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Abstract: Climate change has caused a widespread deduction in terrestrial water storage (TWS),
leading to ocean water mass gains and sea level rises. A better understanding of how the land–sea
water mass has been redistributed can help with the scientific response to climate change. However,
there are few studies investigating the roles of the different physical processes involved in low-
frequency land–sea water mass redistribution on a global scale. To address this issue, in this study,
a comprehensive investigation was carried out with respect to the globally distributed key factors
causing low-frequency ocean mass anomalies during the period 2004–2021. Global water mass
redistribution data, derived from GRACE/GRACE-FO satellite gravity and surface wind and sea-
surface temperature data from ERA5 reanalysis, were employed, and the empirical orthogonal
function, maximum covariance analysis, and sea-level equation approaches were used. The results
show that the long-term trend and decadal-like fluctuation are two major components of the low-
frequency land–sea water mass redistribution. The wind-forcing dynamic processes significantly
drive the anomalies near the North Indian Ocean, North Atlantic Ocean, South Pacific Ocean, and
some marginal seas, where variance explanations range from 30% to 97%. After removing the ocean
dynamics, the residual ocean mass anomaly is mostly explained by sea-level fingerprints (SLFs),
especially in the open ocean. The 25th, 50th, and 75th percentiles of the SLF-explained variances in all
ocean grids are 59%, 72%, and 82%, respectively. Some non-negligible noise, located in seismic zones,
was also found, suggesting the misestimation of seafloor deformation resulting from earthquakes in
the GRACE/GRACE-FO data processing. These findings may improve our understanding of the
long-term anomalies in regional and global sea levels.

Keywords: land–sea water mass redistribution; low-frequency variations; GRACE; GRACE-FO;
sea-level fingerprints; ocean dynamics

1. Introduction

Along with the global water cycle, the water mass is constantly migrating between the
land and the ocean. Usually, the inputs and outputs of the water mass within the land and
within the ocean are dynamically balanced under natural climate variabilities. However,
recent climate change and human impact have triggered a significant decline in terrestrial
water storage (TWS) on a global scale, particularly the accelerated loss of glacier mass and
the intensified withdrawal of groundwater, resulting in a rapid rise in the global mean sea
level, along with risks, such as coastal erosion, habitat space reduction for organisms, and
frequent marine disasters [1–5]. TWS, which encompasses various components (e.g., snow
and ice water, soil water, groundwater, lake water, reservoir water, water intercepted by
forest canopies, and biomass water), mainly contributed to the net result of water fluxes
that have migrated between land and oceans (e.g., precipitation, evaporations, runoff, and
land–ocean water vapor transportation) [1,2,6,7]. According to the water balance theory,
the decreased amount of TWS is mostly equal to the increased amount of ocean water mass
on a global scale.
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Nevertheless, the physical processes implicated in redistributing the water mass
between land and oceans are quite intricate, including mainly the self-attraction and
loading (SAL) effect, the glacial isostatic adjustment (GIA), the solid Earth and ocean pole
tide provided by Earth’s rotational feedback, the ocean dynamic processes due to wind
stress and heat gradients, etc. [8–10] Given a certain TWS anomaly in a specific region,
TWS-induced ocean mass redistribution is non-uniformly distributed and exhibits specific
geometric differences, considering the variations in Earth’s gravitation, Earth’s rotation,
and viscoelastic solid Earth deformation. This specific pattern of TWS-related ocean mass
redistribution, reflected in the mass sea level, is termed the sea-level fingerprint (SLF),
which comprises two aspects: geoid anomalies and the seafloor displacement caused by
ocean mass anomalies [8,11,12]. In addition, ocean heat anomalies could change the pattern
of ocean circulation together with atmospheric circulation anomalies, resulting in ocean
water’s mass redistribution through dynamic processes [13]. Since regional TWS evolutions
vary with geographical location and ocean mass redistribution is the main reason for sea
level changes [3,14,15], the hazard risks arising from the sea level change faced by different
coastal regions vary [16–18]. By 2100, more than 600 million people are projected to be
exposed to a sea level rise, of whom 244 million may be in China [17], highlighting the
importance of studying the causes of ocean water mass redistribution.

Land–sea water mass redistributions are always accompanied by changes in the
Earth’s gravity field. In 2002, the National Aeronautics and Space Administration (NASA)
and the Deutsches Zentrum für Luft-und Raumfahrt (DLR) jointly launched twin satellites
called the Gravity Recovery and Climate Experiment (GRACE) to invert the Earth’s time-
varying gravity field via detecting very small changes in distance. To date, spatial and
temporal continuous observations of land–ocean water mass anomalies on a global scale
are achievable [19]. The application of GRACE during the last two decades has greatly
contributed to studying SLFs [10,11,20–24] and oceanic dynamic processes [25–29]. For
instance, Hsu and Velicogna [20] deduced possible SLF signals from the GRACE time-
varying gravity field between April 2002 and October 2014 and verified them with ocean
bottom pressure data from tropical sensors; this could be the first direct evidence of SLFs.
Adhikari et al. [11] performed a systematic process to reconstruct monthly SLFs induced by
on-land water mass changes from April 2002 to August 2016 using the sea-level equation,
which considered Earth’s rotation feedback, GRACE time-varying gravity field data, tide
gauge observations, etc. In the oceans near the Antarctic, Greenland, Argentina, etc.,
significant interannual variations in the ocean mass anomalies derived from GRACE were
found to be in high agreement with those of surface winds [25–29]. These findings have
been widely used in the closure of the sea level budget, which has become a crucial indicator
in understanding the process of Earth’s rotation and climate change [3,30,31]. With the
great success of GRACE, the follow-up mission, GRACE-FO, was launched on 22 May 2018,
with the aim of providing continuous future data [32].

Previous studies have either focused on using ocean water mass anomalies to close
the sea level budget or on the individual processes involved in ocean water mass budgets,
i.e., SLFs or dynamical processes. Few studies have investigated the driving factor of ocean
mass anomalies in different regions of the world. This study thus attempts to investigate
multiple physical processes that may be involved in ocean mass redistribution, e.g., SLFs,
the wind-forcing dynamic process, as well as the heat-gradient-related dynamic process. To
map how much these factors contribute to low-frequency ocean mass anomalies, we used a
physical model and statistical analysis methods based on the ERA5 reanalysis-provided
surface wind and sea-surface temperature anomaly data and the latest GRACE/GRACE-FO-
derived water mass anomaly data during the period from January 2004 to December 2021.

Section 2 briefly introduces the data and methods used in this study. Given the
complex spatio-temporal evolutions in global water mass, Sections 3.1 and 3.2 present the
results of utilizing the empirical orthogonal function (EOF) method to extract the major
spatially distributed structure and corresponding temporal evolutionary time series of
water mass anomalies over lands and over oceans, respectively. Considering that modeling
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the accurate dynamic processes involved in the land–sea water mass redistribution at
a global scale remains a challenge, the contributions of wind-forcing and heat gradient-
forcing are quantified using the maximum covariance analysis (MCA) approach, and
the result is presented in Section 3.3. After removing the possible dynamic ocean mass
distribution, Section 3.4 compares the residuals with the modeled SLFs using sea-level
equations. The possible signal noise originating from the solid Earth deformation that was
misestimated during the GRACE/GRACE-FO data processing is presented in Section 3.5.
Section 4 provides a discussion of the possible reasons for land–sea water mass anomalies,
while Section 5 presents the conclusions of this study. The findings of this study provide
an explanation of the low-frequency, globally distributed ocean mass anomalies, which
might improve the understanding of the long-term anomalies in regional sea levels and
help coastal areas cope with climate change in a more scientific manner.

2. Data and Methods

Section 2.1. describes the data sources and data preprocessing steps used in this study.
Subsequently, Section 2.2. introduces the methods utilized in the analysis.

2.1. Data

The latest GRACE/GRACE-FO-derived water mass data, as well as the sea-surface
wind and the sea-surface temperature (SST) data from the ERA5 monthly averaged reanal-
ysis dataset, were employed in this study. All data in this study were interpolated to a
spatial resolution of 0.5◦ × 0.5◦ at a monthly temporal scale, and the study period ranges
from January 2004 to December 2021.

2.1.1. GRACE/GRACE-FO-Derived Water Mass Data

The study employed Release 06 Version 03 of the gridded monthly global water
storage/height anomalies obtained from the NASA Jet Propulsion Laboratory (JPL), using
the Mascon approach to solve the time-varying gravity fields observed by the GRACE
and GRACE-FO satellites. JPL’s data processing processes include (a) a C20 replacement
based on satellite laser ranging (SLR) data; (b) degree-1 corrections; (c) GIA correction
based on the model ICE6G-D [33]; (d) coastal resolution improvement (CRI) filtering to
decrease the land–ocean signal leakage, and (e) land grid scaling, etc. [34,35]. The GAD
was additionally subtracted based on the European Centre for Medium-Range Weather
Forecasts (ECMWF) model and the Max Planck Institute for Meteorology Ocean Model
(MPIOM) from the JPL Mason solutions to remove the effects of high-frequency atmospheric
loading and dynamic ocean signals on the ocean bottom pressure. The raw spatial resolution
of the GRACE/GRACE-FO data resolution is 3◦ × 3◦, and the spatial resolution after JPL
processing can reach 0.5◦ × 0.5◦.

Due to instrument issues, calibration campaigns, battery management, etc., the
GRACE/GRACE-FO raw data are not strictly monthly averaged and have consecutive
weeks missing approximately every 6 months. In addition, there is an observation gap
of about one year between two missions. In this study, the raw data for the period from
January 2003 to December 2022 filled the gaps and were converted to a strict monthly
anomaly series using the Lagrange interpolation method for further time series analysis.
Referring to the study of [6], the Lagrange interpolation method was used in each grid
as follows:

Q(t) = Q′(t′ i−1)
(t−t′ i)(t−t′ i+1)

(t′ i−1−t′ i)(t′ i−1−t′ i+1)
+ Q′(t′ i)

(t−t′ i−1)(t−t′ i+1)
(t′ i−t′ i−1)(t′ i−t′ i+1)

+Q′(t′ i+1)
(t−t′ i−1)(t−t′ i)

(t′ i+1−t′ i−1)(t′ i+1−t′ i)

(1)

where Q is the interpolation result, t is a monthly consecutive time from January 2003 to
December 2022, Q′ is the time series of the raw data, t′ is the time corresponding to Q′, and
t′i−1, t′i, and t′i+1 are the three time points in t′ that are closest to t. The multi-year averaged
seasonal fluctuation of Q is removed before interpolation and is added after interpolation.
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Considering that the noise (errors) of the GRACE/GRACE-FO mass change mainly
exists in the intra-annual high-frequency signals [36], an additional 12-month low-pass
filter was applied to the monthly time series in each grid to reduce the error levels. Given
that the low-pass filter probably affects the accuracy of the data for the first several months
and the last several months of the time series, the study’s time span was shortened to the
period from January 2004 to December 2021.

Figure 1 shows the comparison between the monthly global-mean equivalent water
height anomaly time series before and after the two preprocessing steps during the study
period. Figures 2 and 3 illustrate the comparison between the globally distributed trends
in (and peak-to-peak amplitudes of) the equivalent water height anomalies before and
after the two preprocessing steps during the study period. The results show that the
Lagrange interpolation and low-pass filter approaches enable reducing the noise (errors) of
the GRACE/GRACE-FO mass change (Figure 3) while trying not to alter the low-frequency
fluctuation patterns (including trends) in the raw data (Figures 1 and 2). According to
the study of Chen et al. [36], biases in GRACE/GRACE-FO-derived mass change also
arise from signal leakages between land and ocean in the coastal regions surrounding
Greenland, the Antarctic, southwest Alaska, and Patagonia, as well as mismodeling of the
high-frequency dynamic ocean signals of the Argentine Gyre, and/or underestimating the
seafloor deformation caused by great earthquakes, e.g., the Sumatra–Andaman earthquake
in 2004 and the Tohoku-Oki earthquake in 2011. As shown in Figure 3b, the peak-to-
peak amplitudes of the high-frequency signals near the Argentine Gyre region and other
open sea regions are significantly suppressed by using a low-pass filter with a 12-month
cutoff period.
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Figure 1. Monthly global-mean equivalent water height anomalies of the raw data (green circles), data
processed using Lagrange interpolation (black line with black dots), and 12-month low-pass-filtered
results of interpolated data (red line) for the period January 2004 to December 2021.

2.1.2. ERA5 Reanalysis Data

To analyze the dynamic processes caused by wind-forcing and the heat gradient in
regional ocean mass anomalies, the 10 m u-component of wind, the 10 m v-component of
wind, and the SST data from the ERA5 monthly averaged reanalysis dataset were employed.
ERA5 is the fifth generation of ECMWF reanalysis, which produces a global climate and
weather dataset that is continuous in space and consistent in time by using the laws of
physics to assimilate model data with the available observations from around the world [37].
The low-pass filter with a 12-month cutoff period was also applied to the ERA5 reanalysis
data during the study period of January 2004 to December 2021 prior to further analysis
using the GRACE/GRACE-FO-derived ocean mass anomaly data. The spatial resolution
was interpolated from 0.25◦ × 0.25◦ to 0.5◦ × 0.5◦.



Remote Sens. 2023, 15, 4248 5 of 21
Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 23 
 

 

 
Figure 2. Globally distributed trends in gridded equivalent water height anomalies derived from 
GRACE/GRACE-FO data for the period January 2004 to December 2021. Trends in (a) the raw data 
and (b) the data processed using Lagrange interpolation and a 12-month low-pass filter. (c) The 
absolute difference between (a,b). 

 
Figure 3. Globally distributed peak-to-peak amplitudes of gridded equivalent water height anoma-
lies derived from GRACE/GRACE-FO data for the period January 2004 to December 2021. (a) Glob-
ally distributed peak-to-peak amplitudes for the raw data; (b) is the same as (a) but for the data 
processed using Lagrange interpolation and a 12-month low-pass filter. (c) The absolute difference 
between (a,b). 

2.1.2. ERA5 Reanalysis Data 
To analyze the dynamic processes caused by wind-forcing and the heat gradient in 

regional ocean mass anomalies, the 10 m u-component of wind, the 10 m v-component of 
wind, and the SST data from the ERA5 monthly averaged reanalysis dataset were em-
ployed. ERA5 is the fifth generation of ECMWF reanalysis, which produces a global cli-
mate and weather dataset that is continuous in space and consistent in time by using the 
laws of physics to assimilate model data with the available observations from around the 
world [37]. The low-pass filter with a 12-month cutoff period was also applied to the ERA5 
reanalysis data during the study period of January 2004 to December 2021 prior to further 
analysis using the GRACE/GRACE-FO-derived ocean mass anomaly data. The spatial res-
olution was interpolated from 0.25° × 0.25° to 0.5° × 0.5°. 

2.2. Methods 
The EOF method was used to analyze the spatio-temporal characteristics in TWS (and 

ocean water mass) anomalies based on the GRACE/GRACE-FO data. To further analyze 
the major drivers of ocean water mass redistribution, the MCA approach was utilized to 
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and (b) the data processed using Lagrange interpolation and a 12-month low-pass filter. (c) The
absolute difference between (a,b).
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Figure 3. Globally distributed peak-to-peak amplitudes of gridded equivalent water height anomalies
derived from GRACE/GRACE-FO data for the period January 2004 to December 2021. (a) Globally
distributed peak-to-peak amplitudes for the raw data; (b) is the same as (a) but for the data processed
using Lagrange interpolation and a 12-month low-pass filter. (c) The absolute difference between (a,b).

2.2. Methods

The EOF method was used to analyze the spatio-temporal characteristics in TWS (and
ocean water mass) anomalies based on the GRACE/GRACE-FO data. To further analyze
the major drivers of ocean water mass redistribution, the MCA approach was utilized
to extract the possible signals of ocean dynamic processes from the GRACE/GRACE-FO-
derived ocean water mass anomalies based on the ERA5 analysis data. The sea-level equation
was used to model SLFs based on the GRACE/GRACE-FO-derived TWS anomalies data. To
assess the consistency between observations and estimates, two assessment indices in space
and time are used, namely Pearson’s correlation coefficient and the space-similarity coefficient.

2.2.1. Empirical Orthogonal Function (EOF)

The EOF method, also known as principal component analysis (PCA), is a statistical
technique used to extract matrix eigenvalues and eigenvectors, aiming to interpret large-
scale, high-dimensional datasets. Lorenz [38] introduced the EOF method in the field
of meteorology and climatology, and it is now widely used in physical oceanography
and other fields. The eigenvectors correspond to empirical orthogonal functions (EOFs),
also known as spatial modes, and the eigenvalues correspond to principal components
(PCs), also known as temporal coefficients or temporal modes. These modes are ranked
by the proportion of variance explained to identify the leading spatio-temporal modes of
the investigated variable field. The EOF method is thus used to decompose the spatial
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and temporal modes or to study the major spatio-temporal evolutionary characteristics of
high-dimensional data.

Given an Eulerian field with p spatial points and l time points, the field can be stored
in a p × l matrix X. The EOF spatio-temporal decomposition can be expressed as follows:

Xt ≈
n

∑
i=1

Aiαi, t + bt t = 1, 2, . . . , l (2)

where n is the total number of investigated modes, b denotes the residuals, Xt is the t-th
column of the matrix X, Ai is the i-th leading spatial mode, and αi, t is the corresponding
temporal coefficient at time t.

2.2.2. Maximum Covariance Analysis (MCA)

The MCA approach enables investigation of the coupled spatio-temporal evolutionary
patterns between two variable fields, X and Y. It constructs a covariance matrix between X
and Y and then performs singular value decomposition (SVD) to decompose the resulting
covariance matrix into eigenvalues and eigenvectors, i.e., coupled spatio-temporal modes.

Given another Eulerian field with q spatial points and l time points, the field can be
stored in a q × l matrix Y. SVD outputs the coupled spatial modes between X and Y, i.e., U
and V, as follows [39]:

M =
1
l

XYT = UΛCVT (3)

where M is their covariance matrix, T represents the transpose of matrixes, U is a p × n
matrix composed of eigenvectors whose i-th vector represents the i-th leading coupled
spatial mode of X, V is a q× n matric composed of eigenvectors whose i-th vector represents
the i-th leading coupled spatial mode of Y, n is the total number of investigated modes, and
ΛC is a diagonal matrix whose elements on the diagonal are eigenvalues. The corresponding
temporal modes α and β of X and Y are then estimated based on the following equations:

α = XTU (4)

β = YTV (5)

The surface wind, of which the u-wind field is stored in a p × l matrix Y′ and the
v-wind field is stored in a p × l matrix Y′′, is reshaped as a 2p × l matrix Y before solving
Equation (3). The result V is then given in a 2p × n matrix, which can be further divided
into V′ and V′′, which are composed of eigenvectors for the u-wind and v-wind.

2.2.3. Sea-Level Equation (SLE)

The SLE allows the estimation of relative sea level anomalies driven by changes in TWS
based on the laws of physics, such as potential energy conservation and mass conservation.

The relative sea level is the ocean water column height between the surfaces of the sea
and the solid Earth and is expressed as follows:

RSL(θ, ϕ, t) = G(θ, ϕ, t)− B(θ, ϕ, t) (6)

where RSL, G, and B are the anomalies at latitude θ, longitude ϕ, and time t, for the
relative sea level, the absolute sea level (i.e., sea-surface height), and the bedrock elevation,
respectively. Considering that there are differences between the actual sea-surface height
and the geoid height, Equation (6) also can be rewritten as follows:

RSL(θ, ϕ, t) =
1
g

Φ(θ, ϕ, t) + C(t)− B(θ, ϕ, t) (7)
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where g is the gravitational acceleration averaged over the Earth’s surface, Φ is the net
perturbation in the Earth’s surface gravitational and rotational potentials, and C is a spatial
constant describing the differences between the sea-surface height and the geoid height.

Given a certain TWS anomaly field TWS(θ, ϕ, t), corresponding anomalies in the
globally distributed water mass load function WL can be expressed by the law of mass
conservation as follows:

WL(θ, ϕ, t) = TWS(θ, ϕ, t)[1−O(θ, ϕ)] + RSL(θ, ϕ, t)O(θ, ϕ) (8)

where O(θ, ϕ) =

{
1 for the oceans
0 otherwise

(9)

When TWS is known, Equation (6) to Equation (9) can be combined to solve the
anomalies in the RSL caused by the land–sea water mass redistribution, i.e., SLFs and the
recursion processes in the spherical harmonic domain are detailed in [11]. In this study,
the input data were updated with Release 06 Version 03 of the JPL GRACE/GRACE-FO
mascon data, and the SLFs were recalculated in the study period from January 2004 to
December 2021.

2.2.4. Pearson’s Correlation Coefficient (PCC)

The PCC measures the similarity in temporal evolution between two variables. Given
two time series, x and y, with the same sample size l, the PCC is calculated as follows [6]:

PCC =
∑l

i=1(xi − x)(yi − y)√
∑l

i=1(xi − x)2 ∑l
i=1(yi − y)2

(10)

where xi and yi are the corresponding values of the i-th time point; x and y represent the
time averages of x and y. The value of the PCC ranges from −1 to 1, with values closer to 1
indicating a higher linear correlation. A value of −1 indicates there are opposite fluctuation
patterns. A value of 0 indicates that the temporal evolutionary pattern of two variables is
not relevant.

2.2.5. Space-Similarity Coefficient (SC)

The SC quantifies the similarity in spatial distribution between two fields. Given
two spatial distributions, Z and Z′, with the same spatial points p, the SC is calculated as
follows [6]:

SC =
∑

p
j=1 ZjZ′ j√

∑
p
j=1 Zj

2
√

∑
p
j=1 Z′ j2

(11)

where Zj and Z′ j are corresponding values of the j-th spatial point, and the spatio-temporal
resolution of the two input fields must be identical. The value of SC ranges from −1 to
1, with values closer to 1 indicating higher space similarity. A value of 1 indicates that
the spatial distribution of the predicted and observed fields is the same, and a value of
−1 indicates the exact opposite. A value of 0 indicates that the spatial distribution of two
investigated fields is not relevant.

3. Results

In this section, we present the spatio-temporal characteristics of the low-frequency
water mass anomalies across lands (Section 3.1.) and oceans (Section 3.2.) to discuss
their relationship. Next, we illustrate the possible low-frequency dynamic ocean mass
redistribution signals (Section 3.3.) and the estimated SLFs (Section 3.4.) to discuss the
globally distributed contribution of different components to the GRACE/GRACE-FO-
derived ocean mass anomalies (Section 3.5.).
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3.1. Spatio-Temporal Evolutionary Characteristics in TWS Anomalies

This section illustrates the spatial-temporal characteristics in the GRACE/GRACE-
FO-derived TWS anomalies from January 2004 to December 2021 using the EOF analysis
approach. As shown in Figure 4, the first two leading modes contribute 98% of the variance
explained in the raw data, and these two leading modes are associated with different time
scales, namely, the long-term trend and decadal-like fluctuation.
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Figure 4. EOF analysis results of GRACE/GRACE-FO-derived TWS anomalies during the period
January 2004 to December 2021. The left panel shows the EOF spatial structure, and the right
panel shows the monthly time series of the corresponding PC. EOF: empirical orthogonal function;
PC: principal component; EV: explained variance.

The first leading EOF mode, which mainly captures the long-term trends of the region,
accounts for 95% of the variance explained in the raw data. Positive values of its EOF
spatial structure, EOF1, are mainly found in the Greenland coast, the West Antarctic coast,
the Alaska Range, the Coast Ranges, the South Andes Mountains, the Caucasus, the Middle
East, the Qinghai-Tibet Plateau, Northern India, the North China Plain, and the Brazil
Plateau, indicating that these regions experienced a significant and continuous TWS decline
during the study period. In contrast, negative values of EOF1 are observed in central
Greenland, the East Antarctic, eastern North America, and most low latitudes, suggesting
a significant and continuous increase in TWS in these regions during the study period.

The second leading EOF mode, which captures primarily decadal-like cyclical fluctua-
tions of the region, accounts for 3% of the variance explanation. Its EOF spatial structure,
EOF2, demonstrates an inverse phase of fluctuations between the regions with positive
values and the regions with negative values. Positive EOF2 values lie on the Greenland
coast, the West Antarctic, northern Asia, northern and eastern North America, the Middle
East, northern Africa, etc., while there are negative values for western Europe, northern In-
dia, southern Africa, Australia, the Coast Ranges, central North America, Central America,
northern and Central South America, the East Antarctic, etc. The decadal-like fluctuation
pattern over the regions with positive values shows an increase in TWS during the periods
2004–2005 and 2013–2021 and a TWS decline during the period 2006–2012, while that of the
regions with negative values shows the opposite trend.

Combining the regional long-term trend and decadal-like fluctuation, there are two main
tipping points for the regional TWS anomalies, namely, around 2005 and 2012. For instance,



Remote Sens. 2023, 15, 4248 9 of 21

the Greenland coast and the West Antarctic, which are the common positive regions where
both leading EOF modes are shared, show a slowing downward trend during the periods
2004–2005 and 2013–2021 and exhibit an accelerating downward trend during the period
2006–2012, which is consistent with the findings of previous studies [40–43]. The super-
position of different spatio-temporal modes complicates the time-varying characteristics,
and EOF analysis could be helpful for better understanding the attribution of different
components involved in TWS-related ocean water mass redistribution.

3.2. Spatio-Temporal Characteristics of Ocean Water Mass Anomalies

This section presents the findings of the EOF analysis method performed on
GRACE/GRACE-FO-derived ocean water mass anomalies from January 2004 to Decem-
ber 2021. The spatio-temporal characteristics of the GRACE/GRACE-FO-derived ocean
water mass anomalies are more intricate. The cumulative variance explanation of 98%
in the raw data is only reached when taking into account the first to the eleventh lead-
ing spatio-temporal modes. This study focuses on the first two EOF modes, as shown
in Figure 5.
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Figure 5. EOF analysis results of GRACE/GRACE-FO-derived ocean mass anomalies during the
period January 2004 to December 2021. The left panel shows the EOF spatial structure, and the right
panel shows the monthly time series of the corresponding PC. EOF: empirical orthogonal function;
PC: principal component; EV: explained variance.

The contribution of the first leading spatial mode, EOF1, to the variance of raw data is
73%. Its temporal mode, PC1, is dominated by a long-term trend as the PC1 of TWS, and
its EOF spatial structure, EOF1, is predominantly characterized by negative values, except
for the oceans surrounding Greenland and the West Antarctic, etc. This spatio-temporal
evolutionary pattern is reasonable and corresponds to the overall downward trend of TWS,
indicating a continued sea level rise worldwide. Sea level decline around Greenland and
the West Antarctic, however, is likely a sign of SLFs.

The second leading EOF mode accounts for 7% of the variance contribution, and
its temporal mode, PC2, mainly reflects decadal-like fluctuation patterns. For EOF2, the
positive values of the spatial mode are mainly located in the Arctic, North Indian, and
Pacific Oceans, while the negative values are mainly distributed in the Atlantic and South
Indian Oceans. However, this spatial structure does not seem to respond directly to the
decadal TWS fluctuations, and its PC2 time series weakly correlates with that of TWS
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(PCC = 0.23). Considering that high-frequency variations have been removed, EOF2 could
be related to other sources of signals, e.g., low-frequency dynamic ocean water mass
anomalies and/or errors in the GRACE/GRACE-FO data. For instance, strong signals of
EOF2 are located in the Antarctic Circumpolar Current region, which is found to be dominated
by the interannual variations in surface winds in previous studies [25,26]. Moreover, there are
possible signals arising from mismodeled seafloor deformations during GRACE/GRACE-
FO data preprocessing, which are located in areas where large earthquakes (e.g., the 2004
Sumatra tsunami and the 2011 Tohoku tsunami earthquakes) have occurred.

3.3. Low-Frequency Dynamic Ocean Mass Redistribution

This section uses the MCA approach to extract the possible low-frequency dynamic
ocean mass redistribution signals that were driven by surface wind-forcing, heat gradients,
and precipitation from the GRACE/GRACE-FO-derived ocean mass anomalies. The MCA
approach outputs the possible coupled spatial-temporal modes between two variables’
fields. Only the coupled modes that are owing to strong, consistent PCs are considered in
this section.

Figure 6 presents four possible spatio-temporal-coupled modes between the surface
wind fields and GRACE/GRACE-FO-derived ocean mass anomaly fields during the period
from January 2004 to December 2021. The SCs of their spatial modes (0.56~0.69) and the
PCCs (0.85~0.95) of their temporal modes all reached a significance level of 0.05.

The first coupled mode mainly illustrates a strong signal of ocean water mass anoma-
lies across the subpolar Southern Ocean, possibly associated with decadal-like surface
wind anomalies. Previous studies have found that the sea level height of the subpolar
Southern Ocean is primarily driven by surface winds and is significantly correlated with
ocean bottom pressure [44,45]. An anomalous wind stress along the Antarctic Circumpolar
Current strongly contributes to increased water mass transport. Therefore, it is reasonable
that westward (and eastward) wind anomalies correspond to ocean water mass increases
(and decreases) across the subpolar Southern Ocean, as presented in the first coupled mode.
Although some ocean regions also show similar patterns of decadal-like fluctuations in
their surface wind field, it may not necessarily lead to a significant anomaly in the ocean
water mass transport, e.g., the Equatorial-open ocean region [46].

The second coupled mode captures the ocean water mass redistribution related to the
interannual wind field variations over the North Atlantic Subpolar Gyre region, the Alaska
coastal current region, the Indian Ocean Gyre region, and the Australian–Antarctic Gyre
region. In the North Atlantic subpolar gyre region, cyclonic (and anticyclonic) anomalies of
the ocean circulation pattern that are driven by southward (and northward) wind anomalies
usually lead to below-average (and above-average) Arctic Ocean water mass anomalies [27].
As shown in the second coupled spatial modes, there is a cyclonic anomaly of the surface
wind field across the North Atlantic subpolar region, leading to significantly negative
ocean mass anomalies of the Arctic Ocean, which is consistent with the result of [10].
The wind fields of the first and second coupled modes in the South Pacific have opposite
distribution characteristics, and the corresponding South Pacific mass anomaly distribution
is also opposite.

The third coupled mode captures the interannual ocean water mass redistribution that
could be relevant to the wind field variations of the Equatorial marginal seas, the Alaska
Gyre region, the North Pacific Subpolar Gyre region, the South Atlantic Subtropical Gyre
region, and the North Atlantic Subtropical Gyre region. The fourth coupled mode further
illustrates the decadal-like ocean water mass redistribution possibly driven by the wind
field variations of the North Pacific Subpolar Gyre region, the Equatorial Countercurrent
region, etc. Given the close relationship between the ocean mass anomalies and surface
winds over these regions, the four leading coupled modes of the GRACE/GRACE-FO-
derived ocean mass anomalies that are associated with surface winds (left panels of Figure 6)
were removed to further study the relationship with SSTs.
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Figure 6. Results of the maximum covariance analysis between the GRACE/GRACE-FO-derived
ocean water mass anomalies and the ERA5 reanalysis-provided surface winds. Only the modes
with strong, consistent PCs are shown. From left to right, the first panel shows the spatial modes
(from top to bottom) of the GRACE/GRACE-FO-derived ocean water mass anomalies; the second
panel shows the spatial modes (from top to bottom) of surface winds, in which shades represent
wind speed anomalies relative to the global mean; and the third panel shows the time series of their
coupled principal components (temporal modes) during the period January 2004 to December 2021.
OWMA: ocean water mass anomaly; EV: explained variance; SW: surface wind; SC: space-similarity
coefficient; PC: principal component; PCC: Pearson’s correlation coefficient.

Figure 7 presents the four coupling spatial and temporal modes between the corrected
GRACE/GRACE-FO-derived ocean mass anomalies and the ERA5 reanalysis-provided
SSTs during the period from January 2004 to December 2021. The PCCs (0.78~0.84) between
their temporal modes all reach a significance level of 0.05; however, only the SC of their
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third spatial-coupled modes (−0.11) passes the significance test with a p-value < 0.05.
Therefore, only the third coupled modes of the GRACE/GRACE-FO-derived ocean mass
anomalies that are associated with SSTs (the third left panels of Figure 7) were removed to
correct the GRACE/GRACE-FO-derived ocean mass anomalies, and the signal-to-noise
ratio was improved after removal. The impact of long-term precipitation variations on the
residual ocean water mass anomalies was also investigated using the MCA approach to
study the contribution of the water mass that is exchanged between the atmosphere and
oceans, and no similar coupled spatio-temporal change pattern was found between them.
The results indicate that low-frequency dynamic ocean mass anomalies are mainly caused
by wind-forcing, which is consistent with the results of [10].
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Only the modes with strong, consistent PCs are shown. From left to right, the first panel shows the
spatial modes (from top to bottom) of the GRACE/GRACE-FO-derived ocean water mass anomalies;
the second panel shows the spatial modes (from top to bottom) of SSTs; and the third panel shows the
time series of their coupled principal components (temporal modes) during the period January 2004
to December 2021. OWMA: ocean water mass anomaly; EV: explained variance; SC: space-similarity
coefficient; PC: principal component; PCC: Pearson’s correlation coefficient.

3.4. TWS-Related Ocean Water Mass Anomalies

This section compares the modeled SLFs with the corrected GRACE/GRACE-FO-
derived ocean mass anomalies when removing the possible dynamic signals to investigate
TWS-related ocean water mass anomalies.

When the four leading modes of the GRACE/GRACE-FO-derived ocean mass anoma-
lies associated with surface winds (Figure 6) and the third leading mode associated with
SSTs (Figure 7) were removed, the spatio-temporal evolutionary characteristics of the ocean
water mass anomalies that were related to TWS became more evident. Considering that
dynamic correction may bring information from surface wind fields at a higher spatial
resolution when compared with GRACE/GRACE-FO, this study further applies a Gaus-
sian low-pass filter with a cutoff frequency of 100 to minimize very short wavelength
signals after correction. Figure 8 presents the results of performing the EOF analysis on
the corrected GRACE/GRACE-FO-derived ocean water mass anomalies with the oceanic
dynamic processes removed. The two leading modes are highly relevant to TWS. The
spatial structures of the two leading modes, EOF1 and EOF2, correspond to that of the TWS,
which showed a decrease surrounding the coastal regions suffering from significant TWS
decline (e.g., Greenland, Antarctic, Middle East, as shown in Figure 4), and an increase
in the distance. The temporal coefficients of the two leading modes, PC1 and PC2, are in
high agreement with that of TWS (PCCs ≥ 0.99). In addition, each mode explains the same
variance, i.e., 95% and 3%, respectively, as shown in Figures 4 and 8.
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Figure 8. EOF analysis results of GRACE/GRACE-FO-derived ocean water mass anomalies after
removing the low-frequency dynamic parts during the period January 2004 to December 2021. The
left panel shows the EOF spatial structure, and the right panel shows the monthly time series of
the corresponding PC. EOF: empirical orthogonal function; PC: principal component; EV: explained
variance. A Gaussian low-pass filter with a cutoff frequency of 100 has been applied.
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Figure 9 further shows the EOF-analyzed results of the modeled SLFs during the
period from January 2004 to December 2021, which describe the relative sea level anomalies
driven by GRACE/GRACE-FO-derived TWS anomalies via altering Earth’s gravitation,
Earth’s rotation, and solid Earth, and are calculated based on the SLE in Section 2.2.2. The
first leading spatial mode of the SLFs is mainly controlled by a significant and continuous
ice mass loss over the Greenland coast, the West Antarctic coast, the Alaska Range, and other
coastal glacier regions. The second leading spatial mode of the SLFs is primarily determined
by decadal-like TWS fluctuations over Greenland, the Antarctic, Alaska, Australia, etc.
The superposition of long-term trends and decadal oscillations can lead to a sometimes
accelerated and sometimes slowed sea level rise in sea level rise regions.
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Figure 9. Results of the maximum covariance analysis between the corrected GRACE/GRACE-FO-
derived ocean water mass anomalies and the modeled SLFs. From left to right, the first panel shows
the first and second leading spatial modes (from top to bottom) of the GRACE/GRACE-FO-derived
ocean water mass anomalies with low-frequency ocean dynamic process removal; the second panel
shows the first and second leading spatial modes (from top to bottom) of the modeled SLFs; and the
third panel shows the time series of their coupled principal components (temporal modes) during
the period January 2004 to December 2021. SC: space-similarity coefficient; PC: principal component;
PCC: Pearson’s correlation coefficient. A Gaussian low-pass filter with a cutoff frequency of 100 has
been applied in the corrected OWMA.

In this study, the modeled SLFs and the corrected GRACE/GRACE-FO-derived ocean
water mass anomalies were further compared with the removal of the low-frequency dy-
namic ocean mass component. Although there is still some noise or signal from other
sources in the corrected ocean water mass anomalies (e.g., the obvious differences being
in the Arctic Ocean, the Indian Ocean near South and Southeast Asia, and the oceans
surrounding the East Antarctic), the SCs between the spatial structures of the two leading
modes and the PCCs between the corresponding PCs improved significantly after correc-
tion. The SCs range between approximately 0.38 and 0.39, and the PCCs range between
approximately 0.97 and 1.

When the dynamic processes were removed, a visible improvement was found near
the oceans surrounding Greenland and the West Antarctic. Given that the modeled SLFs
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have the highest gradients in the oceans near Greenland and the West Antarctic (Figure 9),
the SLFs over these two regions should be more easily distinguished from the noise. As
shown in Figures 10 and 11, the GRACE/GRACE-FO-derived ocean mass anomalies near
Greenland and the West Antarctic show an effective correction of the dynamic ocean
processes, reproducing a similar pattern of gradient changes to the modeled SLFs. For
oceans near Greenland, the space-similarity coefficient between the ocean mass change and
SLFs improved from −0.11 to 0.58 after correction. For oceans near the West Antarctic, the
space-similarity coefficient improved from 0.10 to 0.56 after correction.
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Figure 10. Comparison between the spatially distributed trends (units in mm/yr) in (a) the
modeled SLFs, (b) the GRACE/GRACE-FO-derived ocean mass anomalies, and (c) the corrected
GRACE/GRACE-FO-derived ocean water mass anomalies with low-frequency dynamic ocean mass
redistribution removal over oceans surrounding Greenland during the period January 2004 to De-
cember 2021. A Gaussian low-pass filter with a cutoff frequency of 100 has been applied in plot-c.
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Figure 11. Comparison between the spatially distributed trends (units in mm/yr) in (a) the
modeled SLFs, (b) the GRACE/GRACE-FO-derived ocean mass anomalies, and (c) the corrected
GRACE/GRACE-FO-derived ocean water mass anomalies with low-frequency dynamic ocean mass
redistribution removal over oceans surrounding West Antarctic during the period January 2004 to
December 2021. A Gaussian low-pass filter with a cutoff frequency of 100 has been applied in plot-c.

3.5. Residuals of GRACE/GRACE-FO-Derived Ocean Mass Anomalies

This section illustrates the globally distributed contribution of different components
to the GRACE/GRACE-FO-derived ocean mass anomalies during the period from January
2004 to December 2021. As shown in Figure 12a,b, the 25th, 50th, and 75th percentiles of
the PCCs between the gridded SLFs and the gridded ocean mass anomalies are 0.60, 0.86,
and 0.94, respectively, while the values of the EVs are 59%, 72%, and 82%, respectively.
The modeled SLFs in most regions, especially in the open ocean, have a strong correlation
relationship with the GRACE/GRACE-FO-derived ocean mass anomalies, and most of
them contribute more than half of the variance, indicating that the SLFs are the dominant
factor causing ocean mass anomalies.
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4.2. Attribution of Ocean Water Mass Redistribution 

Figure 12. Analysis of different components in the GRACE/GRACE-FO-derived ocean mass anoma-
lies during the period January 2004 to December 2021. (a) Globally distributed correlation coefficients
(PCC) between the GRACE/GRACE-FO-derived ocean mass anomalies and the modeled SLFs;
(c,e) are the same as (a) but for the modeled low-frequency dynamic ocean mass redistribution and
residuals, respectively. (b) Globally distributed explained variance (EV) of modeled SLFs in the
GRACE/GRACE-FO-derived ocean mass anomalies; (d,f) are the same as (b) but for the modeled
low-frequency dynamic ocean mass redistribution and residuals, respectively.

The second major factor causing ocean mass anomalies is the low-frequency dynamic
ocean mass redistribution-forcing by surface winds and heat gradients. In Figure 12c,d, the
25th, 50th, and 75th percentiles of the PCCs between the low-frequency dynamic ocean
mass anomalies and the total ocean mass anomalies in the grids are 0.22, 0.40, and 0.54,
respectively, while the values of the EVs are 1%, 11%, and 23%, respectively. In the North
Indian Ocean, North Atlantic Ocean, South Pacific Ocean, and some marginal seas, such
as Baffin Bay, the Kara Sea, and the Laptev Sea, the low-frequency dynamic ocean mass
anomalies have a high correlation with the total ocean mass anomalies, where the EVs
range from 30% to 97%.

When the SLFs and the dynamic processes are deducted from the ocean mass anoma-
lies, there is a weak correlation between the residuals and the total ocean mass anomalies
(Figure 12e). However, there are non-negligible negative EVs of residuals in some regions
(Figure 12f), such as the north-central Atlantic and the northern Indian Ocean. Consider-
ing the weak correlation between the residuals and the ocean water mass change, these
non-negligible residuals may originate from the underestimation of magnitudes in the two
investigated major components or from the dissimulated solid Earth deformation.
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4. Discussion
4.1. Impact of Climate Change and Human Activities on TWS

TWS reflects the net effect of water fluxes, such as precipitation, evaporation, and
runoff, and should comply with the law of regional water balance dynamics. However, in
this study, it was found that the first spatial-temporal mode of TWS, dominated by trend
terms, contributes 95% of the variance, which is significantly higher than the second mode,
which is dominated by decadal-like fluctuations (3%) (Figure 4). Regions with decreasing
trends in TWS are mostly located in glacial decline areas and groundwater overdraft
areas [14,47–51], whereas regions exhibiting increasing trends are either undergoing a
cyclical transition from dry to wet periods or experiencing increased precipitation [7,14],
further indicating the dominance of climate change and human activities in terrestrial
water-cycle processes.

4.2. Attribution of Ocean Water Mass Redistribution

The cumulative variance contributions of the two leading modes of TWS reach as
high as 98%, and each mode corresponds to a distinct timescale variation, including long-
term trends and interdecadal fluctuations. In contrast, the spatio-temporal evolution of
ocean mass anomalies is more intricate, as it exhibits several distinct spatio-temporal
variation patterns at similar timescales. The cumulative variance explanation of 98% in
the raw data is only reached when taking into account the first to the eleventh leading
spatio-temporal modes.

The main possible cause that accounts for this outcome is the low-frequency ocean
dynamic processes that are involved in ocean mass redistributions. The terrestrial water
cycle mainly occurs within watersheds, which have specific terrestrial boundaries and are
relatively isolated [52]. Conversely, regional ocean water masses could directly interact
with one another through wind-forcing or heat-related dynamic processes, given they lack
physical boundaries. The results of this study show that the second leading EOF mode
of ocean mass anomalies, which accounts for 7% of the explained variance (Figure 5), is
in high agreement with wind-forced ocean dynamic mass anomalies (Figure 6). Previous
studies have identified some ocean mass anomalies originating from wind-related dy-
namic processes [15]. In the Antarctic Circumpolar Current region, significant interannual
variations in the ocean mass anomalies derived from GRACE have been found to be in
high agreement with those of surface winds [25,26]. In the North Atlantic subpolar gyre
region, ocean modeling showed that surface wind-forcing is the major driver responsible
for non-seasonal water mass redistribution instead of freshwater fluxes [27]. In the North
Pacific region and the Argentine Gyre region, ocean mass redistribution has also been
found to be a response to low-frequency surface wind anomalies [28,29]. In this study,
the global distribution of the contribution of surface winds to ocean mass anomalies was
investigated, and it was concluded that wind-forcing dynamic processes dominate the
ocean mass change in the North Indian Ocean, North Atlantic Ocean, South Pacific Ocean,
and some marginal seas, such as Baffin Bay, the Kara Sea, and the Laptev Sea, as the
variance explanations range from 30% to 97% (Figure 12d).

After removing the dynamic ocean processes, the low-frequency variations in the
TWS and TWS-related ocean mass redistribution are comparable to each other in terms of
the signal-to-noise rate, with their two leading modes contributing the same accumulated
explained variance of 98% (Figures 4 and 8). This finding further reinforces the suggestion
that the GRACE/GRACE-FO-observed noise is similar in marine regions and terrestrial
regions, according to the study of Chen et al. [36]. Nevertheless, it should be noted that
there are non-negligible residuals remaining in the north-central Atlantic, northern Indian
Ocean, etc., when the dynamic ocean processes and SLFs are removed (Figure 12f). These
residuals probably originate from earthquakes. A previous study detected the transient
signals of the 2004 Sumatra tsunami, the 2010 Maule tsunami, and the 2011 Tohoku tsunami
earthquakes based on GRACE’s gravitational measurements [53]. With the removal of the
SLFs and dynamic ocean processes, it was further found that residuals are mainly located



Remote Sens. 2023, 15, 4248 18 of 21

in the seismic belt (e.g., the Circum-Pacific Belt, the mid-ocean ridge in the Indian Ocean,
and the Eurasian–Melanesian belt in the Indian Ocean), which may imply the accumulated
effect of numerous earthquakes on the low-frequency GRACE/GRACE-FO gravitational
signals over oceanic regions. In addition, other residuals in the West Antarctic and near
Greenland may be associated with leaking ice melt signals.

4.3. Comparing the SLFs Derived from Satellite Gravity and Satellite Altimetry

Recently, rapid ice melting under climate change has strengthened the signal coming
from SLFs. Although detecting SLFs is challenging, recent evidence suggests that SLFs can
be observed in the oceans surrounding Greenland, given the removal of ocean dynamical
processes from the altimetric sea level [10]. In addition to separating the dynamic processes,
an alternative approach to tracking SLFs is to remove the steric part that is associated
with ocean temperature and salinity anomalies from the satellite-altimetry-derived sea
level [22]. However, the latter approach only explained about 25% of the variance observed
in altimetric sea level, where the correction of the steric part could be explained by SLFs.
Coulson et al. [10] concluded that a correction of the steric part may perform well in the
deep ocean, but the marginal seas are more likely to be dominated by ocean dynamic
processes, especially the wind-forcing part. Ocean dynamic processes are reflected in the
oceanic water mass anomaly rather than the steric water column height and, therefore, link
the satellite gravity-derived mass sea level with the satellite altimetry-observed sea level
height. As shown in Figure 10c, the satellite gravity-derived SLFs with correction of the
ocean dynamic part are similar to those derived from satellite altimetry [10]. Their similar
spatial distributions suggest that the sea level in the oceans off Greenland is dominated
by its mass term and includes two main components, i.e., SLFs and wind-forcing ocean
dynamic processes. In addition, it was further found that SLFs in the oceans that are off the
West Antarctic can also be detected using a similar approach (Figure 11). These findings
reinforce the suggestion that the mass term plays a dominant role in the sea level anomaly
over marginal seas.

5. Conclusions

In this study, the latest version of the JPL-processed water mass anomaly dataset
was used, which was derived from GRACE and GRACE-FO using the Mascon solution to
investigate the major drivers of low-frequency ocean water mass redistribution during the
study period from January 2004 to December 2021.

The low-pass-filtered water mass anomaly with a 12-month cutoff period in both land
(TWS) and ocean were decomposed into spatial and temporal modes, respectively, using
the EOF method. The results show that the first mode of TWS is dominated by the trend
term and accounts for 95% of the total variance. This is followed by the second mode, which
is dominated by the decadal-like fluctuation term and accounts for 3% of the total variance.
The dominance of the long-term trend in TWS highlights the significant influence of climate
change and human activities on the terrestrial water cycle. In contrast, the spatio-temporal
evolutionary characteristics in oceans are much more complex. The first mode of ocean
water mass anomalies is also dominated by the trend term but accounts for only 73% of the
total variance. This is followed by the second mode, which captures mainly decadal-like
fluctuations and accounts for a variance explanation of 7%. The spatio-temporal evolutions
detailed in the first mode are mostly TWS-related, but those of the second mode are likely
to be caused by low-frequency dynamic processes in oceans.

The ocean mass redistribution caused by dynamic processes is further revealed in
their coupled spatio-temporal evolutionary modes, solved using the MCA approach. Four
leading coupled modes between surface winds and ocean mass anomalies were investi-
gated, which describe the dominant role of wind-forcing dynamic processes in the oceanic
water mass anomalies near the North Indian Ocean, North Atlantic Ocean, South Pacific
Ocean, and some marginal seas, such as Baffin Bay, the Kara Sea, the Laptev Sea, etc. The
TWS-related ocean mass anomalies were then corrected by removing the possible dynamic
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processes from the raw data. By comparing the SLFs estimated using the SLE and the
corrected ocean mass anomalies, it was found that the corrected ocean mass anomalies
describe mostly the spatio-temporal evolutionary characteristics involved in land–sea water
mass redistribution. The space-similarity coefficients of their two leading EOF modes range
between approximately 0.38 and 0.39; the correlation coefficients of the corresponding
PCs range between approximately 0.97 and 1; and the explained variances are the same
(95% and 3%) for the long-term trend and decadal-like fluctuation terms. The residual
signals probably originate from earthquake-induced seafloor deformation since they are
mainly located on the seismic belt, e.g., the Circum-Pacific Belt, the mid-ocean ridge in the
Indian Ocean, and the Eurasian–Melanesian belt in the Indian Ocean. This study shows
that, in the low-frequency ocean water mass anomalies derived from GRACE/GRACE-FO,
the contribution of the land–sea mass redistribution is the largest, followed by dynamic
processes and misestimated seafloor deformation. These three driven factors provide dif-
ferent contributions in different regions, and caution should be taken in regional studies.
Moreover, this study highlights the regions that could be dominated by wind-forcing ocean
mass redistribution using the MCA approaches, offering a clue for further studying ocean
dynamic processes from a mechanistic perspective at the regional to global scales.
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