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Abstract: Polarimetric synthetic aperture radar (PolSAR) image classification has been an important
area of research due to its wide range of applications. Traditional machine learning methods were
insufficient in achieving satisfactory results before the advent of deep learning. Results have signifi-
cantly improved with the widespread use of deep learning in PolSAR image classification. However,
the challenge of reconciling the complex-valued inputs of PolSAR images with the real-valued models
of deep learning remains unsolved. Current complex-valued deep learning models treat complex
numbers as two distinct real numbers, providing limited assistance in PolSAR image classification
results. This paper proposes a novel, complex-valued deep learning approach for PolSAR image
classification to address this issue. The approach includes amplitude-based max pooling, complex-
valued nonlinear activation, and a cross-entropy loss function based on complex-valued probability.
Amplitude-based max pooling reduces computational effort while preserving the most valuable
complex-valued features. Complex-valued nonlinear activation maps feature into a high-dimensional
complex-domain space, producing the most discriminative features. The complex-valued cross-
entropy loss function computes the classification loss using the complex-valued model output and
dataset labels, resulting in more accurate and robust classification results. The proposed method was
applied to a shallow CNN, deep CNN, FCN, and SegNet, and its effectiveness was verified on three
public datasets. The results showed that the method achieved optimal classification results on any
model and dataset.

Keywords: polarimetric synthetic aperture radar (PolSAR) image classification; complex-valued
convolutional neural network; complex-valued max pooling; complex-valued nonlinear activation;
complex-valued cross-entropy

1. Introduction

The polarimetric synthetic aperture radar (PolSAR) system was developed from the
conventional SAR system, which can provide multidimensional remote sensing informa-
tion about a target [1]. The PolSAR system is more advanced than the conventional SAR
system because it can obtain the target’s scattering echo amplitude, phase, and frequency
characteristics as well as the polarization characteristics of the target. PolSAR measures the
polarization scattering characteristics of the ground target by transmitting and receiving
electromagnetic waves with different polarization modes to obtain the target polarization
scattering matrix [2]. The polarization of electromagnetic waves is sensitive to physical
properties, such as the surface roughness, geometry, and orientation of the target, which
means that the polarization scattering matrix contains a wealth of target information. Pol-
SAR technology has been sustained and developed in recent decades, and it has been widely
studied and applied in various applications, such as identifying croplands, measuring
vegetation height, identifying forest species, describing geological structures, estimating
soil humidity and surface roughness, measuring ice thickness, and monitoring coastlines.
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PolSAR image classification involves assigning a label to each pixel in an image. As Pol-
SAR systems become more popular, the range and types of ground targets change faster, and
the captured target areas are becoming larger and captured more frequently. The traditional
pixel-by-pixel manual labeling method is becoming inadequate due to the rapidly expand-
ing PolSAR image data. Machine learning has been introduced to the PolSAR classification
task to deal with this issue. PolSAR image classification algorithms can be broadly catego-
rized into traditional machine learning algorithms and deep learning algorithms. Tradi-
tional machine learning algorithms can be further classified as unsupervised and supervised
algorithms. Unsupervised algorithms include techniques such as Wishart [3–5], Markov
random fields (MFRs) [6,7], and objective decomposition [8–11]. Supervised algorithms
include supported vector products (SVMs) [12,13], random forests (RFs) [2], and fuzzy
clustering [14]. When analyzing PolSAR images, traditional machine learning algorithms
usually rely on shallow features of PolSAR images obtained through feature extraction
methods. These shallow features include statistical features such as the linear and circular
intensities, linear and circular coefficient of variation, and span [13], as well as target de-
composition features such as the Pauli decomposition [15], Freeman decomposition [16],
and Huynen decomposition [17]. However, this approach has several drawbacks. Firstly,
the available features are limited and specific to certain scenes or targets. Secondly, some
features, such as target decomposition features, require complex data analysis and com-
putation. Thirdly, manual feature selection is time-consuming and requires many trials.
Additionally, machine learning algorithms only utilize the features of a single pixel and
ignore contextual information and local dependencies. Lastly, traditional machine learning
algorithms do not perform well in nonlinear tasks.

In PolSAR image classification, deep learning has become a popular method for
feature extraction. Unlike traditional machine learning, deep learning can automatically
extract unlimited features. Deep and high-dimensional features can also be discovered
by extracting features layer by layer. Additionally, deep learning can extract contextual
information and the local dependency of pixels by inputting a patch containing a pixel
to be classified. The feature extractor and classifier are combined into a single model,
allowing for adaptive updates to the model parameters from a specific dataset. Deep
learning is especially effective in handling nonlinear tasks due to containing a large number
of nonlinear modules. Due to its advantages, deep learning has proven to be more accurate
and effective than machine learning in PolSAR image classification. De et al. [18] proposed
a stacked self-encoder and multi-layer perceptron approach to classify urban buildings
in PolSAR images. Zhou et al. [19] designed a convolutional neural network (CNN)
with two cascaded layers to extract spatial features with translation invariance in PolSAR
images. Bin et al. [20] proposed a semi-supervised deep learning model based on graph
convolutional networks for PolSAR image classification. Li et al. [21] developed a method
for PolSAR image classification that incorporates a fully convolutional network (FCN)
and sparse coding. They called this approach sliding window FCN and sparse coding
(SFCN-SC). This approach significantly reduced the computational resources needed. Pham
et al. [22] used SegNet to solve the problem of very-high-resolution (VHR) PolSAR image
classification. Liu et al. [23] proposed an active ensemble deep learning (AEDL) model
that achieved high classification accuracy using only a small amount of training data.
Cheng et al. [24] developed a multiscale superpixel-based graph convolutional network
(MSSP-GCN) based on a graph convolutional network that fully utilizes the boundary
information of superpixels in PolSAR images. Liu et al. [25] used a stacked self-encoder
for PolSAR image classification and an evolutionary algorithm to adaptively adjust the
weights, activations, and balance factor in the loss function of the stacked self-encoder.
Jing et al. [26] designed a method that simultaneously utilizes both the self-attention
mechanisms of polarized spatial reconstruction networks for solving the classification of
similar objects in PolSAR images. Nie et al. [27] demonstrated that deep reinforcement
learning combined with FCN can achieve higher classification accuracy under limited
samples. Yang et al. [28] utilized N-clustering generative adversarial networks and deep
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learning techniques to enhance the accuracy of PolSAR image classification. They achieved
this by improving the hard classification accuracy for negative samples. Ren et al. [29] also
developed a high-level feature fusion scheme for the multimodal representation of PolSAR
images. Their approach was based on a CNN and resulted in the more efficient utilization
of different features for the same target.

The PolSAR image classification models mentioned earlier are all based on real-
valued CNNs (RV-CNN). This means the models’ parameters, inputs, and outputs are
all real-valued. However, since the raw data of PolSAR images are complex-valued, it is
impossible to input the raw data into the real-valued model directly. Instead, a mapping
between the raw data and the input of the real-valued model must be established, and
this mapping is selected manually. Although RV-CNN achieves competitive results in
PolSAR image classification, this approach still has some issues. First, there are multiple
mappings between raw data and real-valued inputs, and it is unclear which is the best.
Second, the mapping may cause a significant loss of implicit features in the raw data.
Third, complex-to-real mapping often discards phase information, which is useful in
PolSAR data [30–32].

Researchers have been investigating the use of a complex-valued neural network to di-
rectly process PolSAR data due to the challenges faced in this area. In 1992,
Georgiou et al. [33] extended the backpropagation algorithm for neural networks to the
complex domain for training complex-valued neural networks. Trabelsi et al. [34] were
the first to propose a complex-valued convolutional neural network (CV-CNN), but their
complex-valued pooling and loss functions were ineffective, and their proposed complex-
valued activation did not work well. Zhang et al. [35] proposed a CV-CNN for PolSAR
image classification. Li et al. [36] proposed a model that uses a multiscale contour filter bank
and CV-CNN to automatically extract the complex-valued features of PolSAR images using
the prior knowledge of the filters. Xiao et al. [37] developed a classification model with
a complex-valued encoder and decoder. Additionally, they utilized the complex-valued
upsampling module for the first time. Zhao et al. [38] proposed a contrastive-regulated
CV-CNN that obtains features from raw back-scatter data. Tan et al. [39] explored the
effectiveness of using a 3D complex-valued convolution to extract hierarchical features in
both spatial and scattering dimensions. This allowed them to obtain physical features with
the polarization resolution of neighboring cells. Zhang et al. [40] investigated the potential
of random fields for modeling and complex-valued convolution for representation learning
on PolSAR images. They proposed a hybrid conditional random field model based on a
complex-valued 3D convolutional neural network. Qin et al. [41] suggested incorporating
expert knowledge as input to the CV-CNN model to enhance its performance and make
it more robust. Fang et al. [42] proposed a stacked complex-valued convolutional long
short-term memory network for PolSAR image classification, which extracts coherence
information between different features. Meanwhile, Tan et al. [43] utilized three sets of
CV-CNNs to extract coherence information from the PolSAR images. They achieved this by
maximizing the inter-class distance and minimizing the intra-class distance to learn the
most discriminative features.

Although deep learning models using complex values have made significant break-
throughs in PolSAR classification, they still face major challenges. Firstly, the complex-
valued nonlinear module has not received enough attention. The excellent performance of
CNNs in PolSAR image classification is due to its strong nonlinear fitting ability, but the
nonlinear module has not been optimized in the literature. CNN cannot perform strong
nonlinear fitting without an outstanding complex-valued nonlinear module bringing sub-
optimal classification results. Secondly, existing CV-CNNs either use only the amplitude of
the features while ignoring their phases or treat the real and imaginary parts of the features
separately. The first approach generates features that do not contain phase information,
and the second approach does not satisfy the complex multiplication theorem. Thirdly,
cross-entropy, the most common loss function in classification, can make the probability
distribution of the CNN output closer to the real label by minimizing the cross-entropy
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loss between the label and the CNN output. However, cross-entropy is computed for two
real-valued probability distributions, while CV-CNN output is complex.

This paper explores using CV-CNN in PolSAR image classification and suggests a
new complex-valued pooling method, nonlinear activation, and cross-entropy approach
called CV_CrossEntropy. The nomenclature employed in this study designates our novel
approaches as new CV-CNN to mitigate potential ambiguities with previously cited CV-
CNN methodologies in the literature. These methodologies are subsequently employed
across shallow CNN (SCNN), deep CNN (DCNN), FCN, and SegNet architectures. The
results reveal substantial enhancements in the models’ classification performance when
compared to both real-valued and conventional complex-valued counterparts featuring
identical structural configurations and parameters. This paper focuses on four aspects:
(1) complex-valued max pooling to reduce computation and expand the receptive field;
(2) complex-valued activation to extract high-dimensional nonlinear features; (3) complex-
valued probability and labels to calculate loss; and (4) CV_CrossEntropy to train CV-CNN.

To summarize, our contributions can be expressed as follows:

(1) A novel CV-CNN is introduced in this study, featuring complex-valued inputs, out-
puts, as well as complex-valued weights and biases. Our nonlinear module treats
the input as a complex number, respecting the mathematical significance of complex-
valued inputs and extracting the most discriminative features, resulting in improved
classification ability. Our new complex-valued methods are used in different deep
learning models and achieve better results than real-valued or old complex-valued
versions with the same structure.

(2) In this research, a novel complex-valued max pooling technique is presented for
the downsampling of feature maps. This method is designed to reduce computa-
tional demands, accelerate training and inference, and, importantly, retain the most
essential features.

(3) A novel complex-valued activation function is employed to acquire high-dimensional
nonlinear features. This new activation maps the amplitude and phase of the fea-
tures into the high-dimensional complex domain space and can make the model
more sparse.

(4) A novel complex-valued cross-entropy is applied in the training process of the new CV-
CNN. The complex-valued probability principle [44–48] is employed to reallocate one-
hot labels within the dataset. This loss function utilizes the complex-valued labels and
outputs to compute the classification loss and train a better model by backpropagation.

Three different versions of SCNN, DCNN, FCN, and SegNet were considered: the
real-valued version, the old complex-valued version, and the new complex-valued version.
In total, 12 models were compared across three publicly available PolSAR datasets. The
experimental results demonstrate that the models enhanced by the new complex-valued
approach consistently outperform the others, yielding the best results.

The rest of the paper is structured in the following manner. Section 2 provides
an in-depth explanation of complex-valued nonlinear modules and CV_CrossEntropy
theory. Section 3 presents the experimental results on three public datasets. Furthermore,
Section 4 showcases related discussions and ablation experiments. Lastly, Section 5 contains
the summary and future work.

2. Materials and Methods

This section presents a new approach called CV-CNN for classifying PolSAR images.
The method uses a complex-valued convolutional kernel to extract the features of Pol-
SAR images, which addresses the implicit mapping problem introduced by a real-valued
convolutional kernel. The paper also proposes a new complex-valued nonlinear module
that processes the input data amplitude and phase to extract better features. The model’s
training employs a new CV_CrossEntropy loss function, yielding improved accuracy and
robustness of the model and guaranteeing unique classification results during inference. Ad-
ditionally, Section 2.1 describes two deep learning models for PolSAR image classification,
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which can be either complex-valued or real-valued, depending on the input. It is necessary
to design appropriate nonlinear methods for PolSAR data to enhance classification accuracy.
Section 2.2 introduces the input format of PolSAR. Sections 2.3 and 2.4 present complex-
valued max pooling and complex-valued nonlinear activations. Section 2.5 introduces
complex-valued probability, a one-hot label, and cross-entropy for computing the loss dur-
ing training. Finally, the CV-CNN algorithm for PolSAR image classification is summarized
in Section 2.6.

2.1. Two Deep Learning Models for PolSAR Classification

Figure 1 shows two networks that can be used for PolSAR image classification:
(a) a CNN and (b) a convolutional encoder–decoder network. The CNN classifies one pixel
at a time using a patch of size h × w × C as input and produces a prediction of a pixel
of a size of 1× 1. It consists of a feature extractor (convolutional, pooling, and nonlinear
activation layers) and a classifier (fully connected and softmax layers). Two CNNs are
used in this paper to test complex-valued methods, with the main difference being the
number of convolutional layers. The convolutional encoder–decoder network classifies all
pixels of an image at once using a PolSAR image of size H×W ×C as input and producing
a prediction image of size H ×W. The encoder and decoder are the feature extractor
and classifier, respectively. The encoder has the same structure as the CNN, while the
decoder has convolutional, upsampling, nonlinear activation, and softmax layers but no
fully connected layer. The experiments use two convolutional encoder–decoder models:
FCN and SegNet, with the main difference being the connection between the encoder and
decoder. The convolutional encoder–decoder has more parameters but less computational
redundancy than the CNN.

Figure 1 shows that convolutional models consist of fundamental modules, includ-
ing convolution, fully connected, pooling, and activation layers. Convolution and fully
connected layers are linear modules while pooling, and activation layers are nonlinear
modules. A complex-valued batch normalization layer [34] is commonly inserted between
the convolutional and nonlinear activation layers to avoid model overfitting. Linear mod-
ules perform addition and multiplication, which can be expressed as Equations (1) and (2)
for real and complex numbers.

1×1×K

H×W×K

Input 
h×w×C

sliding 
window

Input 
H×W×C

Full Image

Output 
1×1

Point 
Predict

Output 
H×W

Image 
Predict

(a) Convolutional Neural Networks 
for PolSAR Classification

(b) Convolutional Encoder-Decoder for 
PolSAR Classification

Conv + BN + Activation Pooling Upsampling SoftmaxFC

Figure 1. Two types of deep convolutional models for PolSAR image classification. The first
model (a) is a convolutional neural network with blue and green parts for feature extraction and gray
and yellow parts for classification. The second model (b) is a convolutional encoder–decoder network
with blue and green parts for feature extraction and red, blue, and yellow parts for classification. In
both models, ‘Conv’ refers to the convolutional layer, ‘BN’ refers to the batch normalization layer, and
‘FC’ refers to the fully connected layer. The black dotted line indicates that the encoder and decoder
feature maps have been fused. Additionally, ‘H’, ‘W’, and ‘C’ represent the input’s height, width, and
number of channels.
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(A + j · B)× (a + j · b) = (Aa− Bb) + j · (Ab + Ba) (1)

(A + j · B) + (a + j · b) = (A + a) + j · (B + b) (2)

By analyzing Equations (1) and (2), it is apparent that complex-valued addition
and multiplication are linear computations of real and imaginary parts. As a result,
two real-valued convolution kernels can replace one complex-valued convolution ker-
nel, and two real-valued fully connected operators can replace one complex-valued fully
connected operator.

2.2. Inputs of PolSAR Classification

The inputs with complex and real values have equal width and height but differ in the
number of channels. A 2× 2 complex-valued scattering matrix represents each resolution
cell of the PolSAR data, as shown in Equation (3):

S =

[
SHH SHV
SVH SVV

]
(3)

H and V represent the horizontal and vertical polarization bases in this equation,
respectively. Spg represents the backscattering coefficient between the polarization scattered
and the incident field. It is typically assumed that SHV and SVH are identical due to the
reciprocity theorem. This allows the matrix to be simplified and reduced to the scattering
vector~k. Using the Pauli decomposition method, the scattering vector~k can be expressed
as shown in Equation (4):

~k =
1√
2

[
SHH + SVV , SHH − SVV , 2SHV

]T (4)

The representation of the consistency matrix for PolSAR data in the multi-look scenario
can be found in Equation (5):

T =
1
L

L

∑
i=1

~ki~kH
i =




T11 T12 T13
T21 T22 T23
T31 T32 T33


 (5)

The equation for T, which represents the consistency matrix, includes the number
of looks (L) and the conjugate transpose (denoted by H). T is a Hermitian matrix with
real-valued elements on the diagonal and complex-valued elements off-diagonal. Only
the upper triangular part [T11, T12, T13, T22, T23, T33] is necessary to input T into the deep
convolutional model. In the case of the real-valued model, the feature vector is represented
by Equation (6) and has nine input channels:

[T11, T22, T33,<(T12),=(T12),<(T13),=(T13),<(T23),=(T23)] (6)

In the model that deals with complex values, there are six input channels, and the
feature vector is identified as Equation (7):

[T11 + 0 · j, T22 + 0 · j, T33 + 0 · j, T12, T13, T23] (7)
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2.3. Complex-Valued Amplitude-Based Max Pooling

In machine learning, deep learning is a set of methods requiring much computational
power. Unfortunately, a significant portion of this computational power is used redundantly,
which can result in slow convergence, poor performance, and overfitting. One technique
to address this is pooling, which reduces the amount of data involved by shrinking the
feature map. Additionally, pooling also expands the receptive field, allowing the model to
extract more meaningful features with contextual and global information. As a result, it is
important to use pooling methods that keep the most effective features while reducing the
feature map size.

Based on Figure 2a, the complex-valued feature map can be split into real and imag-
inary feature maps. These two maps can then be combined into an amplitude feature
map. The amplitude feature map is then subjected to real-valued max pooling, and the
maximum value index is recorded. Afterward, the final pooling result is obtained by
utilizing the maximum index and the original feature map. The mathematical expression
for amplitude-based max pooling (CVA_Max_Pooling) is shown in Equation (8):

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

b1 b2 b3 b4

b5 b6 b7 b8

b9 b10 b11 b12

b13 b14 b15 b16

a1+j*b1

a16+j*b16
j *

A1 A2 A3 A4

A5 A6 A7 A8

A9 A10 A11 A12

A13 A14 A15 A16

RV max 
pooling A6 A4

A13 A11

a6+j*b6 a4+j*b4

a13+j*b13 a11+j*b11

pooling 
indices

CV Feature Map

Imaginary Feature Map

Real Feature Map

Amplitude Feature Map a1+j*b1
∠α1

a2+j*b2
∠α2

a6+j*b6
∠α6

a5+j*b5
∠α5

(a) CV Max-Pooling Based on Amplitude (b) CV Feature Map in CV Plane

<latexit sha1_base64="zPap7DgTRrthvKWGoaUTLkEItH4=">AAAB+3icbVC7SgNBFL0bXzG+YixtBoMiCGE34KMMprGMYB6QrGF2MpsMmZ1dZ2bFsOQD7MXSxkIRW3/EztI/cfIoNPHAvRzOuZe5c7yIM6Vt+8tKLSwuLa+kVzNr6xubW9ntXE2FsSS0SkIeyoaHFeVM0KpmmtNGJCkOPE7rXr888uu3VCoWiis9iKgb4K5gPiNYG6mdzbXUjdQJbovr4pE36sN2Nm8X7DHQPHGmJF86eHi8L39DpZ39bHVCEgdUaMKxUk3HjrSbYKkZ4XSYacWKRpj0cZc2DRU4oMpNxrcP0b5ROsgPpSmh0Vj9vZHgQKlB4JnJAOuemvVG4n9eM9b+mZswEcWaCjJ5yI850iEaBYE6TFKi+cAQTCQztyLSwxITbeLKmBCc2S/Pk1qx4JwUji+dfOkcJkjDLuzBIThwCiW4gApUgcAdPMELvFpD69l6s94noylrurMDf2B9/AD7pZdp</latexit>p
a2

n + b2
n

Figure 2. (a) displays the process of amplitude-based max pooling, using gray squares to represent
the feature map before pooling and colored squares for the feature map after 2× 2 pooling. (b) shows
the complex plane representation of the four features in the 2× 2 feature map identified by the red
dashed box in (a).

CVA_Max_Pooling(F) = {Fi,j|i, j = arg_max(F2
i,j)} (8)

In this equation, F represents the feature map, while w and h refer to the width and
height of the pooling kernel. Figure 2b displays a complex plane map of all the data within
a pooling kernel. Each feature in this map consists of an amplitude and a phase. The
amplitude indicates the strength of the feature, with higher amplitudes indicating greater
strength and importance. Meanwhile, the phase of a feature indicates its synchronization
relationship with other features. Features with closer phase values are more synchronized.
However, comparing the two features’ phase sizes is meaningless. In Figure 2b, feature
a6 + j ∗ b6 has the largest amplitude, so CVA_Max_Pooling will keep that feature in the
next layer.

Complex-valued pooling methods, such as max pooling or average pooling, are
commonly used on features’ real and imaginary parts. However, it is important to note that
old complex-valued average pooling can weaken significant features, while old complex-
valued max pooling can create “fake” features that could negatively impact the final
classification results. On the other hand, CVA_Max_Pooling can efficiently preserve crucial
features, thus reducing computational workload, broadening the receptive field, and
enhancing classification accuracy.

2.4. Complex-Valued Nonlinear Activation

Using complex-valued nonlinear activation is beneficial in mapping features into a
high-dimensional nonlinear space. This greatly enhances the nonlinear fitting ability of
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CV-CNNs. In RV-CNN models, the most commonly used nonlinear activations are variants
of ReLU. These activations are widely used in real-valued deep learning models and deliver
outstanding performance due to their computational simplicity, ease of derivation, and
ability to sparsify feature maps. A simulated ReLU function is also a preferred design
idea for most complex-valued nonlinear activations. Compared to real-valued activation,
complex-valued activation requires a double nonlinear mapping of the feature amplitude
and phase. The three common nonlinear activations in old CV-CNNs are ModReLU,
CReLU, and ZReLU . Their Equations are (9)–(11), respectively.

ModReLU(z) = ReLU(|z| − b)ejθz =

{
(|z| − b) z

|z| i f |z| ≥ b

0 + 0 · j otherwise
(9)

CReLU(z) = ReLU(<(z)) + j · ReLU(=(z)) (10)

ZReLU(z) =

{
z i f θz ∈ [0, π/2]
0 + 0 · j otherwise

(11)

Based on (9)–(11), it is evident that these three nonlinear activations with complex
values imitate ReLU in varying ways. This paper suggests an improved complex-valued
nonlinear activation called HReLU, which introduces a new approach and is expressed in
Equation (12).

HReLU(z) =

{
z i f θz ∈ [0, π]

0 + 0 · j otherwise
(12)

To fully comprehend the advantages and disadvantages of complex-valued nonlinear
activations, it is crucial to understand why ReLU has succeeded in RV-CNN. ReLU is a
segmented mapping with a constant mapping in the range of (−∞, 0) and a linear mapping
in the range of [0,+∞). This feature makes ReLU convenient for forward inference and
for the calculation of derivatives, as its derivatives are 0 in the range of (−∞, 0) and 1 in
the range of [0,+∞). ReLU maps data in the range of (−∞, 0) to 0 while keeping data in
the range of [0,+∞) unchanged. This not only sparsifies the feature map and improves
the model’s generalization ability but also prevents the feature map from being too sparse,
leading to insufficient model fitting. However, for the complex-valued feature maps, the
amplitude and phase ranges are [0,+∞) and [0, 2π], respectively, which makes ReLU
unsuitable. To address this, ModReLU, CReLU, ZreLU, and HReLU have been developed
to migrate ReLU to the complex domain. If these four complex-valued nonlinear activations
are split into the amplitude activation and the phase activation, they can be represented as
follows:

ModReLU:

ModReLU(|z|) =
{
|z| − b i f |z| ≥ b
0 otherwise

(13)

ModReLU(θz) =

{
θz i f |z| ≥ b, θz ∈ [0, 2π)

0 otherwise, θz ∈ [0, 2π)
(14)

CReLU:

CReLU(|z|) =





|z| i f θz ∈ [0, π/2)
|=(z)| i f θz ∈ [π/2, π)

0 i f θz ∈ [π, 3π/2)
|<(z)| i f _θz ∈ [3π/2, 2π)

(15)
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CReLU(θz) =





θz i f θz ∈ [0, π/2)
π/2 i f θz ∈ [π/2, π)

0 i f θz ∈ [π, 3π/2)
2π i f θz ∈ [3π/2, 2π)

(16)

ZReLU:

ZReLU(|z|) =
{
|z| i f θz ∈ [0, π/2]
0 otherwise

(17)

ZReLU(θz) =

{
θz i f θz ∈ [0, π/2]
0 otherwise

(18)

HReLU:

HReLU(|z|) =
{
|z| i f θz ∈ [0, π]

0 otherwise
(19)

HReLU(θz) =

{
θz i f θz ∈ [0, π]

0 otherwise
(20)

By examining Figure 3 and Equations (13)–(20), it can be observed that only HReLU
performs ReLU-like processing on the magnitude and phase of complex-valued feature maps.
HReLU is also a segmented function, with the upper half of the complex plane being a linear
mapping and the lower half being a constant mapping. Once HReLU is expressed as an
amplitude-activated function and a phase-activated function, these two functions also become
segmented functions, with half of the data being linear mappings and the other half being
constant mappings. HReLU’s nonlinear section also maps the data as 0+ 0 · j, which sparsifies
the feature map and improves the model’s generalization ability. In contrast, ModReLU’s
nonlinearization range is too small, making it difficult to extract efficient features. CReLU
is not sparse enough, leading to poor generalization. ZReLU is too sparse, resulting in a
model prone to underfitting. According to Georgiou et al.’s complex-valued backpropagation
algorithm [33], the derivatives of HReLU in the upper and lower halves of the complex plane
are simple to compute, being 1 + 1 · j and 0 + 0 · j, respectively.

(a) 
ModReLU

(b) 
ZReLU

(c) 
CReLU

(d) 
HReLU

Figure 3. (a–d) depict the complex plane mappings for ModReLU, CReLU, ZReLU, and HReLU,
respectively. The blue shaded area corresponds to the data set to 0 + 0 · j, while the dashed region
with arrows indicates data mapped to the coordinate axes. Any blank part areas in the data will be
preserved for the next layer.

2.5. Complex-Valued Cross-Entropy

CNNs are supervised learning models that rely on the loss between the model output
and the label during training. In the case of RV-CNN used for PolSAR image classification,
the output is a real-valued probability distribution vector. The labels are a real-valued one-hot
vector with dimensions equal to the number of categories. RV-CNN uses real-valued cross-
entropy to calculate the loss of PolSAR image classification. However, CV-CNN’s output is
no longer a real-valued probability distribution vector, which means that real-valued cross-
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entropy cannot be used to calculate the loss. The old complex-valued classification models
only use the real part of the output to calculate the loss value, but this approach loses at least
half of the information flow. Thus, this paper proposes a CV_one-hot label, complex-valued
probability distribution vector and CV_CrossEntropy to address this issue.

2.5.1. Complex-Valued Probability and CV_one-hot Label

Complex-valued probability is an extension of traditional probability that uses com-
plex numbers to express probability distributions [44–48]. Before delving into this concept,
it is important to clarify some related theorems.

Definition 1. Pm = j · (1− Pr) represents the probability of a random event A in the imaginary
and real fields, where j denotes the imaginary unit.

Theorem 1. The norm of a random event in the complex domain is calculated as |Pc|: |Pc|2 =
P2

r + (Pm/j)2.

Theorem 2. The sum of probabilities of a random event’s real and imaginary parts in the complex
domain is always equal to 1: (Pr + Pm/j)2 = |Pc|2 − 2jPrPm = 1

From these theorems, it can be inferred that Pr represents the probability of any
random event happening, while Pm represents the probability of the associated event in
the imaginary domain. Pc is a random event in the complex field given by Pr and Pm. The
degree of knowledge and the chaos factor of a random event in the complex domain are
denoted by |Pc|2 and 2jPrPm, respectively.

If Pr = 1, this means that the random event in the real domain is deterministic, and
the degree of knowledge and the chaos factor of the random event in the complex domain
are 1 and 0, respectively.

If Pr = 0, this means that the random event in the real domain is impossible, and the
degree of knowledge and the chaos factor of the random event in the complex domain are
1 and 0, respectively.

When Pr = 0.5, the degree of knowledge of the random event in the complex domain
is 0.5, and the chaos factor is −0.5.

It is important to note Equations (21) and (22):

0.5 ≤ |Pc|2 ≤ 1 , −0.5 ≤ 2jPrPm ≤ 0 (21)

(Pr + Pm/j)2 = Degree_o f _knowledge− Chaos_ f actor = 1 (22)

This means a stochastic system in the complex domain has a constant probability
equal to 1, but its degree of knowledge and chaos factor are variable. The more stable the
stochastic system is, the greater its degree of knowledge, and the closer the chaos factor is
to zero. This can be used to redesign the CV_one-hot label for PolSAR image classification.

In Figure 4a, the real-valued one-hot label can be seen as a probability distribution for
an object belonging to a certain category with a 100% probability (the value at the activation
point is 1, and the values at the other inactivation points are 0). Figure 4b proposes a
K-dimensional complex-valued vector as the CV_one-hot label, with 1 + 0 · j values at
activation points and the 0+ 1 · j values at the inactivation point. Figure 4c shows that when
the complex-valued probability is decomposed into Pr and Pm/j probability, the meaning
of the CV_one-hot label becomes easier to understand. At the activation point, Pr equals 1,
and Pm/j equals 0, while at the inactivation point, Pr equals 0, and Pm/j equals 1. The
vector Pr represents the probability of classification and has the same meaning as the vector
P, which is used to obtain the unique class of an object via softmax. If a complex-valued
probability is treated as a stochastic system, the knowledge degree of any point in the
CV_one-hot label equals 1, and the chaos factor equals 0. Therefore, the CV_one-hot label
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has the highest stability, as well as the largest knowledge degree and the smallest absolute
value of the chaos factor.

1 0 0 0 0......
i = 

(a) RV Label

0 1 2 ...... K-2K-1

1 0 0 0 0......

i = 
(c) CV Pr & Pm Label
0 1 2 ...... K-2K-1
0 1 1 1 1......1+0*j 0+1*j 0+1*j ...... 0+1*j 0+1*j

i = 0 1 2 ...... K-2 K-1

(b) CV Pc Label

<latexit sha1_base64="huCA7ywvVxfQtvmf03Pe7lnJRHc=">AAAB63icbVDLSgNBEOyNrxhfUY9eBhPBU9gN+MBT0IvHCOYByRJmJ7PJkJnZZWZWCEt+wYsHRbz6Q978G2eTPWhiQUNR1U13VxBzpo3rfjuFtfWNza3idmlnd2//oHx41NZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNxlfueJKs0i+WimMfUFHkkWMoJNJlWbN9VBueLW3DnQKvFyUoEczUH5qz+MSCKoNIRjrXueGxs/xcowwums1E80jTGZ4BHtWSqxoNpP57fO0JlVhiiMlC1p0Fz9PZFiofVUBLZTYDPWy14m/uf1EhNe+ymTcWKoJItFYcKRiVD2OBoyRYnhU0swUczeisgYK0yMjadkQ/CWX14l7XrNu6xdPNQrjds8jiKcwCmcgwdX0IB7aEILCIzhGV7hzRHOi/PufCxaC04+cwx/4Hz+AOFIjXw=</latexit>

P :
<latexit sha1_base64="msc3QDfi3kLurQEZWh33ylYWoEI=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CbaCp7JbqIqnohePFewHtEvJptk2NpssSVYoS/+DFw+KePX/ePPfmLZ70NYHA4/3ZpiZF8ScaeO6305ubX1jcyu/XdjZ3ds/KB4etbRMFKFNIrlUnQBrypmgTcMMp51YURwFnLaD8e3Mbz9RpZkUD2YSUz/CQ8FCRrCxUqvc6JPrcr9YcivuHGiVeBkpQYZGv/jVG0iSRFQYwrHWXc+NjZ9iZRjhdFroJZrGmIzxkHYtFTii2k/n107RmVUGKJTKljBorv6eSHGk9SQKbGeEzUgvezPxP6+bmPDKT5mIE0MFWSwKE46MRLPX0YApSgyfWIKJYvZWREZYYWJsQAUbgrf88ippVSveRaV2Xy3Vb7I48nACp3AOHlxCHe6gAU0g8AjP8ApvjnRenHfnY9Gac7KZY/gD5/MHVA+OUg==</latexit>

Pc :

<latexit sha1_base64="pKGqkG+Ee+/Pu5z4VEOzKzacwAI=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CbaCp7JbqIqnohePFewHtEvJptk2NpssSVYoS/+DFw+KePX/ePPfmLZ70NYHA4/3ZpiZF8ScaeO6305ubX1jcyu/XdjZ3ds/KB4etbRMFKFNIrlUnQBrypmgTcMMp51YURwFnLaD8e3Mbz9RpZkUD2YSUz/CQ8FCRrCxUqvc6Kvrcr9YcivuHGiVeBkpQYZGv/jVG0iSRFQYwrHWXc+NjZ9iZRjhdFroJZrGmIzxkHYtFTii2k/n107RmVUGKJTKljBorv6eSHGk9SQKbGeEzUgvezPxP6+bmPDKT5mIE0MFWSwKE46MRLPX0YApSgyfWIKJYvZWREZYYWJsQAUbgrf88ippVSveRaV2Xy3Vb7I48nACp3AOHlxCHe6gAU0g8AjP8ApvjnRenHfnY9Gac7KZY/gD5/MHaumOYQ==</latexit>

Pr :
<latexit sha1_base64="43ZzfcZgHG1qSi2JlYIux15vylc=">AAAB73icbVDLSgNBEOz1GeMr6tHLYCJ4irsBH3gKevEYwTwgWcLsZDYZMzO7zswKYclPePGgiFd/x5t/4yTZgyYWNBRV3XR3BTFn2rjut7O0vLK6tp7byG9ube/sFvb2GzpKFKF1EvFItQKsKWeS1g0znLZiRbEIOG0Gw5uJ33yiSrNI3ptRTH2B+5KFjGBjpVap1hWnD1elbqHolt0p0CLxMlKEDLVu4avTi0giqDSEY63bnhsbP8XKMMLpON9JNI0xGeI+bVsqsaDaT6f3jtGxVXoojJQtadBU/T2RYqH1SAS2U2Az0PPeRPzPaycmvPRTJuPEUElmi8KEIxOhyfOoxxQlho8swUQxeysiA6wwMTaivA3Bm395kTQqZe+8fHZXKVavszhycAhHcAIeXEAVbqEGdSDA4Rle4c15dF6cd+dj1rrkZDMH8AfO5w+Y/Y8J</latexit>

Pm/j :

Figure 4. (a) shows a real-valued one-hot label, while (b,c) are CV_one-hot labels. K represents the
number of categories. P represents the probability of a random event in the real domain, while Pc

represents the probability of a random event in the complex domain. Pr and Pm represent the real
and imaginary parts of the random event in the complex domain.

2.5.2. Complex-Valued Cross-Entropy

To effectively train CV-CNNs, it is not sufficient to use CV_one-hot labels. A loss
function must also measure the difference between the model’s output and the label. RV-
CNNs use cross-entropy as their loss function, which calculates the difference between
two probability distributions. A high loss value indicates a significant difference between
the model’s output and the label, while a low value indicates a small difference. Similarly,
to train CV-CNNs, this paper proposes a loss function called CV_CrossEntropy, which
describes the difference between complex-valued outputs and CV_one-hot labels using the
following Equation:

CV_Loss = CrossEntropy(<(ŷ),<(y)) +
K−1

∑
k=0

CrossEntropy([<(ŷk),=(ŷk)], [<(yk),=(yk)])

= − 1
N

N

∑
i=1

( K−1

∑
k=0
<(yik)log<(ŷik) +

K−1

∑
k=0

(
<(yik)log<(ŷik) +=(yik)log=(ŷik)

))
(23)

In Equation (23), K represents the number of categories, while N represents the number
of samples in a mini-batch. In addition, y refers to the ground truth, whereas ŷ represents
the model’s predicted outcome. The initial segment of the loss function only applies to the
real part of the labels and the Pr of the outputs. The smaller the value of this part, the more
precise the classification outcome of the complex-valued model will be. The second part of
the loss function incorporates the labels, Pr, and Pm/j of the outputs. The smaller the value
of this part, the more stable the classification system will become.

2.6. Complex-Valued PolSAR Classification Algorithm

Algorithm 1 outlines the PolSAR classification process based on a complex-valued
approach proposed in this research. The first step involves constructing a complex-valued
convolutional classification network equipped with CVA_Max_Pooling and HReLU in the
model. Next, CV_one-hot labels are applied to the training set. Then, the model parameters
are updated through iterations using the CV_CrossEntropy loss. Lastly, the trained model
is utilized to classify the complete PolSAR dataset.
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Algorithm 1: Complex-valued convolutional classification algorithm for PolSAR
images

Preprocessing:
1. Construction of complex-valued models for PolSAR image classification with

CVA_Max_Pooling and HReLU
2. Assigning CV_one-hot labels to each pixel of the PolSAR dataset
3. Selection of training set from the PolSAR dataset
Input: a training set and corresponding labels, learning rate, batch size, and
momentum parameter
4. Repeat:
5. Calling CVA_Max_Pooling to obtain the most efficient features
6. Invoking HReLU to map the amplitude and phase of the feature to the
nonlinear domain

7. Calling CV_CrossEntropy to compute the loss during training
8. Updating model parameters with loss
9. Until: Meeting the conditions for termination
10. Inferring the class of the entire PolSAR image with the trained model
Output: Prediction of the testing set

3. Experimental Results

This section will start by providing a brief description of the three benchmark datasets.
Subsequently, the section delves into the specifics of the model inputs, the experimental
setup, and the evaluation metrics. Finally, the effectiveness of the proposed complex-valued
approach is demonstrated through a comparative analysis of classification model results
across the three PolSAR datasets.

3.1. PolSAR Dataset Description
3.1.1. Flevoland Dataset 1

On 16 August 1989, the NASA/JPL AIRSAR airborne platform collected a dataset from
the Flevoland area in the Netherlands. These data have a size of 750 × 1024,
and Figure 5a,b displays the RGB image and corresponding ground truth after Pauli
decomposition. The image contains 15 categories: stembeans, peas, forest, lucerne, wheat,
beet, potatoes, bare soil, grass, rapeseed, barley, wheat2, wheat3, water, and buildings.

Stembeans Peas Forest Lucerne Wheat
Beet Potaotes Bare soil Grass Rapeseed
Barley Wheat 2 Wheat 3 Water Buildings

(a) (b)

(c)

Potato Fruit Oats Beet Barley
Onions Wheat Beans Peas Maize
Flax Rapeseed Grass Lucerne

(d) (e)

(f)

(g) (h)

(i)
Open AreasWoodLandBuilt-up Areas

Figure 5. The ground truth and class legends of Flevoland Dataset 1, Flevoland Dataset 2, and
Oberpfaffenhofen Dataset. (a,d,g) are RGB images, (b,e,h) are the corresponding ground truth images
after Pauli decomposition, and (c,f,i) are class legends.
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3.1.2. Flevoland Dataset 2

In 1991, L-band ATRSAR data were collected in the Flevoland area, consisting of a
size of 1024× 1024. Figure 5d displays the RGB image, while Figure 5e shows the ground
truth after Pauli decomposition. The image consists of 14 categories: potato, fruit, oats,
beet, barley, onions, wheat, beans, peas, maize, flax, rapeseed, grass, and lucerne.

3.1.3. Oberpfaffenhofen Dataset

The German Aerospace Center (DLR) has provided the ESAR data for the Oberp-
faffenhofen area in Germany. The dataset is 1300× 1200, and the RGB image and the
corresponding ground truth after Pauli decomposition are displayed in Figure 5g,h. The
image depicts three categories: built-up, woodland, and open areas.

3.2. Parameterization

Before conducting experiments, it is crucial to establish the appropriate training. For
PolSAR image classification, several studies have explored the sampling rate and neural
network parameters for PolSAR image classification [20], which renders it unnecessary for
this paper to delve into those parameters. Instead, this paper will utilize them directly in
the experiments.

Training and testing sets for SCNN, DCNN, FCN, and SegNet needed to be created
using PolSAR images and labels. The inputs and outputs for these models were explained
in Section 2.1 and will not be repeated here. For the SCNN and DCNN, the input was a
12× 12 image patch containing a pixel to be classified. For FCN and SegNet, a sliding
window of 128× 128 with a sliding step of 15 generated training and testing sets on PolSAR
images and labels. Only labeled pixels in the input of FCN and SegNet were involved
in training, and unlabeled pixels could not be used to update model parameters. In all
experiments, the model was trained and validated using a ratio of 0.9/0.1 for pixels in the
training set.

PyTorch was employed for implementing all codes, and the Adam optimizer with
default parameters was utilized. All experiments were conducted on a single workstation
with an Intel Core i7-6700K CPU, 32G RAM, an NVIDIA TITAN X GPU, and an Ubuntu
20.04 LTS operating system.

3.3. Evaluation Metrics

When evaluating how well PolSAR images are classified, there are three common
metrics: overall accuracy (OA), average accuracy (AA), and Kappa coefficient. OA is the
ratio of correctly classified samples to the number of test samples. AA is the average
accuracy of classification for each category. The kappa coefficient is a metric that measures
the effectiveness of classification and consistency testing, especially when the number
of samples in different categories varies greatly. The larger these metrics, the better the
classification effect.

3.4. Model Parameters

The SCNN, DCNN, FCN, and SegNet parameters are listed in Tables 1–3, respectively.
For real-valued models, ReLU was used as the activation function, max pooling was used
as the pooling function, and cross-entropy was used as the loss function. For old complex-
valued models, CReLU was used as the activation function, max pooling was used as the
pooling function, and cross-entropy was used as the loss function. For new complex-valued
models, HReLU was used as the activation function, CVA_Max_Pooling was used as the
pooling function, and CV_CrossEntropy was used as the loss function. To ensure fairness
in the experiment, the number of parameters in the different models was kept as equal
as possible.
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Table 1. Detailed parameters of the RV-SCNN and CV-SCNN. K denotes the total number of categories.

Module Dimension Module Dimension

RV-SCNN

RV-Convolution 3× 3× 9× 8

CV-SCNN

CV-Convolution 3× 3× 6× 6
RV-Max-Pooling 2× 2 CVA_Max_Pooling 2× 2

ReLU HReLU

RV-Convolution 3× 3× 8× 22 CV-Convolution 3× 3× 6× 12
RV-Max-Pooling 2× 2 CVA_Max_Pooling 2× 2

ReLU HReLU

RV-Average-
Pooling

CV-Average-
Pooling

RV-Fully-
Connection 22× 180 CV-Fully-

Connection 12× 128

RV-Fully-
Connection 180× K CV-Fully-

Connection 128× K

RV-SCNN Params FLevoland 1: 9147; FLevoland 2: 8966; Oberpfaffenhofen: 6975

CV-SCNN Params FLevoland 1: 9214; FLevoland 2: 8956; Oberpfaffenhofen: 6118

Table 2. Detailed parameters of the RV-DCNN and CV-DCNN. K denotes the total number of categories.

Module Dimension Module Dimension

RV-DCNN

RV-Convolution 3× 3× 9× 18

CV-DCNN

CV-Convolution 3× 3× 6× 12
RV-Max-Pooling 2× 2 CVA_Max_Pooling 2× 2

ReLU HReLU

RV-Convolution 3× 3× 18× 36 CV-Convolution 3× 3× 12× 24
RV-Max-Pooling 2× 2 CVA_Max_Pooling 2× 2

ReLU HReLU

RV-Convolution 3× 3× 36× 72 CV-Convolution 3× 3× 24× 48
RV-Max-Pooling 2× 2 CVA_Max_Pooling 2× 2

ReLU HReLU

RV-Convolution 3× 3× 72× 144 CV-Convolution 3× 3× 48× 96
RV-Max-Pooling 2× 2 CVA_Max_Pooling 2× 2

ReLU HReLU

RV-Average-
Pooling

CV-Average-
Pooling

RV-Fully-
Connection 144× 312 CV-Fully-

Connection 96× 256

RV-Fully-
Connection 312× K CV-Fully-

Connection 256× K

RV-DCNN Params FLevoland 1: 174,405; FLevoland 2: 174,092; Oberpfaffenhofen: 170,649

CV-DCNN Params FLevoland 1: 168,254; FLevoland 2: 167,740; Oberpfaffenhofen: 162,086
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Table 3. Detailed parameters of the RV-(FCN, SegNet) and CV-(FCN, SegNet). K denotes the total
number of categories.

Module Dimension Module Dimension

RV-(FCN, SegNet)

RV-Convolution 3× 3× 9× 17

CV-(FCN, SegNet)

CV-Convolution 3× 3× 6× 12
RV-Max-Pooling 2× 2 CVA_Max_Pooling 2× 2

ReLU HReLU

RV-Convolution 3× 3× 17× 34 CV-Convolution 3× 3× 12× 24
RV-Max-Pooling 2× 2 CVA_Max_Pooling 2× 2

ReLU HReLU

RV-Convolution 3× 3× 34× 68 CV-Convolution 3× 3× 24× 48
RV-Max-Pooling 2× 2 CVA_Max_Pooling 2× 2

ReLU HReLU

RV-Convolution 3× 3× 68× 132 CV-Convolution 3× 3× 48× 96
RV-Max-Pooling 2× 2 CVA_Max_Pooling 2× 2

ReLU HReLU

Up-sampling 2× 2 Up-sampling 2× 2
RV-Convolution 3× 3× 132× 68 CV-Convolution 3× 3× 96× 48

ReLU HReLU

Up-sampling 2× 2 Up-sampling 2× 2
RV-Convolution 3× 3× 68× 34 CV-Convolution 3× 3× 48× 24

ReLU HReLU

Up-sampling 2× 2 Up-sampling 2× 2
RV-Convolution 3× 3× 34× 17 CV-Convolution 3× 3× 24× 12

ReLU HReLU

Up-sampling 2× 2 Up-sampling 2× 2
RV-Convolution 3× 3× 17× 9 CV-Convolution 3× 3× 12× 6

ReLU HReLU

Up-sampling 2× 2 Up-sampling 2× 2
RV-Convolution 3× 3× 9× K CV-Convolution 3× 3× 6× K

RV-(FCN, SegNet)
Params FLevoland 1: 218,345; FLevoland 2: 218,262; Oberpfaffenhofen: 217,349

CV-(FCN, SegNet)
Params FLevoland 1: 223,080; FLevoland 2: 222,968; Oberpfaffenhofen: 221,736

3.5. Analysis of Experimental Results
3.5.1. Flevoland Dataset 1 Results

In order to enhance the robustness assessment of the proposed methods, cross-
validation was employed to acquire the classification results. Five percent of the labeled
samples from each of the 15 dataset categories were randomly selected as the training set,
while the remaining samples constituted the testing set. The final result, as depicted in
Figure 6 and Table 4, represents the average of ten classification outcomes.

It is evident from the quantitative results that the real-valued version of any classifica-
tion model has the poorest classification results, while the new complex-valued approach
has the best results. This demonstrates the effectiveness of the new complex-valued ap-
proach. The complex-valued approach preserves the phase features of the input, thus
extracting and retaining more effective features. Moreover, CVA_Max_Pooling preserves
the most discriminative features, while HReLU provides sufficient nonlinearity and sparsity.
Finally, CV_CrossEntropy enhances the efficiency of feature utilization, leading to the best
classification results.
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(a) RV-SCNN (b) old CV-SCNN (c) new CV-SCNN

(d) RV-DCNN (e) old CV-DCNN (f) new CV-DCNN

(g) RV-FCN (h) old CV-FCN (i) new CV-FCN

(j) RV-SegNet (k) old CV-SegNet (l) new CV-SegNet

Figure 6. Classification results of Flevoland Dataset 1 with different methods. The classification
results of RV-SCNN, RV-DCNN, RV-FCN, and RV-SegNet are represented by (a,d,g,j), respectively,
while the results of old CV-SCNN, old CV-DCNN, old CV-FCN, and old CV-SegNet are shown
by (b,e,h,k). The classification results of new CV-SCNN, new CV-DCNN, new CV-FCN, and new
CV-SegNet are represented by (c,f,i,l).

After analyzing the effects of four classification models, it was observed that SegNet
performs the best in achieving classification results under the same version, while SCNN
has the poorest classification results, and the encoder–decoder model outperforms the
CNN model. The new CV-SCNN, new CV-DCNN, new CV-FCN, and new CV-SegNet have
shown an improvement of 4.01%, 4.46%, 3.46%, and 0.45%, respectively, over RV-SCNN,
RV-DCNN, RV-FCN, and RV-SegNet. The results indicate that the complex-valued method
has a significant improvement effect on CNNs with fewer parameters. This is because
the classification results of FCN and SegNet are already satisfactory, and improving them
significantly using the complex-valued method is challenging. Therefore, if only CNNs
can be selected for PolSAR image classification due to machine performance constraints,
the new CV-CNN model would be the best choice. Otherwise, the new CV-SegNet would
provide optimal classification results. Figure 6l highlights that the new CV-SegNet’s results
are almost identical to the ground truth.
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Table 4. Overall accuracy (%), average accuracy (%), and Kappa coefficient of all competing methods
on the Flevoland Dataset 1. The bolded values represent the highest values among three versions of a
model (RV-, old CV-, new CV-).

RV-
SCNN

Old
CV-

SCNN

New
CV-

SCNN

RV-
DCNN

Old
CV-

DCNN

New
CV-

DCNN

RV-
FCN

Old
CV-

FCN

New
CV-

FCN

RV-
SegNet

Old
CV-

SegNet

New
CV-

SegNet

Stembeans 99.85 99.95 99.33 99.48 99.67 99.62 99.72 99.84 99.92 99.95 99.98 100.00
Peas 95.71 99.57 99.58 95.06 99.14 99.96 97.56 99.70 98.72 98.94 98.76 99.31

Forest 98.73 99.65 97.12 98.11 99.46 99.52 98.65 98.70 100.00 99.26 99.48 99.92
Lucerne 98.04 99.91 96.24 96.39 96.89 96.47 88.26 99.88 99.93 98.23 99.95 99.88
Wheat 97.44 97.91 94.21 93.54 98.89 95.35 99.81 98.35 99.80 99.95 100.00 100.00
Beet 98.38 98.60 98.52 97.84 93.64 99.79 96.16 94.78 98.92 99.70 99.20 99.43

Potaotes 97.74 96.76 97.57 99.44 95.02 99.35 94.47 99.80 98.54 99.25 99.27 99.88
Bare
soil 99.97 94.41 93.01 100.00 74.27 98.31 87.69 92.76 95.58 100.00 99.94 100.00

Grass 94.51 92.10 92.79 96.47 95.58 98.68 98.69 77.51 99.89 99.86 99.79 100.00
Rapeseed 72.03 69.68 98.72 71.44 94.12 90.59 97.48 96.42 99.35 99.53 99.92 99.91
Barley 66.85 45.26 96.79 78.30 99.46 96.95 77.71 99.58 96.03 96.80 99.83 99.64
Wheat2 95.52 99.61 88.63 97.57 97.55 99.75 98.97 95.80 98.80 100.00 100.00 99.92
Wheat3 99.92 99.45 97.94 99.90 98.22 99.97 99.66 99.65 99.97 99.97 99.35 99.92
Water 77.20 99.77 99.07 87.54 96.99 99.98 86.69 93.92 95.71 98.66 98.81 99.46

Buildings 98.74 96.22 93.49 83.82 83.82 98.53 85.08 96.64 82.98 85.50 84.03 82.77
OA 92.65 93.81 96.66 93.67 96.79 98.13 95.40 97.10 98.86 99.31 99.49 99.76
AA 92.71 92.59 96.20 92.99 94.85 98.19 93.77 96.22 97.61 98.37 98.55 98.67

Kappa 0.9186 0.9315 0.9634 0.9300 0.9648 0.9795 0.9493 0.9682 0.9875 0.9925 0.9944 0.9974

3.5.2. Flevoland Dataset 2 Results

In order to enhance the robustness assessment of the proposed methods, cross-
validation was employed to acquire the classification results. Five percent of the labeled
samples from each of the 14 dataset categories were randomly selected as the training set,
while the remaining samples constituted the testing set. The final result, as depicted in
Figure 7 and Table 5, represents the average of ten classification outcomes.

According to Table 5, FCN and SegNet can extract more contextual information,
resulting in excellent classification results for (RV-, old CV-, new CV-) FCN and SegNet.
Although the new CV-FCN and new CV-SegNet perform the best in classification, the
improvement is not very noticeable. In comparison, new CV-SCNN and new CV-DCNN
show a significant improvement in their classification results compared to RV-SCNN and
RV-DCNN. It is worth noting that RV-SCNN and RV-DCNN only achieve 0.09% and 11.18%
accuracy, respectively, for the category of beans, while old CV-SCNN and old CV-DCNN
only achieve 13.29% and 17.89% accuracy for the onions category. In contrast, the new
CV-SCNN and new CV-DCNN show a more balanced performance in these two categories,
with no extremely low accuracy. The new CV-SCNN has a classification accuracy of 82.16%
and 60% for beans and onions, respectively, while the new CV-DCNN has a classification
accuracy of 98.63% and 76.24% for beans and onions, respectively.

From Figure 5e, it is apparent that both beans and onions fall under categories with a
limited number of samples. The RV-CNNs and old CV-CNNs have struggled to extract the
features of these categories during training. This is because the inputs of these categories
have only a few complex-valued features hidden in them. RV-CNNs ignore this part of the
features from the input, while old CV-CNNs destroy it during the computation process.
However, the new CV-CNNs are designed to retain this part of the features as much as
possible during computation. Hence, they can accurately recognize beans and onions.
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(a) RV-SCNN (b) old CV-SCNN (c) new CV-SCNN

(d) RV-DCNN (e) old CV-DCNN (f) new CV-DCNN

(g) RV-FCN (h) old CV-FCN (i) new CV-FCN

(j) RV-SegNet (k) old CV-SegNet (l) new CV-SegNet

Figure 7. Classification results of Flevoland Dataset 2 with different methods. The classification
results of RV-SCNN, RV-DCNN, RV-FCN, and RV-SegNet are represented by (a,d,g,j), respectively,
while the results of old CV-SCNN, old CV-DCNN, old CV-FCN, and old CV-SegNet are shown
by (b,e,h,k). The classification results of new CV-SCNN, new CV-DCNN, new CV-FCN, and new
CV-SegNet are represented by (c,f,i,l).
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Table 5. Overall accuracy (%), average accuracy (%), and Kappa coefficient of all competing methods
on the Flevoland Dataset 2. The bolded values represent the highest values among three versions of a
model (RV-, old CV-, new CV-).

RV-
SCNN

Old
CV-

SCNN

New
CV-

SCNN

RV-
DCNN

Old
CV-

DCNN

New
CV-

DCNN

RV-
FCN

Old
CV-

FCN

New
CV-

FCN

RV-
SegNet

Old
CV-

SegNet

New
CV-

SegNet

Potato 99.48 99.50 99.98 99.90 99.80 99.86 98.72 97.72 99.97 99.63 99.46 99.94
Fruit 100.00 99.70 99.77 99.66 99.66 99.93 98.23 99.98 99.70 96.97 90.03 98.51
Oats 93.62 94.98 95.62 96.41 92.32 96.41 99.93 100.00 100.00 100.00 99.93 99.78
Beet 94.20 99.06 98.87 92.75 98.54 98.87 94.82 95.21 97.71 94.14 95.41 99.92

Barley 93.59 99.60 99.74 96.26 99.09 99.99 98.60 98.92 99.98 98.32 99.98 99.98
Onions 52.77 13.29 60.00 77.75 17.89 76.24 100.00 98.08 98.73 97.18 96.71 99.39
Wheat 89.50 99.80 99.71 98.54 99.76 99.95 99.91 99.45 100.00 99.83 99.78 100.00
Beans 0.09 94.27 82.16 11.18 82.53 98.43 84.84 92.42 95.84 87.99 97.97 99.91
peas 99.72 97.69 97.22 99.91 99.95 99.44 99.95 100.00 100.00 100.00 100.00 100.00

Maize 89.61 89.15 91.86 96.28 81.16 74.11 94.42 98.99 100.00 92.56 97.75 94.42
Flax 98.72 97.74 99.28 97.23 99.95 99.98 99.95 100.00 100.00 98.63 99.98 100.00

Rapessed 97.62 99.42 99.55 99.29 99.27 99.95 99.27 99.58 99.97 99.99 99.87 99.99
Grass 85.94 82.30 95.15 97.84 95.20 99.62 97.88 98.72 99.74 100.00 100.00 99.95

Lucerne 87.94 92.48 98.88 98.17 88.79 99.80 99.93 100.00 99.97 100.00 100.00 100.00
OA 93.31 97.22 98.57 96.95 97.39 99.17 98.66 98.72 99.73 98.78 99.06 99.86
AA 84.49 89.93 94.13 90.08 89.56 95.90 97.60 98.50 99.40 97.52 98.35 99.41

Kappa 0.9190 0.9668 0.9830 0.9638 0.9689 0.9902 0.9841 0.9849 0.9968 0.9856 0.9889 0.9984

3.5.3. Oberpfaffenhofen Dataset Results

In order to enhance the robustness assessment of the proposed methods, cross-
validation was employed to acquire the classification results. Only one percent of the
labeled samples from each of the three dataset categories were randomly selected as the
training set, while the remaining samples constituted the testing set. The final result, as
depicted in Figure 8 and Table 6, represents the average of ten classification outcomes.

Table 6 shows that all models can accurately classify woodland and open areas with
classification accuracies above 96%. However, Figure 8a–f shows that CNNs sometimes
confuse built-up areas with woodland. Nonetheless, according to Table 6, the classification
accuracy of the new CV-SCNN for built-up areas is higher than that of RV-SCNN and
old CV-SCNN by 12.6% and 5.14%, respectively. Additionally, the new CV-DCNN has
a classification accuracy for built-up areas that is 10.45% and 7% higher than that of
RV-DCNN and old CV-DCNN, respectively. These results suggest that the new complex-
valued approach significantly improves the classification accuracy of the more challenging
categories.

Table 6. Overall accuracy (%), average accuracy (%), and Kappa coefficient of all competing methods
on the Oberpfaffenhofen Dataset. The bolded values represent the highest values among three
versions of a model (RV-, old CV-, new CV-).

RV-
SCNN

Old
CV-

SCNN

New
CV-

SCNN

RV-
DCNN

Old
CV-

DCNN

New
CV-

DCNN

RV-
FCN

Old
CV-

FCN

New
CV-

FCN

RV-
SegNet

Old
CV-

SegNet

New
CV-

SegNet

Built-up areas 79.90 87.36 92.50 79.38 82.83 89.83 98.55 97.22 99.46 96.45 96.24 98.96
Wood land 97.36 98.27 98.65 98.74 99.11 99.44 99.69 99.30 99.31 98.74 99.59 99.20
Open areas 96.21 96.07 96.12 98.71 99.30 99.78 97.46 99.05 99.11 98.68 99.04 99.51

OA 92.35 94.31 95.69 93.88 95.14 97.22 98.15 98.64 99.23 98.13 98.45 99.31
AA 91.16 93.90 95.76 92.28 93.75 96.35 98.57 98.52 99.29 97.96 98.29 99.22

Kappa 0.8512 0.8941 0.9221 0.8831 0.9094 0.9501 0.9679 0.9763 0.9868 0.9673 0.9729 0.9882
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(a) RV-SCNN (b) old CV-SCNN (c) new CV-SCNN

(d) RV-DCNN (e) old CV-DCNN (f) new CV-DCNN

(g) RV-FCN (h) old CV-FCN (i) new CV-FCN

(j) RV-SegNet (k) old CV-SegNet (l) new CV-SegNet

Figure 8. Classification results of Oberpfaffenhofen Dataset with different methods. The classification
results of RV-SCNN, RV-DCNN, RV-FCN, and RV-SegNet are represented by (a,d,g,j), respectively,
while the results of old CV-SCNN, old CV-DCNN, old CV-FCN, and old CV-SegNet are shown
by (b,e,h,k). The classification results of new CV-SCNN, new CV-DCNN, new CV-FCN, and new
CV-SegNet are represented by (c,f,i,l).
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In summary, it is recommended to use SegNet instead of CNNs to enhance the accuracy
of PolSAR image classification without any restrictions on the model size. Although the new
CV-SegNet offers better classification outcomes than RV-SegNet, the accuracy improvement
is limited. When the model size is limited, the optimal choice is the new CV-CNNs, which
can accurately distinguish difficult entries and significantly improve the classification
accuracy of small sample categories, thus leading to an overall enhancement in accuracy.

3.5.4. Computational Complexity of CNN

From Figure 9a,b, Tables 1 and 2, it is evident that when the number of convolutional
layers in CV-CNN and RV-CNN is the same and the difference in the number of parameters
is not substantial, CV-CNN has fewer convolutional kernels in each layer, yet achieves
higher classification accuracy. This indicates that, despite extracting fewer feature maps,
the new CV-CNN consistently delivers superior classification results.

(b) Params of different models(a) OAs of different models

(c) FLOPs of different models

Figure 9. (a–c) illustrate the overall accuracy, number of parameters, and FLOPs (floating-point
operations per second) for SCNN and DCNN on the Flevoland Dataset 1, respectively. The blue color
represents the real-valued version, the red color corresponds to the old complex-valued version, and
the green color indicates the new complex-valued version.

Figure 9b,c illustrates that the FLOPs of CV-CNN are significantly larger than those of
RV-CNN when they share the same number of convolutional layers and the difference in the
number of parameters is not substantial. This discrepancy arises because complex-valued
operations can only be approximated by multiple real-valued operations in the PyTorch
environment, as depicted in Formulas (1) and (2). For instance, a complex-valued addition
operation necessitates two real-valued addition operations, while a complex multiplication
operation requires four real-valued multiplication operations and two real-valued addi-
tion operations. It is expected that with advancements in complex-valued deep learning
techniques, particularly in polarized coordinates, where a real-valued multiplication oper-
ation and a real-valued addition operation can replace a complex-valued multiplication
operation, this limitation will be mitigated.

Comparing the old CV-CNN and new CV-CNN with the same number of parameters
and FLOPs, the new CV-CNN consistently outperforms the old CV-CNN, achieving better
classification results. For the Flevoland Dataset 1, the new CV-SCNN yields a 2.99% higher
accuracy than RV-DCNN and is only 0.1% lower than the old CV-DCNN. For the Flevoland
Dataset 2, the new CV-SCNN achieves results 2% higher than RV-DCNN and 1% higher
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than the old CV-DCNN. In essence, under the condition of meeting accuracy requirements,
the new CV-SCNN can effectively replace RV-DCNN and the old CV-DCNN. Moreover,
the new CV-SCNN boasts approximately half the parameters compared to RV-DCNN and
old CV-DCNN, with FLOPs being roughly half of RV-DCNN and about one-third of old
CV-DCNN. This trend holds for the Oberpfaffenhofen Dataset as well.

4. Discussion

Three ablation experiments were conducted to validate the performance of vari-
ous aspects of the new CV-DL models, specifically CVA_Max_Pooling, HReLU, and
CV_CrossEntropy. The SCNN classification model was chosen and validated on three
different datasets.

4.1. Ablation Experiment 1: Performance of CVA_Max_Pooling

One of the new components in CV-DL models is CVA_Max_Pooling. This component
is important because it helps to retain the most important features in the feature map and
passes them on to the next convolution layer. This increases the feature utilization efficiency
and reduces the computation required. To test the impact of CVA_Max_Pooling on the
experimental results, complex-valued classification models were created using both real-
valued max pooling and average pooling. These models operate on the real and imaginary
parts of the feature map separately. Table 7 shows the results of our experiments, with
RMP-CV-SCNN and RAP-CV-SCNN denoting the models using real-valued max pooling
and average pooling, respectively.

Table 7. Overall accuracy (%), average accuracy (%), and Kappa coefficient of the different poolings.

Dataset Methods OA AA Kappa

Flevoland Dataset 1
RMP-CV-SCNN 95.65 95.17 0.9522
RAP-CV-SCNN 94.10 93.64 0.9349
new CV-SCNN 96.66 96.20 0.9634

Flevoland Dataset 2
RMP-CV-SCNN 97.94 93.56 0.9756
RAP-CV-SCNN 96.71 92.30 0.9609
new CV-SCNN 98.57 94.13 0.9830

Oberpfaffenhofen Dataset
RMP-CV-SCNN 94.78 94.90 0.9043
RAP-CV-SCNN 94.63 94.64 0.9014
new CV-SCNN 95.69 95.76 0.9221

Table 7 shows that the new CV-SCNN achieved the best classification results on all
three datasets, followed by RMP-CV-SCNN, while RAP-CV-SCNN obtained the worst
outcome. Notably, CVA_Max_Pooling is superior to max pooling, as it not only retains the
most significant features but also avoids generating “fake” features. Max pooling tends to
generate “fake” features by operating on the real and imaginary parts of the feature map
separately, resulting in two unrelated features being combined. Although average pooling
works on the real and imaginary parts separately, it is a form of complex-valued average
pooling. While it does not generate “fake” features, it significantly reduces the weight of
the most important features by confusing them with the unimportant ones.

4.2. Ablation Experiment 2: Performance of HReLU

HReLU functions as a complex-domain ReLU by discarding half of the features
nonlinearly. To assess its effects on experimental results, complex-valued classification
models were created using ModReLU, ZreLU, and CReLU, referred to as Mod-CV-SCNN,
ZReLU-CV-SCNN, and CReLU-CV-SCNN, respectively. The outcomes of these experi-
ments can be found in Table 8.



Remote Sens. 2023, 15, 4801 23 of 27

Table 8. Overall accuracy (%), average accuracy (%), and Kappa coefficient of the different activations.

Dataset Methods OA AA Kappa

Flevoland Dataset 1

CReLU-CV-SCNN 95.95 95.49 0.9554
ZReLU-CV-SCNN 95.45 95.00 0.9499

Mod-CV-SCNN 95.53 95.03 0.9508
new CV-SCNN 96.66 96.20 0.9634

Flevoland Dataset 2

CReLU-CV-SCNN 98.05 93.67 0.9769
ZReLU-CV-SCNN 97.84 93.42 0.9744

Mod-CV-SCNN 97.68 93.25 0.9725
new CV-SCNN 98.57 94.13 0.9830

Oberpfaffenhofen Dataset

CReLU-CV-SCNN 94.97 95.00 0.9082
ZReLU-CV-SCNN 94.79 94.82 0.9046

Mod-CV-SCNN 93.77 93.67 0.8844
new CV-SCNN 95.69 95.76 0.9221

Based on the data presented in Table 8, it is clear that new CV-SCNN outperforms
the other models on all three datasets. Additionally, CReLU-CV-SCNN yields better
results than ZReLU-CV-SCNN and Mod-CV-SCNN, despite both containing ReLU in their
names. However, as explained in Section 2.3, only HReLU produces ReLU-like sparsity
and nonlinearity. CReLU is slightly less effective due to a lack of sparsity, while ZReLU
underperforms because too many features are dropped, and ModReLU produces the worst
results due to its inadequate nonlinearity.

4.3. Ablation Experiment 3: Performance of CV_CrossEntropy

When training deep learning models, the loss function is crucial in driving the model
outputs closer to the ground truth and helping the model learn the best classification
patterns. For complex domain classification tasks, the CV_CrossEntropy loss function is
commonly used in conjunction with complex-valued probabilities to continuously improve
the model’s accuracy and stability during training. Two common methods for combining
cross-entropy and CV-CNN are: (i) calculating cross-entropy loss using only the output’s
real part and (ii) calculating cross-entropy loss using the real and imaginary parts of the
output separately and then summing them up as the final loss. However, the second
approach contains a logical error that arises when the model outputs different classification
results using real and imaginary parts, leading to confusion.

To assess the influence of CV_CrossEntropy on the experimental outcomes, a complex-
valued classification model was developed to utilize real-valued cross-entropy ((i) calcu-
lating cross-entropy loss using only the output’s real part), called RCE-CV-SCNN. The
findings of the experiment are presented in Table 9.

Table 9. Overall accuracy (%), average accuracy (%), and Kappa coefficient of the different loss functions.

Dataset Methods OA AA Kappa

Flevoland Dataset 1 RCE-CV-SCNN 96.00 95.55 0.9560
new CV-SCNN 96.66 96.20 0.9634

Flevoland Dataset 2 RCE-CV-SCNN 98.20 93.72 0.9787
new CV-SCNN 98.57 94.13 0.9830

Oberpfaffenhofen Dataset RCE-CV-SCNN 95.02 95.16 0.9089
new CV-SCNN 95.69 95.76 0.9221
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According to Table 9, CV-SCNN performs better than RCE-CV-SCNN in all three
experiments. This is because CV-SCNN produces complex-valued output, while RCE-CV-
SCNN can only calculate the loss using the real part of the output. This results in the loss
of half of the information flow. Additionally, the constraints imposed on the model by
CV_CrossEntropy are stronger than RV_CrossEntropy, which helps the model learn more
accurate classification patterns.

Figure 10 illustrates the training progression of the new CV-SCNN and RCE-CV-
SCNN models on Flevoland Dataset 1. Despite the heightened computational complex-
ity and the imposition of more stringent constraints associated with the computation of
CV_CrossEntropy, the convergence rate of the models remains unimpeded. Over successive
epochs, the new CV-SCNN exhibits a gradual improvement in accuracy over RCE-CV-
SCNN. It is pertinent to note that even though the new CV-SCNN consistently manifests
higher loss values compared to RCE-CV-SCNN during the convergence phase, this discrep-
ancy arises from the augmented computational elements within CV_CrossEntropy and
does not detrimentally impact the overall model performance.

(a) OA curves
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Figure 10. (a,b) each represent the variation curves of overall accuracy and loss function during the
training process for RCE-CV-SCNN and new CV-SCNN.

4.4. Comparison with State-of-the-Art Algorithms

This study also conducted a comparison on Flevoland Dataset 1, evaluating the new
CV-SegNet against the state-of-the-art algorithms, with results presented in Table 10. The
findings reveal that the new CV-SegNet achieves the highest classification performance.
However, it is worth noting that such comparisons may lack full rigor due to the diverse
research objectives associated with each algorithm. Consequently, they employ inputs of
varying sizes and training datasets with different sampling rates, all of which can influence
the final outcomes. For example, RCV-CNN excels in achieving superior accuracy when
confronted with limited annotated data, a proficiency that may not confer significant
advantages when dealing with relatively large training datasets. The method proposed in
this paper is not an independent model but rather an approach aimed at enhancing deep
learning models, including CNNs, FCNs, and SegNets. The resulting improved models
can lead to performance enhancements or reductions in parameter complexity.
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Table 10. Overall accuracy (%), average accuracy (%), and Kappa coefficient of the state-of-the-art
algorithms on the Flevoland Dataset 1. The bolded values represent the highest values among all models.

RCV-
CNN [49]

CV-
Contourlet-
CNN [36]

SF-
CNN [50]

AMSE-
LSTM [51] CV-ConvLSTM [42] New CV-SegNet

Stembeans 98.61 99.81 - 97.16 94.24 100.00
Peas 98.56 99.86 99.62 97.62 99.97 99.31

Forest 97.81 98.98 - 98.43 99.17 99.92
Lucerne 98.22 99.55 99.93 97.54 98.56 99.88
Wheat 94.50 99.59 99.46 98.82 97.56 100.00
Beet 94.14 99.25 99.22 94.71 99.07 99.43

Potaotes 98.90 99.18 99.50 96.40 98.49 99.88
Bare soil 98.05 100.00 99.72 99.43 99.67 100.00

Grass 89.17 99.85 - 98.06 96.73 100.00
Rapeseed 97.07 99.00 99.88 96.03 97.68 99.91

Barley 98.20 99.77 99.50 99.72 100.00 99.64
Wheat2 97.28 99.43 - 98.50 99.88 99.92
Wheat3 98.56 99.39 - 99.22 98.32 99.92
Water 99.89 99.58 - 99.81 99.68 99.46

Buildings 80.88 99.26 - 84.90 79.41 82.77
OA 97.22 99.42 99.58 97.09 98.58 99.76
AA - 99.50 99.61 - 97.32 98.67

Kappa 0.8930 0.9902 0.9950 0.9683 0.9845 0.9974

5. Conclusions

This paper introduced a new method for enhancing deep learning models utilized
in PolSAR image classification. The method involves CVA_Max_Pooling, HReLU, and
CV_CrossEntropy. CVA_Max_Pooling decreases the computational work and extracts the
most important features. HReLU changes the model into a nonlinear sparse model, while
CV_CrossEntropy provides a loss computation method for complex-domain classification
tasks. The proposed complex-valued deep learning method was applied to improve four
PolSAR classification models: SCNN, DCNN, FCN, and SegNet. The models were then
validated on three public PolSAR datasets. The experimental results reveal that the method
proposed in this paper outperforms the old complex-valued model and is much better than
the real-valued model despite having comparable parameters.

In order to continue this work in the future, the following ideas could be explored:
(1) While the experiments have shown that the new complex-valued method can signifi-
cantly improve the performance of shallow CNNs, it is important to note that the inference
process of CNNs can be quite time-consuming. On the other hand, FCNs are effective at
fast inference but require many model parameters and computation. Therefore, it would be
worthwhile to explore the possibility of combining the new complex-valued method with
shallow FCNs to improve classification accuracy and reduce inference time simultaneously;
(2) The experiments have also demonstrated that the new complex-valued method is suit-
able for learning with small samples. Further research could be conducted to reduce the
sampling rate by utilizing the new complex-valued method.
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