Resnet-34-n represents the backbone with different numbers of Resnet
blocks n, where n = {2, 3, 4}. We discovered that Resnet-34-2 with two Resnet blocks
achieved better performance than the Resnet-34-4 and Resnet-34-3 models. In gp2, the
Resnet-34-4 backbone network may have over-representation; the Resnet-34-2 backbone
network achieved the appropriate representation for rock feature extraction. The Resnet-34-
2 backbone could obtain the best PA, MPA, Recall, and MIoU score under low computation
and parameters, and fast inference speed.

Last, in gp3, we test the impact on the proposed model by tuning the parameters of
h and d in the T block. Resnet-34-2-hd is composed of the Resnet-34-2 backbone network
and the T module with h heads and d layers, where h is the number of heads, h = {1, 4, 8};
corresponding to the number of transformer layer d denotes d = {4, 4, 8}. In gp3, we found
the parameter of h and d had little effect on the precision of the model, but the complexity
of different parameters was different. In deep space, the probe carries limited resources,
and onboard computation needs to satisfy not only high precision requirements but also
low complexity requirements. We can see that Resnet-34-2-44 achieved a higher PA, MPA,
and MIoU than other models with a faster inference speed. Thus, in this paper, in order
to create a high accuracy and low complexity rock detection model, we chose the final
Resnet-34-244 as the hybrid framework combining CNN and transformer for deep space
rock images, which is based on the Resnet-34-2 backbone and the T module containing four
heads and transformer layers.

5. Conclusions

In this paper, we proposed an efficient deep space rock detection network, named
RockSeg, which is a novel semantic segmentation network based on a hybrid framework
combining CNN and vision transformer for deep space rock images. The novel model
contains an efficient backbone feature extraction block and a multiscale low-level feature
fusion module for deep space rock detection. Firstly, to enhance the feature extraction, we
used part of the Resnet-34 backbone and combined it with the visual transformer block as
a new backbone network Resnet-T to extract the global context information of the rock. In
addition, we proposed a simple and efficient multiscale low-level feature fusion module
to obtain more rich detailed feature information. These rich features were fused to the
output feature map in the network decoder to obtain a more fine-grained output result
and improve the clarity of the semantic segmentation object boundary. Furthermore, the
proposed model was applied to two rock segmentation datasets (lunar and Martian rock
data) compared with six state-of-the-art segmentation models for deep space rock detection.
The results demonstrated that the RockSeg model outperforms the state-of-the-Art rock
detection methods; our model achieved good performance in deep space rock detection. In
particular, on MoonData data, our model achieved accuracy up to 97.25% in the PA and
78.97% in the MIoU indicators with low parameters, smaller amount of computation, and
high inference speeds.

In tuning the network process, we found the deeper network may not be a good choice
to achieve the best performance; too many deep network structures may be redundant
for feature extraction. The proposed hybrid network combines CNN and transformer;
they need to play to their strengths to complement and integrate local and global context
information. To obtain the best appropriate network structure, we manually adjust the
network backbone structure and optimize the parameter configuration with coarse-grained
parameter tuning. We employed a conventional backbone to achieve network feature
extraction and used evaluation measures and visual heatmaps simultaneously to decide
whether the network feature extraction is insufficient or redundant. Then, the network
structure was suitably decreased and increased based on the qualitative and quantitative
assessment results to meet the specific detection task. In the future, we need to further study
how to integrate CNN and transformer network structures adaptively to remove redundant
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features and enhance the ability to capture local and global context information. Moreover,
we will transplant and expand our work to the detection of deep space multi-category
terrain segmentation, further improving the availability of the model in deep space.
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