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Abstract: Landscape ecological risk is considered the basis for regional ecosystem management
decisions. Thus, it is essential to understand the spatial and temporal evolutionary patterns and
drivers of landscape ecological risk. However, existing studies lack exploration of the long-term time
series and driving mechanisms of landscape ecological risk. Based on multi-type remote sensing data,
this study assesses landscape pattern changes and ecological risk in the Three Gorges Reservoir Area
from 1990 to 2020 and ranks the driving factors using a geographical detector. We then introduce
the geographically weighted regression model to explore the local spatial contributions of driving
factors. Our results show: (1) From 1990 to 2020, the agricultural land decreased, while forest and
construction land expanded in the Three Gorges Reservoir Area. The overall landscape pattern shifted
toward aggregation. (2) The landscape ecological risk exhibited a decreasing trend. The areas with
relatively high landscape ecological risk were primarily concentrated in the main urban area in the
western region of the Three Gorges Reservoir Area and along the Yangtze River, with apparent spatial
aggregation. (3) Social and natural factors affected landscape ecological risk. The main driving factors
were human interference, annual average temperature, population density, and annual precipitation;
interactions occurred between the drivers. (4) The influence of driving factors on landscape ecological
risk showed spatial heterogeneity. Spatially, the influence of social factors (human interference and
population density) on landscape ecological risk was primarily positively correlated. Meanwhile,
the natural factors’ (annual average temperature and annual precipitation) influence on landscape
ecological risk varied widely in spatial distribution, and the driving mechanisms were more complex.
This study provides a scientific basis and reference for landscape ecological risk management, land
use policy formulation, and optimization of ecological security patterns.

Keywords: land use; landscape pattern; ecological assessment; driving factor; spatial heterogeneity

1. Introduction

With the continuous increase in human activities and the frequent occurrence of ex-
treme global climate issues [1,2], the landscape pattern has changed significantly [3,4],
leading to a series of new ecological and environmental challenges, including the expan-
sion of construction land and increased pollution risk [5]. These issues have intensified
the conflict between urbanization development and environmental protection, seriously
threatening human well-being and the sustainable development of human–Earth ecosys-
tems [6–9]. Landscape ecological risk refers to the possible adverse consequences of the
interaction between landscape patterns and ecological processes under the influence of
natural or human factors [5,10], an essential subfield of ecological risk under the perspective
of spatial patterns [11]. Hence, accurately identifying, assessing, and characterizing the
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spatiotemporal dynamics of landscape ecological risks and their drivers can direct the
construction of regional ecological security patterns.

The risk assessment of landscape ecology is often based on remote sensing data and
can be divided into two assessment methods based on risk sources and sinks and landscape
patterns. Compared with the former, the latter, in part, breaks away from the inherent
“risk source identification—receptor analysis—exposure and hazard assessment” mode
of traditional ecosystem assessment and directly evaluates the risk of landscape ecology
based on spatial patterns [12]. In particular, a quantitative method of landscape ecological
risk has been proposed based on “loss and probability multiplication.” This method relies
on the product of landscape disturbance and vulnerability to estimate potential ecological
loss [13], which is then combined with risk probability to calculate the specific risk value
of the area [14–16]. To date, many regional studies involving cities [17], mining areas [10],
watersheds [3], habitats [18], and islands [19] have adopted this method. However, most
have focused on the ecological risk associated with rapid urbanization, while few studies
have explored the differences in long-term time series. Clarifying this issue may provide
insights to decision-makers regarding the changing risk trends in different development
contexts and provide a basis for risk management.

Decision-makers have long sought effective management strategies for ecological
risks. Accordingly, in addition to exploring the spatiotemporal variability of landscape
ecological risks, further work is needed to identify the main drivers and evaluate the spatial
heterogeneity of driving mechanisms. This has important practical significance for decision-
makers to develop risk mitigation strategies and effectively allocate resources. Currently,
the methods for exploring landscape ecological risk drivers mainly include the Pearson
correlation analysis [20], grey relational analysis [21], and boosted regression tree [22].
However, these methods may ignore the spatial heterogeneity of drivers’ contributions.
Recently, a geographical detector has been employed to explore the relationship between
landscape ecological risks and their drivers [4,23,24]. This method can better detect spatial
heterogeneity between variables, determine the influencing factors, and explain their
interactions [25]. However, the geographical detector lacks local spatial expression of
correlations between variables. Hence, the geographically weighted regression (GWR)
model, a local modeling method, has been applied to analyze spatial relationships in
ecological processes [26]. Therefore, this study innovatively introduces the GWR model
and its centroid transfer process to explore the interrelationships between the variables,
thus providing additional spatial details regarding the contributions of driving factors
while also delving deeper into the driving mechanisms of landscape ecological risk change.
The proposed methodology will support decision-makers in achieving accurate ecological
risk management in local areas [27,28].

Having begun construction in 1994, the Yangtze Three Gorges Project (TGP) is the
largest hydropower project in the world, playing a significant role in flood control, power
generation, shipping, and water resource utilization. However, its construction has facili-
tated the implementation of other major projects, including water storage and migration in
the Three Gorges Reservoir Area (TGRA). This has led to the inundation of large amounts
of land, dramatic climate fluctuations, and significantly altered intensity of human activi-
ties. Moreover, considerable disturbance to the landscape pattern has occurred, resulting
in ecological and environmental issues within the TGRA [29–31]. Therefore, evaluating
the landscape ecological risk in the TGRA and exploring the causes of the risk have be-
come important scientific research issues. Unfortunately, few studies have explored the
landscape ecological risk of the TGRA under a long-term time series [32,33]. Moreover,
regarding quantitative analysis of drivers, many studies have focused on the ranking of
drivers [3,19,34,35], while few have explored the driving mechanisms of landscape ecologi-
cal risk. Therefore, to address the current dearth of data related to change regulations and
driving mechanisms of landscape ecological risk, this paper proposes a framework based
on multi-type remote sensing data, taking the TGRA as an example. The primary aims of
the study are to (1) explore the spatiotemporal characteristics of landscape pattern changes
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from 1990 to 2020; (2) evaluate the landscape ecological risk generated by landscape pattern
changes; (3) rank the driving factors of landscape ecological risk using the geographical
detector; (4) analyze local spatial contributions of drivers and the driving mechanisms
of landscape ecological risk using the GWR model. Collectively, this work extends the
exploration of the GWR model in terms of driving mechanisms and proposes theoretical
insights for the exploration of landscape ecological risk and drivers on a long-term time se-
ries to provide a reference for scientific planning of land use and preservation of ecological
balance in the TGRA.

2. Materials and Methods
2.1. Study Area

The TGRA (106◦20′–110◦30′E, 29◦00′–31◦50′N) refers to the 26 districts in China
inundated by the TGP (Figure 1), the construction of which began in 1994 and was
completed in 2006, with an area of 5.8 × 104 km2 [36]. The TGRA is located within the
Sichuan basin and the middle reaches of the Yangtze River in China. It has high topography
in the east and low topography in the west, with mountains and hills accounting for 74%
and 22% of the total area, respectively, representing a typical mountainous area. The TGRA
comprises primarily forests and agricultural land. Due to its topography, the TGRA has
more sloping agricultural land that is vulnerable to water and soil loss. The TGRA belongs
to the humid subtropical climate, with an average annual temperature of 10–14 ◦C in the
mountainous area and 17–19 ◦C in the valley region. The average annual precipitation
is 1000–1200 mm. Moreover, the TGRA has an uneven seasonal distribution, with the
precipitation from April to October accounting for >80% of the annual precipitation.
In addition, the peripheral mountains receive more precipitation than the river valleys.
The resettlement of immigrants, infrastructure construction, and the restructuring of the
agricultural and forestry industries resulting from the TGP construction caused dramatic
changes in its population and economic structure [31]. In 2020, the GDP of the TGRA
was 969.15 billion yuan, the population was 15.61 million, and the population density
was 269 people/km2, far beyond the national average [36]. Due to specific climatic and
geographical conditions as well as strong human interference, the region is affected by
frequent earthquakes, collapses, landslides, mudslides, and other disasters that severely
impact the ecological environment.

2.2. Data Sources and Descriptions

Data from 1990 to 2020, including land use type data, natural factors data, and social
factors data, were combined to assess changes in landscape ecological risk and explore the
spatially heterogeneous relationships between landscape ecological risk and its potential
drivers. The datasets were projected to the WGS-1984 coordinate system. Additionally
details regarding the multiple source data are provided in Table 1.

2.3. Research Methodology

This study was conducted based on the following three steps (Figure 2): (1) mea-
surement of landscape pattern, (2) assessment of landscape ecological risk to quantify the
consequences of landscape pattern changes, and (3) quantification of the landscape ecologi-
cal risk drivers in time and space. Each step is described in detail in the following sections.
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Table 1. Data description used in the study.

Data Type Data Description Data Format Data Source

Land use data Annual China land cover data Raster (30 m) Annual China Land Cover Dataset from Wuhan
University [37]

Natural factors data

Digital elevation model
(DEM) Raster (90 m)

China’s Geospatial Data Cloud
(https://www.gscloud.cn/ (accessed on

26 August 2023))

Annual average temperature
(TEM) Raster (1 km)

Resources and Environmental Sciences of the
Chinese Academy of Sciences

(https://www.resdc.cn/ (accessed on
26 August 2023))

Annual precipitation (PRE) Raster (1 km)

Resources and Environmental Sciences of the
Chinese Academy of Sciences

(https://www.resdc.cn/ (accessed on
26 August 2023))

Social factors data

Annual artificial night light
(NL) Raster (1 km)

National Tibetan Plateau Data
Center(http://data.tpdc.ac.cn/zh-hans/ (accessed

on 26 August 2023))

Population density (POP) Raster (1 km)

Resources and Environmental Sciences of the
Chinese Academy of Sciences

(https://www.resdc.cn/ (accessed on
26 August 2023))

https://www.gscloud.cn/
https://www.resdc.cn/
https://www.resdc.cn/
http://data.tpdc.ac.cn/zh-hans/
https://www.resdc.cn/
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2.3.1. Land Use Transfer Matrix

The land use transfer matrix includes data on various types of land area at a certain
time point in a given region with information on the transfer out and transfer in of various
land area types. This reflects the dynamic process of mutual transformation between
various types of land area at the beginning and end of a certain period in the region [38–40].
The formula is as follows:

Sij =


S11 S12 · · · S17
S21 S22 · · · S27
...

... · · ·
...

S71 S72 · · · S77

 (1)

where S is the land area in the study area, 7 is the number of land use types, and i and j are
the land type serial numbers at the beginning and end of the TGRA study, respectively.

2.3.2. Selection and Calculation of Landscape Indices

Landscape pattern indices comprise highly concentrated information on landscape
patterns, which are quantitative indices reflecting the landscape structural composition and
spatial configuration characteristics [41]. To determine the size, regularity, fragmentation,
and heterogeneity of the landscape, four major landscape index types were selected and
analyzed at the landscape and class levels to reflect the landscape pattern characteristics of
the TGRA [39,40]. The specific selected landscape indices are detailed in Table 2, and each
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calculation was run in FRAGSTATS 4.2. The formulas and descriptions of the indices are
detailed in Table S1.

Table 2. Selection of landscape indices.

Index Type Index Name Level of Analysis

Density class index
Patch Density (PD) Landscape/Class
Edge Density (ED) Landscape/Class

Percentage of Landscape (PLAND) Class

Shape class index Landscape Shape Index (LSI) Landscape/Class
Largest Patch Index (LPI) Landscape/Class

Dispersion class index
Proportion of Like Adjacencies (PLADJ) Landscape/Class

Aggregation Index (AI) Class
Contagion Index (CONTAG) landscape

Diversity index Shannon’s Diversity Index (SHDI) landscape

2.3.3. Quantification of Landscape Ecological Risk

The Landscape Ecological Risk Index (ERI) is used to establish the link between
landscape structure and regional ecological risk, which can quantify the ecological pressure
caused by changes in landscape patterns [5,19,42]. Meanwhile, using risk cells as assessment
units is an effective method to assess ERI [10,34]. In this study, the TGRA was divided into
4028 risk units with a 4 km × 4 km scale based on previous studies and the actual situation
in the TGRA [11,33]. The “loss and probability cumulative multiplication” paradigm was
used to construct the ERI. The formula for calculating ERI is as follows:

ERI = ∑n
i=1

Aki

Ak
Ri (2)

where ERI is the landscape ecological risk index of a risk cell, n is the number of land use
types, Ak is the total area of a risky cell, Aki

is the area of the land use type i in a risk cell,
and Ri is the landscape loss index of the land use type i. The calculation method of Ri is
shown in Table 3.

Table 3. Calculation of the landscape loss index (Ri).

Index Name Formula

Landscape fragmentation index Ci Ci = ni/Ai
ni: number of patches of landscape type i; Ai: Total area of landscape type i

Landscape separateness index Ni
Ni = li × A/Ai, li = 1

2

√
ni
A

li: distance index for landscape type i
A: total area of landscape

Landscape superiority index Di

Di =
Qi+MI

4 + Li
2

Qi: number of risk cells where patch i occurs/total risk cells
Mi: number of patches i/total number of patches;

Li: Area of patch i/total area of the risk cells

Landscape disturbance index Si Si = aCi + bNi + cDi
a + b + c = 1, assign values of 0.6, 0.3, and 0.1 respectively

Landscape Vulnerability Index Fi

Assigning vulnerability indices to different land use types (Bare land = 7;
Water body = 6; Agricultural land = 5; Grassland = 4; Shrub = 3; Forest = 2;

Construction land = 1).
The landscape vulnerability index obtained after normalization

Landscape loss index Ri Ri = Si × Fi

2.3.4. Spatial Autocorrelation Analysis

Spatial autocorrelation refers to the potential interdependence of geographic variables
within a distribution area; the closer the spatial location, the stronger the correlation. We
calculated Global Moran’s I to determine whether the landscape ecological risk exhibited
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statistical aggregation or dispersion; the significance of Moran’s I was assessed using z-
scores [34,35]. The hotspot analysis tool (based on G∗i ) was employed to spatially explore
the aggregation and clustering patterns of the high or low ERI values and reveal the
mechanism of spatial correlation among ERI [43,44]. The specific formulas are as follows:

Global Moran′s I =

[
∑n

i=1 ∑n
j 6=i Wij

(
Xi − X

)(
Xj − X

)](
S2∑n

i=1 ∑n
j 6=i Wij

) (3)

S2 =
1
n∑n

i=1

(
Xi − X

)2 (4)

Z =
I − E(I)√

VAR(I)
(5)

G∗i =
∑n

j=1 WijXj

∑n
j=1 Xj

(6)

where n is the number of samples, Wij is the spatial weight matrix, and Xi and Xj are
the attribute values of risk cells i and j, respectively. I > 0 indicates that the ERI exhibits
aggregation; I < 0 indicates that the ERI is dispersed; I = 0 indicates that the ERI is randomly
distributed in space. E(I) and VAR(I) are the mathematical expectation and variance of
Moran′s I, respectively. Z > 2.58 or Z < −2.58 indicates a significant spatial autocorrelation
in the ERI with 99% confidence. G∗i represents the aggregation index of patch i.

2.3.5. Standard Deviation Ellipse

The standard deviation ellipse can reflect the general outline and distribution direction of
spatial organization; an offset ellipse center reflects an offset trend in the spatial center [42,45].
Dynamic offset trajectory was used to assess the shift in the gravity center of the landscape
ecological risk and the influence of driving factors on landscape ecological risk. The
formulas are as follows:

tanθ =
∑n

i=1 ∆x2
i −∑n

i=1 ∆y2
i +

√(
∑n

i=1 ∆x2
i −∑n

i=1 ∆y2
i
)
+ 4(∑n

i=1 ∆xi∆yi)
2

2∑n
i=1 ∆xi∆yi

(7)

ϕx =

√
1
n

[
∑n

i=1(∆xicosθ − ∆yisinθ)2
]

(8)

ϕy =

√
1
n

[
∑n

i=1(∆yicosθ − ∆xisinθ)2
]

(9)

where ϕx and ϕy represent the standard deviation of the x-axis and y-axis, respectively, ∆xi
and ∆yi represent the deviation of the coordinate point of each point-like element from its
mean center respectively, θ represents the ellipse rotation angle, and n represents the total
number of risk cells.

2.3.6. Selection and Calculation of Driving Factors

Multicollinearity refers to the phenomenon that independent variables are highly
correlated with each other. When the variance inflation factor (VIF) is >7.5, the multi-
collinearity among the drivers is significant [28,46,47] and will cause the contribution of the
driver to be inaccurate. Therefore, per related studies [11,34,35], and considering the actual
situation of the TGRA, including the rugged topography [48], massive migration [31,49],
dramatic climate fluctuations [50,51], and significant land use changes [52,53], eight driving
factors were selected. Moreover, the VIF was calculated to avoid multicollinearity among
the driving factors. These factors included the following natural factors: DEM, TEM, PRE,
distance to water body (WD), and distance to construction land (CD), and the following
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social factors: NL, POP, and human interference (HI). The driving effects of landscape
ecological risk were then analyzed. Among them, WD and CD represent the distances of
each evaluation unit from a water body/construction land, respectively, which are raster
data with a 30 m resolution. We used the Euclidean Distance tool from ArcGIS to estimate
these distances based on land use data. The formula for assigning HI to a risk cell is as
follows [3]:

HI = ∑m
i=1 HIiSi

S
(10)

where HI is the human interference degree of a risk cell, HIi is the disturbance index of i
landscape type, Si is the area of i landscape type, and S is the total area of a risk cell.

2.3.7. Geographical Detector

Geographical detector is a statistical method to measure spatial differentiation and
reveal the driving forces in natural and social factors [3]. The associated Factor detection
module can quantitatively identify the contribution of each driver to landscape ecological
risk, while the interactive detection module can evaluate the combined effect of the two
drivers [11,54]. To apply the geographical detector, the eight driver factors must first be
ranked; the q value of each ERI driver is then obtained based on the classification. The
formula is as follows:

q = 1− ∑m
h=1 Nhδ2

h
Nδ2 (11)

where δ2
h represents the discrete variance of ERI, h = 1,. . ., m represents the stratification of

all variables, Nh represents the number of risk cells in each stratification h, N is the total
number of risk cells, and δ2 is the total variance of the region. The larger the value of
q∈[0, 1], the higher its contribution to the landscape ecological risk.

2.3.8. Geographically Weighted Regression (GWR) Model

The GWR model presents the parameters of each geographic location through local
regression and generates regression coefficients that vary with geographical location. It
spatializes local relationships and better determines the responses between variables in
each geographical location [26,28]. Therefore, we used the GWR model to explore the
spatially nonstationary correlation between drivers and landscape ecological risks using
the following formula:

yi = β0(ui, vi) + ∑p
k=1 βk(ui, vi)xik + εi (12)

where yi is the landscape pattern index, (ui, vi) is the coordinate of the sampling point i,
β0(ui, vi) is the intercept term, βk(ui, vi) is the kth regression coefficient at point i, p is the
number of drivers, xik is the value of the explanatory variable xk at point i, and εi is the
random noise term.

The adjusted R2 and standard residual are often used to verify the performance
of the GWR model [26,55]. Our results showed that the GWR model adjusted R2 was
>0.73, indicating a good fit. Moreover, the standard residual in the study area were
approximately between −2.5 and 2.5, indicating that the results calculated by the GWR
model were reliable.

3. Results
3.1. Landscape Pattern Characteristics
3.1.1. Land Use Transfer

The study period from 1990 to 2020 was divided into three phases to understand the
change in land use transfer over the past 30 years of the TGRA (Figure 3). The main land use
types of the TGRA were agricultural land and forests, accounting for more than 90% of the
area. In the past 30 years, the agricultural land area has continued to decline, from 40.39%
in 1990 to 33.85% in 2020, contributing to a total decrease of 3819.62 km2. In addition, the
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forest area increased to 3796.26 km2 in 30 years. During the study period, the growth rates
of construction land in the three phases were 159.38%, 59.04%, and 76.52%, respectively,
with a total 1173.92 km2 increase in 30 years. Among the increased construction land area,
41.49%, 94.30%, and 93.09% came from the transfer of agricultural land in the three phases,
respectively. Moreover, the water body area expanded by 266.64 km2 from 2000 to 2010 due
to the construction of the TGP and water storage. From 1990 to 2020, the main land-use
changes were characterized by a significant reduction in agricultural land and expansion of
forests, construction land, and water body area.
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3.1.2. Landscape Index Change

At the landscape level, the changes in the landscape indices of the TGRA from 1990
to 2020 are shown in Figure 4. The proportion of like adjacencies index and contagion
index exhibited an overall upward trend, indicating that the landscape in this area formed
a good connection between the patches and increased the degree of landscape aggregation.
The decrease in the patch density index, edge density index, and landscape shape index
indicated that the number of patches per unit area of the landscape decreased, the boundary
length was shortened, and the patch shape tended to be regular. The largest patch index
rose slightly over 30 years, reflecting the increased dominance of the largest patch and a
slight increase in the impact on landscape patterns. The decrease in the Shannon’s diversity
index represents uneven landscape development. Hence, it can be inferred that, in the past
30 years, the landscape of the TGRA has tended to develop toward a pattern of increased
aggregation, regular shape, and uneven distribution.
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and diversity index. (b) is density class index and shape class index.) Note: CONTAG: contagion
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At the class level, analyzing a set of landscape indices can better describe the structural
dynamics of the landscape type (Figure 5). Over the past 30 years, the landscape types have
exhibited different landscape pattern changes. Regarding agricultural land, the percentage
of landscape index and largest patch index exhibited an overall downward trend, indicating
that the agricultural land area and the landscape advantage decreased. The increase in
landscape shape index and decrease in aggregation index reflected the development of
agricultural land in the direction of a complex shape and spatial fragmentation. For
forests, the percentage of landscape index increased, while the patch density index and
landscape shape index exhibited a decreasing trend, indicating that the shape of the patches
while expanding tended to be smooth. The adjacent patches showed interconnected
patch-like development; the increased aggregation index was primarily attributed to the
shrinking public boundary. In the case of construction land, the patch density index,
edge density index, and landscape shape index increased with the increasing percentage of
landscape index. This observation indicated that the construction land area expansion relied
primarily on the increase in the number of patches, which filled in the gaps between patches,
enhancing their connectivity and increasing the aggregation index of the construction land.

3.2. Landscape Ecological Risk Characteristics

This study used the ERI to characterize the temporal and spatial characteristics of
landscape ecological risk to characterize further the risk consequences caused by landscape
pattern changes. Based on relevant studies [10,18] and the distribution characteristics
of ERI, the landscape ecological risk of the TGRA was standardized and categorized
into five levels using the equal interval method, namely, the lowest (ERI < 0.025), low
(0.025 ≤ ERI < 0.050), medium (0.050 ≤ ERI < 0.075), high (0.075 ≤ ERI < 0.100), and
highest (ERI ≥ 0.100) risk areas.
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3.2.1. Spatiotemporal Changes of Landscape Ecological Risk

During the study period, the landscape ecological risk level exhibited spatial distri-
bution characteristics that were relatively low east of the TGRA, relatively high west of
the TGRA, and relatively high along the Yangtze River (Figure 6). Forests dominated the
eastern part of the TGRA with lower landscape ecological risk. The areas with relatively
high landscape ecological risk levels were concentrated primarily in the intensive con-
struction land area and along the Yangtze River. It was mainly distributed in the urban
economic circle centered on Chongqing, with a high degree of landscape disturbance due
to land development and frequent human activities, such as urbanization, construction,
and agricultural production activities. Given the cutting by the Yangtze River and its tribu-
taries, the landscape in this region is highly fragmented, with a high landscape ecological
risk level.
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Figure 6. Spatiotemporal variation of landscape ecological risk in the TGRA.

Overall, the landscape ecological risk in the TGRA exhibited a decreasing trend
from 1990 to 2020; the area of the lowest risk and low-risk landscape ecology increased
by 2486.84 km2 and 18775.58 km2, respectively. Meanwhile, the areas of medium risk,
high risk, and highest risk decreased by 10917.48 km2, 5132.05 km2, and 5212.88 km2,
respectively (Figure 6). The landscape ecology risk levels were transformed primarily to the
subsequent lower risk level, among which highest risk, high risk, medium risk, and low risk
were transferred to 3540.49 km2, 2558.81 km2, 18421.90 km2, and 2173.97 km2, respectively
(Figure 7). The risk level reduction area accounted for 60.13% of the total TGRA, mainly
located east of the TGRA and the northern portion of the TGRA middle region (Figure 8).
Although forests dominate this area, the construction land continuously encroached on
the surrounding agricultural land with the accelerating urbanization process; hence, the
landscape disturbance degree increased. Therefore, the landscape ecological risk levels
were elevated around the main urban area.
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The ERI centroid and standard deviation ellipse in the TGRA from 1990 to 2020 are
shown in Figure 9. Overall, the ERI centroid showed a spatial transfer pattern of “first to
the southwest, then to the northeast,” with the centroid shifting 15.59 km to the northeast.
This resulted in a gradual loss of the flattened ERI standard deviation ellipse, an increase
in the short axis length, and a decrease in the long axis. These findings indicated that the
ecological risk of the TGRA landscape was extended in the short-axis direction and reduced
in the long-axis direction. The standard deviation of the elliptical long axis shortened
significantly from 1995 to 2010, particularly in the southwest, indicating that the landscape
ecological risk west of the TGRA was more concentrated with a faster risk reduction rate.
Between 1990 and 1995, the ERI north of the TGRA decreased significantly, shifting the ERI
centroid toward the west of the TGRA, where there was less forest and higher landscape
ecological risk. From 1995 to 2020, the ERI centroid shifted 20.61 km to the northeast,



Remote Sens. 2023, 15, 4884 14 of 24

possibly due to the transformation of a large amount of agricultural land in the southwest
into forests, thus improving the ecological condition and leading to the ERI centroid moving
to the northeast.
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3.2.2. Spatial Autocorrelation of Landscape Ecological Risk

Based on the ERI of each risk cell, the Global Moran’s I of the landscape ecological
risk was calculated from 1990 to 2020. A Global Moran’s I > 0 showed an initial decreasing
trend followed by an increasing trend, and the z-score of the normal statistics was > 2.58
(Table 4). This indicated that the TGRA landscape ecological risk exhibited significant
spatial aggregation, and the spatial correlation of the landscape ecological risk continued
to increase after 2000.

Table 4. Global Moran’s I of ERI values in the TGRA.

Years 1990 1995 2000 2005 2010 2015 2020

Moran’s I 0.444 0.413 0.408 0.418 0.464 0.480 0.495
z-scores 37.093 34.464 34.045 34.895 38.700 40.070 41.298

Over the past 30 years, the spatial distribution of ERI in the TGRA showed a gradient
distribution pattern of decreasing along both sides of the Yangtze River. Figure 10 shows
an expansion in the hot spot and cold spot ranges of the landscape ecological risk as
well as smaller areas without significant changes. This indicates that, with the decrease
in the landscape ecological risk, the difference between ERI values gradually decreased,
and the spatial correlation increased. The cold spots were distributed primarily in the
zone far from the Yangtze River and were dominated by large forest areas; these spots
continued to increase with the aggregated forest expansion. In comparison, the hot spots
were concentrated primarily in the west of the TGRA and the river valley along the Yangtze
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River. These areas involved dense human activities of construction land and agricultural
land; hence, the spatial correlation gradually increased and expanded with the transfer of
land use and its characteristic changes. By 2020, the original strip-like hot spots spread in a
doughnut shape west of the TGRA.
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3.3. Analysis of Landscape Ecological Risk Driving Factors

As per the results of the geographical detector, the TGRA landscape ecological risk
was influenced by natural and social factors, and the contribution rate of different drivers
to landscape ecological risk varied significantly. The eight drivers selected in this paper
contributed increasingly to the landscape ecological risk over the 30-year period (Figure 11).
Among the social factors, human interference and population density had stronger con-
tribution rates to landscape ecological risk. Human interference was the predominant
contributor with an average contribution rate >0.37, which tended to increase yearly, in-
dicating that human activities had a greater impact on landscape ecological risk, and the
degree of impact gradually increased. Among the natural factors, annual precipitation and
average temperature, as essential factors for vegetation growth, influenced the ecological
risk changes in the landscape with high contributions to landscape ecological risk. The
contribution of annual average temperature increased rapidly and surpassed human inter-
ference in 2020, indicating that the influence of annual average temperature on landscape
ecological risk is important.

The interaction detection results (Figure 12) showed a two-factor interaction enhance-
ment in the contribution of the factor interactions to the landscape ecological risk during
the study period. This indicated that the driving factors were dependent on each other. The
interaction between human interference and annual average temperature made the largest
contribution to the landscape ecological risk, reaching ≥ 0.46 and exhibiting a fluctuating
increasing trend. This indicated that human interference and annual average temperature
were important factors affecting landscape ecological risk, and their degree of influence
gradually increased. Most significant interactions were observed between human inter-
ference and other factors, likely because the relationships between other driving factors
and human socio-economic activities, such as urbanization and cultivation, were more
complex. In addition, the disturbance effect on the landscape ecological risk of the TGRA
was stronger under the background of rapid socio-economic development.
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Figure 11. Factor detector results for each indicator. Note: DEM: digital elevation model, TEM:
annual average temperature, PRE: annual precipitation, WD: distance to water body, CD: distance to
construction land, NL: annual artificial night light, POP: population density, HI: human interference,
average: average contribution of each driving factor on landscape ecological risk from 1990 to 2020,
q-value: contribution of drivers to landscape ecological risk.
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4. Discussion
4.1. Landscape Pattern and Landscape Ecological Risk Change Characteristics

Regarding landscape pattern change characteristics, the area of agricultural land in the
TGRA has gradually decreased. Meanwhile, fragmentation has increased over the 30-year
study period, which agrees with the findings of previous studies [56,57]. Moreover, the
area of forests continued to increase along with the degree of aggregation. However, the
area of construction land grew at a faster rate, with aggravated patches. These observations
were consistent with the findings of Zhang [58]. Regarding the spatial and temporal
distribution of landscape ecological risks, the areas (distributed in strips) along the Yangtze
River exhibited relatively high landscape ecological risk levels. This was due primarily
to most of the cities being distributed in the valley of the Yangtze River mainstream
below 300 m elevation with relatively flat terrain, sufficient water supply, developed
agriculture, and high population density [59]. Thus, a high degree of landscape disturbance
occurred in these areas. From 1990 to 2020, the TGRA landscape ecological risk showed a
decreasing trend [33,60,61]. The areas with forests exhibited lower risk levels due to the
implementation of a series of ecological protection policies, including returning farmland
to forest, which effectively increased the forest area, improved the connectivity of the forest,
and enriched the ecology of these areas.

Moreover, due to the construction and impoundment of the TGP, large amounts of
agricultural land along the Yangtze River with high ERI values have been flooded, causing
the area with a relatively high landscape ecological risk to present a downward trend [31].
The rapid development of urbanization has led to an intensive expansion of construction
land and the development of construction land toward aggregation. This reduced ERI
values in the highest-risk areas dominated by construction land. However, the landscape
ecology in the main urban areas of Chongqing and the middle of the TGRA continued to
face more significant risks, confirming the views of He [33].

4.2. Spatial Response of Landscape Ecological Risk to Drivers

The results of the geographical detector showed that human interference, annual average
temperature, population density, and annual precipitation were the core factors influencing
the landscape ecological risk. Since the geographical detector did not reflect the spatial
differences in driving factors, these characteristics were captured using the GWR model.

The GWR coefficients illustrated the spatially heterogeneous response of landscape
ecological risk to drivers, providing additional details regarding the spatial relationship be-
tween landscape ecological risk and various drivers. Figures 13 and 14 show the regression
coefficient results of ERI with annual average temperature and annual precipitation, respec-
tively. We found that annual average temperature and ERI were strongly correlated. Areas
with frequent landscape-type transitions at the junction generally exhibited negative corre-
lations, while the study area generally exhibited positive correlations; landscape ecological
risk increased with an increase in temperature. This may be due to higher temperatures
causing increased forest instability and tree mortality rates [62,63]. This further increases
the degree of forest loss and the ecological risk to the landscape, demonstrating the negative
impact that global warming can have on ecosystems. The impact of annual precipitation on
ERI fluctuates greatly, with a larger area and probability of negative correlation in the east
of the TGRA. This is likely due to the wider distribution of forests east of the TGRA. Hence,
the increase in precipitation may have led to increased vegetation cover [64], thus expand-
ing the forest land range, increasing the degree of landscape aggregation, and decreasing
ERI. In contrast, the annual precipitation and ERI exhibited a higher probability of positive
correlation in the west of the TGRA. This may be due to the large proportion of agricultural
land and construction land located west of the TGRA. Moreover, this region is highly
sensitive to precipitation as the impervious surface affects precipitation infiltration, causing
it to be greatly impacted by natural disasters. More specifically, increased precipitation
may lead to flood disasters, increased landscape loss, and higher ERI, which agrees with
previous research results [65].
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The results presented in Section 3.2 showed that urbanization expanded and agglom-
erated the landscape into patches during economic development. With an increase in the
aggregation index of construction land, the ERI decreased, suggesting that the urbanization
process may reduce the ecological risk of the landscape, confirming the view of Yang [26].
However, this does not necessarily imply that urbanization is ecologically beneficial. The re-
sults of the geographical detector showed that population density and human interference
strongly impacted the landscape ecological risk. Meanwhile, the GWR model suggested
that the effects of population density and human interference on ERI were positively corre-
lated in most areas (Figures 15 and 16). Zou [66] and Wang [67] found that high population
concentration and disturbance negatively affected the landscape structure and ecological
environment. Moreover, they found that increased population concentration caused the
expansion of towns and industrial activities, leading to stronger landscape disturbance
and higher ERI. These findings were likely due to the GWR model considering only the
changes of drivers in space while being limited in the reflection of time.
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Concerning the dynamic change in the coefficient centroid, obvious regional differ-
ences were observed in the direction and degree of the landscape ecological risk response to
each driver (Figures 13–16). Hence, the response of landscape ecological risk to driving fac-
tors was a comprehensive response to a series of conditions, including various natural and
social factors. The two-factor enhancement effect of the geographical detector demonstrated
the interactions between the driving factors. For example, population density is large in
areas with high human interference, and the resulting urban heat island effect increases
the annual average temperature in the area. In addition, the landscape ecological risk is
increased under the combined effect of the three factors. The GWR coefficient centroid
further indicated that the direction of movement is more similar in natural factors (annual
average temperature and annual precipitation) or social factors (population density and
human interference). This is because the interaction between social or natural factors is
simpler than between the two types of impact factors, and the driving force of landscape
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ecological risk is more consistent. However, the transfer of the coefficient centroid of natural
factors was relatively disordered, indicating that annual average temperature or annual
precipitation may indirectly affect landscape ecological risk by acting on other factors, and
the driving mechanism for landscape ecological risk may be more complex.
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The GWR model can intuitively reveal the spatial difference characteristics of the
correlations between each driver and landscape ecological risk. This suggests that decision-
makers can form targeted decisions on landscape ecological risk management in localized
areas based on our findings. For example, given that annual average temperature showed
a positive correlation with ERI in non-junction areas, in areas with more forests, such
as east of the TGRA, decision-makers can reduce the surface temperature by altering
the structure of forest stands to reduce the landscape ecological risk [68,69]. Although
the negative ecological impact caused by human activities is often inevitable, our study
found that urban agglomerative expansion can control landscape ecological risk. There are
also related studies showing that regular cities are beneficial to ecosystem health [26,70].
Therefore, decision-makers can start from the urban expansion mode to guide the intensive
development of cities to reduce the ecological risk of urban landscapes.

4.3. Limitations and Generalized Contributions

In this study, the contribution to landscape ecological risk was insufficient due to the
limited selection of drivers and their complex interactions. Therefore, additional drivers,
such as biomass, vegetation cover, etc., should be considered in further studies. Moreover,
the GWR model only models the parameters spatially. Thus, further work is needed to
determine the temporal and spatial differences in the effects of drivers on landscape eco-
logical risk. This study analyzed the landscape ecological risk characteristics and their
drivers’ contributions under a long-term time series, providing more empirical support for
its regulations and improving the reliability of the results. In addition, this study extended
the exploration of the GWR model and its transfer of coefficient centroid in landscape
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ecological risk. It also provided more spatial details regarding the impacts of drivers on
landscape ecological risk and clarified the localized contributions of drivers. Moreover, this
model compared the interrelationships among different drivers and provided deeper in-
sights into the driving mechanisms of landscape ecological risk, which are rarely discussed
in the literature. In summary, this study broadens the concepts surrounding landscape
ecological risks and their driving factors and provides a more targeted decision strategy for
ecological risk management.

5. Conclusions

This study investigated the spatial and temporal changes in landscape ecological risk
and its driving factors in the TGRA from 1990 to 2020 and attempted to understand the
spatial differentiation in the impacts of natural and social factors on landscape ecological
risk. Our results showed that: (1) From 1990 to 2020, the agricultural land decreased,
while forest and construction land expanded in the TGRA. The overall landscape pattern
shifted toward aggregation. (2) The landscape ecological risk in the TGRA over the past
30 years exhibited a decreasing trend. The areas with relatively high landscape ecological
risk were concentrated primarily in the main urban area west of the TGRA and along
the Yangtze River, where spatial aggregation was obvious. (3) Social and natural factors
affected landscape ecological risk. The main driving factors were human interference,
annual average temperature, population density, and annual precipitation. Moreover,
interactions were detected between the drivers. (4) The influence of driving factors on
landscape ecological risk showed spatial heterogeneity. Spatially, the influence of social
factors (human interference and population density) on landscape ecological risk was
predominantly positively correlated. Meanwhile, the influence of natural factors (annual
average temperature and annual precipitation) on landscape ecological risk varied widely
in spatial distribution, and the driving mechanisms were more complex. Collectively,
this study extends the exploration of the driving mechanisms in landscape ecological
risk. The framework offers deeper insights into the landscape ecological risk changes
and drivers. In the future, we will focus on the changes and development of landscape
patterns in different scenarios and provide relevant suggestions for ecological risk control
and ecological protection decision-making.
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