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Abstract: Few-shot semantic segmentation (FSS) is committed to segmenting new classes with only a
few labels. Generally, FSS assumes that base classes and novel classes belong to the same domain,
which limits FSS’s application in a wide range of areas. In particular, since annotation is time-
consuming, it is not cost-effective to process remote sensing images using FSS. To address this issue,
we designed a feature transformation network (FTNet) for learning to few-shot segment remote
sensing images from irrelevant data (FSS-RSI). The main idea is to train networks on irrelevant,
already labeled data but inference on remote sensing images. In other words, the training and testing
data neither belong to the same domain nor category. The FTNet contains two main modules: a
feature transformation module (FTM) and a hierarchical transformer module (HTM). Among them,
the FTM transforms features into a domain-agnostic high-level anchor, and the HTM hierarchically
enhances matching between support and query features. Moreover, to promote the development
of FSS-RSI, we established a new benchmark, which other researchers may use. Our experiments
demonstrate that our model outperforms the cutting-edge few-shot semantic segmentation method
by 25.39% and 21.31% in the one-shot and five-shot settings, respectively.
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1. Introduction

Deep learning-based semantic segmentation is widely used in remote sensing [1,2].
Generally, semantic segmentation provides pixel-level classification for downstream appli-
cations, which is a fundamental computer vision task. Many models have been built by
adopting fully convolutional networks and have achieved satisfactory results [3–5]. On this
basis, novel modules such as encoder–decoder [6,7], dilated convolution [8], and atrous spa-
tial pyramid pooling [9] have been proven to be effective. Indeed, pre-trained backbones,
such as the ResNet [10] and VGG [11], have been utilized in various semantic segmentation
models [8–10] for feature extraction, which has gradually become a stereotype. By contrast,
VIT [12], SETR [13], and SegFormer [14] divide images into a patch sequence. In these
works, transformers were used to extract image features [15,16], and their results surpassed
traditional methods to some extent.

However, a large dataset is needed during training, thus limiting semantic segmenta-
tion’s application in a broader field. FSS has been proposed [17,18] to solve this limitation.
Unlike supervised learning-based methods, FSS requires only a few annotations to segment
new classes.

There are no overlap categories between training and inference for FSS [19], which is
the main difference between few-shot semantic segmentation and semantic segmentation.
Most FSS methods follow meta-learning [20], where episodes are formed by image and label
pairs [17,21,22] to mimic few-shot scenes. Currently, FSS is mainly divided into two groups:
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relation-based methods and metric-based methods. Among them, relation-based meth-
ods [18,19,22–24] share the same backbone and freeze their parameters during training.
The main idea is to design a practical decoder to compare the query and support data.
In contrast, metric-based methods [21,25] tend to develop effective encoders to separate
foreground and background classes. Furthermore, some works [26,27] bring transformers
into FSS tasks with excellent results. As for remote sensing, it is time-consuming to obtain
numerous annotated data. Therefore, some works [28–30] have aimed to reduce the need
for annotations or use semi-supervised methods [31] to handle unknown categories.

Generally, FSS is conducted in a cross-validation manner with four splits [32]. Al-
though there is no class overlap between the training and testing sets, they belong to the
same domain. For example, there are 20 categories in PASCAL-5i [17], but each class’s pixel
distribution is similar, called the in-domain dataset. Additionally, although FSS is named
“few-shot”, a large, labeled dataset is still needed during training, which is inconvenient
for remote sensing. We aim to train such a network on a large but irrelevant dataset and to
predict masks on remote sensing images.

This work extends few-shot semantic segmentation to a new task called FSS-RSI. As we
know, FSS’s training and testing sets contain different categories within the same domain.
By contrast, FSS-RSI’s data differ not only in classes but also in image acquisition sensor
and pixel distributions, which belong to irrelevant/cross-domain data.

To achieve the goal of FSS-RSI, the FTNet was designed. The meta-learning method [20]
was adopted to train our network. Specifically, the FTNet transforms the support and query
features into a domain-agnostic space with the learnable FTM. In this way, the gap between
the support data and the query data is narrowed. In addition, the HTM is used to parse
the correlations between the support and query features, which fully promotes the fitting
capability of the support and query features.

To validate our network and provide convenience for other researchers, we established
a new benchmark. The images used came from four different datasets, DeepGlobe [33],
Potsdam [34], Vaihingen [35], and AISD [36], which were captured by satellites or drones.
All four datasets are typical in remote sensing and contain commonly used categories in
engineering. We combined these datasets into an FSS-format dataset and used them as a
benchmark for FSS-RSI.

PASCAL-5i and our benchmark were used for our experiments. The FTNet achieves
comparable accuracy to the cutting-edge method on the in-domain dataset. As for FSS-RSI,
the FTNet performs at an absolute advantage. The mIoUs in the one-shot and five-shot
settings were 25.39% and 21.31%, respectively, higher than the state-of-the-art (SOTA)
method.

In summary, our main contributions lie in the following aspects:

• We extend the FSS to FSS-RSI, which aims to utilize irrelevant domain data to guide
the segmentation of remote sensing images.

• A new benchmark is proposed. This benchmark may promote the development of
FSS-RSI and serve as a tool for researchers.

• We propose an effective network with the FTM and the HTM. Our method signifi-
cantly outperforms the cutting-edge few-shot semantic segmentation method in the
FSS-RSI task.

2. Method
2.1. Problem Setting

Table 1 shows the differences between semantic segmentation (SS), FSS, and FSS-RSI.
We define the training and testing data as domains Dtrain and Dtest and their semantic
categories as Ctrain and Ctest, respectively.
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Table 1. Differences between SS, FSS, and FSS-RSI.

Task Data Source Categories
Example

Training Pair Testing Pair

SS Dtrain = Dtest Ctrain ∩ Ctest = 1
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  denotes the RGB images. 𝑀 ,𝑀 ∈   represents their masks. K means K 
pairs of images and masks were used, which we call the K-shot. 𝑺  and 𝐼 ∈ 𝑸  are 
the inputs during training. The proposed network predicts a binary mask to compute 
loss with 𝑀 ∈ 𝑸 . In the testing phase, the network predicted a new mask with 𝑺  
and 𝐼 ∈ 𝑸  as the inputs. It should be noted that 𝑺 ,𝑸 ⊂ 𝑫 , and 𝑺 ,𝑸 ⊂ 𝑫 , respectively. 

2.2. Model 
The FTNet is designed to deal with FSS-RSI tasks. As shown in Figure 1, the net-

work is built in a meta-learning manner [20]. Specifically, we used ResNet50 [10], which 
was pre-trained by ImageNet [37], as the backbone and froze its parameters during 
training. The query and support branches share the same backbone to extract multi-
layered features. Furthermore, a prior mask [18] from high-level feature maps was in-
troduced to strengthen the connection between the query and support data. It should be 
noted that support masks are important for FSS. Therefore, the FTNet adopted a support 
mask several times to enhance its guidance for the query images. In particular, the FTM 
is designed to transform the middle query feature, support feature, and prototype into a 
domain-independent, high-level feature space called the feature anchor. The FTNet 
achieves better performance when processing FSS-RSI tasks with the FTM. In addition, 
we input the fused query feature, support feature, and mask into the HTM, which en-
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troduced to strengthen the connection between the query and support data. It should be 
noted that support masks are important for FSS. Therefore, the FTNet adopted a support 
mask several times to enhance its guidance for the query images. In particular, the FTM 
is designed to transform the middle query feature, support feature, and prototype into a 
domain-independent, high-level feature space called the feature anchor. The FTNet 
achieves better performance when processing FSS-RSI tasks with the FTM. In addition, 
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For SS, Dtrain and Dtest belonged to the same domain, specifically remote sensing,
in our task. The training and testing categories were the same. That is, SS only handles
classes that have appeared in training. For FSS, both Dtrain and Dtest were derived from
remote sensing, but their categories did not overlap. That is, FSS can process classes with
no appearance during training. FSS-RSI was the most challenging task, with Dtrain and
Dtest originating from different domains. The two domains have different classes and pixel
distributions, which we call irrelevant data.

In the FSS-RSI task, episodes [18] were used to mimic few-shot scenes. Each episode
consisted of a query set Q = {(Iq, Mq)} and a support set S =

{(
Is
i , Ms

i
)}K

i=1. In our
study, (·, ·) represents image pairs consisting of RGB images and corresponding masks.
Is, Iq ∈ RH×W×3 denotes the RGB images. Ms, Mq ∈ RH×W represents their masks. K
means K pairs of images and masks were used, which we call the K-shot. Strain and
Iq ∈ Qtrain are the inputs during training. The proposed network predicts a binary mask to
compute loss with Mq ∈ Qtrain. In the testing phase, the network predicted a new mask
with Stest and Iq ∈ Qtest as the inputs. It should be noted that Strain, Qtrain ⊂ Dtrain, and
Stest, Qtest ⊂ Dtest, respectively.

2.2. Model

The FTNet is designed to deal with FSS-RSI tasks. As shown in Figure 1, the network
is built in a meta-learning manner [20]. Specifically, we used ResNet50 [10], which was
pre-trained by ImageNet [37], as the backbone and froze its parameters during training.
The query and support branches share the same backbone to extract multi-layered features.
Furthermore, a prior mask [18] from high-level feature maps was introduced to strengthen
the connection between the query and support data. It should be noted that support masks
are important for FSS. Therefore, the FTNet adopted a support mask several times to
enhance its guidance for the query images. In particular, the FTM is designed to transform
the middle query feature, support feature, and prototype into a domain-independent,
high-level feature space called the feature anchor. The FTNet achieves better performance
when processing FSS-RSI tasks with the FTM. In addition, we input the fused query feature,
support feature, and mask into the HTM, which enhanced information fusion within and
between features. Figure 1 shows the model architecture of a one-shot structure, which can
be easily expanded to a five-shot structure.
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is the element-wise multiplication, and GAP denotes the global average pooling.

2.2.1. Feature Extraction

During the training phase, we froze the backbone’s parameters, which was the strategy
employed by other methods [18,19,26]. There are five stages included in ResNet50. The
FTNet mainly adopts feature maps for stage 3, stage 4, and stage 5, which are denoted as
fs3, fs4, and fs5. In order to enhance the performance of high-level feature maps, PPM [38]
was used to refactor stage 5. Thus, we obtained fs6 as the following:

fs6 = Fcat
i=1,2,3,4

(
U i
(
F i

conv

(
F i

pool( fs5)
)))

(1)

where Fpool means the average pooling and Fconv denotes the convolution, followed by
the BatchNorm [39] and ReLU functions. U is the upsampling and Fcat represents the
concatenation. Pyramids with the sizes 1 × 1, 2 × 2, 3 × 3, and 6 × 6 were used, and i is
the level of pyramid. fs4, fs5, and fs6 were resized to be the same as fs3.

According to [22,40–42], middle-level features contain more semantic information,
such as the outline and color. Therefore, the FTNet concatenates fs3 and fs4 to obtain a
middle-level feature map:

f s
m = Fconv(Fcat( f s

s3, f s
s4)) ∈ Rc×h×w (2)

f q
m = Fconv

(
Fcat

(
f q
s3, f q

s4

))
∈ Rc×h×w (3)

where f s
m and f q

m are the middle-level features of the support and query data. Fconv and
Fcat are the same as in Function (1) with different parameters. Furthermore, we calculated
the prototype using the support mask and f s

m as the following:

ps = Fgap( f s
m �R(Ms)) ∈ Rc (4)



Remote Sens. 2023, 15, 4937 5 of 21

where � means the Hadamard product, and R represents the operation to reshape the
initial query mask from RH×W to Rc×h×w, with the same size as f s

m. Fgap is the global
average pooling to reshape the feature map from Rc×h×w to Rc×1.

In addition, the prior mask generated by the high-level feature boosts performance
in a training-class-insensitive way [18]. We used fs4 and fs5 to generate prior masks and
merge them as the following:

Mp = Fcat(P( fs4),P( fs5)) (5)

where P denotes the generation of a prior mask Mp.

2.2.2. Feature Transformation Module

Motivation. Features extracted by convolutions have an excellent characterization
within category and domain. As for FSS-RSI, the parameters learned during training tend
to segment the categories that appear during training. Therefore, the FTNet transforms fea-
tures into a space independent of classes and domains. This strategy reduces the influence
of the source domain and training data. Inspired by a task-adaptive feature transformer
(TAF) [43], we propose a simple learnable transformation matrix that transforms f s

m, f q
m,

and ps to a domain-agnostic space.
For the feature matrix F, the goal was to find a matrix T that transforms F to a domain-

independent feature matrix W, called the feature anchor, as the following:

TF = W (6)

In general, F is a non-square matrix with no inverse. One solution is to calculate the
pseudo-inverse [43] of F is F+ =

{
FTF

}−1FT . Thus, the transformation matrix was obtained
as the following:

T = WF+ (7)

The parameters of W were initialized randomly and changed with the gradient’s
backpropagation; therefore, the matrix T was constantly optimized.

Specifically, for the prototype ps, we obtained ps
new = Tps. As for f s

m, we needed to
transform it as the following:

f s′
m = R( f s

m) (8)

whereR(·) represents the reshape operation: Rc×h×w → Rc×(h×w) . We used the transfor-
mation matrix to multiply Formula (8) to obtain f s′

m,new = T f s′
m . Furthermore, f s′

m, new was
transformed to the original shape as f s

m, that is,

f s
m, new = R−1

(
f s′
m, new

)
(9)

where the inverse reshape is included. The same operation was performed for f q
m. Finally,

ps
new, f s

m, new, and f q
m, new were obtained. They are domain-agnostic features. In other

words, the gap between ps
new and f q

m, new and the gap between f s
m, new and f q

m, new were
significantly reduced. We provide a more detailed explanation in Appendix A.

We further merged ps
new, f q

m, new, and Mp to obtain f q
merge as the following:

f q
merge = Fcat

(
f q
m, new, Mp,J (ps

new)
)

(10)

where J (·) is the repeat operation: Rc×1 → Rc×h×w . It should be noted that only the
parameters of W were learnable. The transformation matrix was calculated directly. This
method does not add too many parameters.
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2.2.3. Hierarchical Transformer Module

Motivation. A transformer is used in many works to extract features [12–14]. It estab-
lishes relationships within and between features to mine the connections between image
blocks. As illustrated in [27], prototype-based FSS models are committed to providing class-
wise clues rather than pixel-wise clues. We adopted self- and cross-attention paradigms to
mine deep matching correlations.

To strengthen the support data’s performance, we again used support masks. We
define Q = Wq f q, K = Wk( f s �Ms), and V = Wv( f s �Ms). We followed the usual
transformer calculation, which is formulated as the following:

Trans(Q, K, V) = softmax
(

QKT
√

d

)
V (11)

where Wq, Wk, and Wv are the learnable parameters, and d is the hidden dimension.
Equation (11) is a general form of cross-attention. As shown in Figure 2, when the features
f s in K and V are replaced with f V , Equation (11) represents the self-attention manner,
which represents the relationship among query features. The main task of the HTM is
to calculate an informative query feature. Thus, we only performed self-attention within
the query path in a standard multi-head manner [12]. In addition, a cross-attention layer
follows self-attention. Similar to [27], Q was obtained from the query features, and K and V
were obtained from the support features. Inspired by the ResNet [10] and SegFormer [14],
we design a hierarchical architecture with four scale blocks. Each block contains self-
and cross-attention, followed by downsampling. At the end of the HTM process, we
concatenated the four blocks after scaling them to the same resolution. In a nutshell,
our model extracts abundant information within query features and obtains pixel-wise
matching correlations using a cross-attention layer. We demonstrate the role of the HTM in
mining this matching relationship, as detailed in Appendix B.
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Finally, the FTNet adopts a simple decoder to generate predictions, mainly including
stacked convolutional layers and upsampling. Because FSS is a binary classification task,
binary cross-entropy loss (BCE) was used to optimize our model, which is formulated as
the following:

L =
1
n

n

∑
i=1

BCE
(
P q

i , Mq
)

(12)

where n is the number of episodes in each batch and P is the prediction of the query image.

2.2.4. Extension to K-Shot

Extending our model to K-shot (K > 1) format was straightforward. The K-shot setting
means that there are K support pairs in one episode. Specifically, the support pair is
S =

{(
Is
i , Ms

i
)}K

i=1 and the query pair is still Q = {(Iq, Mq)}. In order not to change the
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model’s settings, we concatenated the K groups in the channel dimension directly as the
following:

S =
{(
Fcat(Is

i )
K
i=1,Fcat(Ms

i )
K
i=1

)}
(13)

Therefore, the FTNet obtained an input with the same structure as a one-shot structure
with simple convolutions.

2.3. Benchmark

The FSS-RSI benchmark was derived from four datasets of remote sensing, including
DeepGlobe [33], Potsdam [34], Vaihingen [35], and AISD. These datasets differ from the
commonly used FSS datasets regarding their pixel distributions and categories.

DeepGlobe [33] consists of natural landscape images taken by satellites. This dataset
is annotated into seven categories: unknown, urban, aquatic, agricultural, forested, barren,
and rangeland areas. The ground sampling distance was 50 cm. However, only 803 training
images were labeled with a size of 2448 × 2448. Fortunately, this dataset was adopted as a
tool for FSS-RSI, so DeepGlobe’s training set could meet the need. Specifically, we divided
each image into 36 equal blocks and resized them to 400 × 400. The category “unknown”
was set as the background. Images that contained only a single category were filtered
out. Finally, we obtained 9175 pairs containing six categories. We named this dataset
FSS-RSI-DeepGlobe; some samples are shown in Figure 3a.
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Figure 3. Some images and their corresponding masks of our benchmark: (a) data from DeepGlobe;
(b) data from Potsdam; (c) data from Vaihingen; and (d) data from AISD.

Potsdam [34] was captured over Potsdam in Germany by aerial cameras. This dataset
is annotated into six categories: clutter, tree, low vegetation, building, car, and impervious
surface. The ground sampling distance of the images was 5 cm. We removed the category
“car” because of the overlap with the source domain used in our work. The buildings in
Potsdam are scattered and the category distribution is more balanced. Potsdam contains
38 image patches. The size of all images is 6000 × 6000. Each image was divided into
225 equal pieces. Similar to the DeepGlobe dataset, we removed pairs with a single category.



Remote Sens. 2023, 15, 4937 8 of 21

Finally, we obtained 1896 pairs containing five categories. We named this dataset FSS-RSI-
Potsdam; some samples are shown in Figure 3b.

Vaihingen [35] was captured over Vaihingen in Germany by aerial cameras and in-
cludes five categories (after removing “car”), like Potsdam. The ground sampling distance
of the images was 9 cm. Unlike Potsdam, the class distribution is more compact, with dense
settlement structures, narrow streets, and large buildings. Vaihingen contains 33 patches of
different sizes. We resized the images to 2800 × 2000 pixels and divided each image into
35 equal pieces. We removed images with a single category. As already known, episodes
needed to be built in each category. However, the filtered Vaihingen dataset contains only
6 “clutter” samples, which was insufficient to build a rich episode. Thus, images containing
the category “clutter” were discarded. Finally, we obtained 308 pairs containing four
categories. We named this dataset FSS-RSI-Vaihingen; some images are shown in Figure 3c.

AISD [36] is an aerial image segmentation dataset obtained using the OpenStreetMap [44–46]
and Google Maps [47]. AISD covers parts of different cities, of which Berlin was selected for
our experiment. There are only two categories in AISD: road and building. However, their
appearance is very similar within and between the two categories. Thus, we believe AISD
is a challenging task for FSS. AISD contains 200 patches of the same size, at 2611 × 2453.
We resized the images with 2800 × 2400 pixels and divided each image into 42 equal pieces.
We removed images with a single category similar to the other three datasets. Finally, we
obtained 5640 pairs containing two categories. We named this dataset FSS-RSI-AISD; some
samples are shown in Figure 3d. Table 2 provides a detailed description of PASCAL-5i and
our benchmark.

Table 2. Details of our benchmark. The FID was calculated between each dataset and PASCAL-5i.

Dataset Numbers Classes FID

PASCAL-5i 17,125
person, bird, dog, cat, cow, chair, dining table, potted plant, sheep,

horse, airplane, bicycle, boat, car, bottle, sofa, tv/monitor bus,
motorbike, and train

–

FSS-RSI-DeepGlobe 9175 agricultural, forested, barren, urban, rangeland, and aquatic areas 186.55

FSS-RSI-Potsdam 1896 clutter, tree, low vegetation, building,
and impervious surface 151.86

FSS-RSI-Vaihingen 308 tree, low vegetation, building,
and impervious surface 328.08

FSS-RSI-AISD 5640 building and road 194.90

As shown in Figure 4, we further calculated the pixel distribution of each category. The
pixel distribution was relatively balanced, except for “urban areas” in FSS-RSI-DeepGlobe.
Because of the richness of this dataset, we kept the class “urban areas”.

As shown in Table 2, the Fréchet inception distance (FID) [48] was reported to measure
the different data distributions between our benchmark and PASCAL-5i. The FID is
the Fréchet inception distance between the Gaussians obtained from the distributions of
two datasets:

d2((µ1, c1), (µ2, c2)) = ‖µ1 − µ2‖2
2 + Tr

(
c1 + c2 − 2(c1c2)

1
2
)

(14)

where (µ1, c1) and (µ2, c2) are means and covariances of the two distributions, and Tr is
the matrix trace. The larger the FID, the greater the difference between the datasets, and
vice versa.

As shown in Table 3, the same method was used to calculate the FID within PASCAL-5i.
We followed the strategy of FSS, that is, using a standard cross-training manner. Specifically,
the FID was calculated between each fold and the other three folds. Compared to the data
within PASCAL-5i, the distribution gaps between our benchmark and PASCAL-5i were
vast, where the FID was more than twice that of the in-domain data. In particular, the FID
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of FSS-RSI-Vaihingen was 328.08. Therefore, it is further proven that our benchmark and
PASCAL-5i belong to different domains.
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Table 3. FIDs of different PASCAL-5i splits.

Split-1 Split-2 FID

Fold0 Fold1 + Fold2 + Fold3 79.47
Fold1 Fold0 + Fold2 + Fold3 47.47
Fold2 Fold0 + Fold1 + Fold3 41.45
Fold3 Fold0 + Fold1 + Fold2 61.48

2.4. Experiments
2.4.1. Datasets and Metric

Datasets. PASCAL-5i is the irrelevant domain training set created from PASCAL VOC
2012 [49] with SDS [50] augmentation. The benchmark we proposed is the testing set in the
remote sensing domain.



Remote Sens. 2023, 15, 4937 10 of 21

Metric. The mean intersection over union (mIoU) [19,26] was adopted in our experi-
ment, as a standard metric in semantic segmentation. The IoU is defined as the following:

IoU =
TP

FN + FP + TP
(15)

where FN, FP, and TP represent the number of false negatives, false positives, and true
positives of the predictions, respectively. Furthermore, the mIoU is the average IoU of
all categories.

2.4.2. Training and Testing Strategy

We used a generic meta-learning manner for training and testing. That is, each batch
contained an episode. Unlike FSS, the entire PASCAL-5i dataset with all four splits was
used as the training data. Indeed, we use a supervised learning strategy and fixed the
backbone’s pre-training parameters during training. The Adam optimizer was adopted
with a learning rate of 10−4, and the weight decay was 0.01. Furthermore, the size of the
images was reshaped to 400 × 400 pixels, which was followed by random scaling, rotation,
and cropping. A mini-batch of 16 was utilized in the experiment. We trained each model
on four 2080 Ti GPUs with 50 epochs.

The test was performed on a single GPU. It should be noted that we tested the
benchmark with the model trained on the PASCAL-5i without transfer. The mIoU was
calculated for each dataset based on the average of 5 runs with different random seeds. A
total of 600 tasks were contained in each run.

3. Result
3.1. Models for Comparison

To prove the performance of the FTNet, we selected several representative FSS models,
including RPMMs [23], the PFENet [18], HSNet [24], BAM [19], and HDMNet [26]. Among
them, RPMMs and the PFENet are classic prototype-based architectures, especially the
PFENet, which is the most similar model to the FTNet. The HSNet uses 4D convolution to
push meta-learning-based FSS to new heights. BAM and the HDMNet are cutting-edge in-
domain FSS methods based on meta-learning and base-learning. For the RPMMs, PFENet,
and HSNet, their released codes were used with the same settings. For BAM and the
HDMNet, their meta paths were adopted, as there were no base classes in our benchmark.
The testing method was exactly the same as ours.

3.2. Main Results

The results are shown in Table 4. The mIoU of the FTNet significantly exceeded
that of the existing FSS model, including the SOTA model. Specifically, on the FSS-RSI-
DeepGlobe dataset, the FTNet outperformed the suboptimal HSNet by 30.18% and 25.98%
in the one-shot and five-shot settings, respectively. On the FSS-RSI-Potsdam dataset, the
FTNet outperformed the suboptimal method by 37.57% and 8.90% in the one-shot and
five-shot settings, respectively. On the FSS-RSI-AISD dataset, the FTNet outperformed
the suboptimal methods by 17.48% and 13.61% in the one-shot and five-shot, respectively.
In addition, our one-shot result was 13.53% higher than the HDMNet on the FSS-RSI-
Vaihingen dataset. But the FTNet obtained a value that was 2.00% lower than BAM in the
five-shot setting. For the mean results of all datasets, the mIoU significantly exceeded the
suboptimal model, which was 25.39% and 21.31% higher than the HSNet in the one-shot
and five-shot settings, respectively.

As can be seen, the PFENet achieved an mIoU that was 10% lower on the FSS-RSI-
DeepGlobe and FSS-RSI-Potsdam datasets, especially for the value of only 2.42% in the FSS-
RSI-DeepGlobe’s five-shot setting. This proves that the PFENet had no FSS-RSI performance
on these two datasets. However, as illustrated in Appendix C, the PFENet’s performance
within the domain was good. The same is true for RPMMs on the FSS-RSI-Potsdam
dataset. As already known, the HDMNet is a cutting-edge FSS model, even with only its
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meta branch. The results can be seen in Appendix C. However, for the FSS-RSI task, the
HDMNet did not perform well. The obtained mIoUs were 17.70 and 23.08 in the one-shot
and five-shot settings, which were 41.16% and 17.56% lower than the FTNet, respectively.
Performing slightly worse than our method, the HSNet performed suboptimally on FSS-
RSI-DeepGlobe’s one-shot and five-shot settings and on FSS-RSI-Potsdam’s one-shot setting.
We found that except for the PFENet, the five-shot results of all models were better than
the one-shot results. This phenomenon indicates that when there are more support data,
FSS-RSI performs better, which is similar to FSS. This experiment showed that the FTNet
achieved the best result in FSS-RSI with absolute advantages over the other cutting-edge
FSS methods.

Table 4. The mIoUs (%) of different methods experimented on our benchmark. The best results are
denoted in bold. Suboptimal results are underlined.

Method

FSS-RSI-
DeepGlobe FSS-RSI-Potsdam FSS-RSI-Vaihingen FSS-RSI-AISD Average

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

PFENet 3.97 2.42 6.26 4.84 12.58 12.29 25.03 25.18 11.96 11.18
RPMMs 10.66 13.17 6.76 7.56 16.24 16.45 25.12 23.86 14.70 15.26
HSNet 31.78 35.38 17.94 19.31 21.78 24.16 24.47 26.41 23.99 26.32
BAM 12.23 26.65 12.53 17.37 17.19 26.98 23.35 27.41 16.33 24.60

HDMNet 16.68 17.57 11.27 23.49 21.80 25.53 21.04 25.74 17.70 23.08
FTNet 41.37 44.57 24.68 25.58 24.75 26.44 29.51 31.14 30.08 31.93

Some qualitative results of our methods are shown in Figure 5. Classes with regular
shapes, such as buildings in the FSS-RSI-Potsdam and FSS-RSI-Vaihingen datasets, obtained
better results. However, FSS-RSI is challenging for irregular categories, such as trees
and low vegetation. In particular, FSS-RSI did not work well for categories with similar
appearances, such as the barren and rangeland areas in the FSS-RSI-DeepGlobe dataset
and all categories in the FSS-RSI-AISD dataset. These challenging cases also need to be
solved using semantic segmentation. Indeed, compared to commonly handled categories,
such as cars, people, and animals, it is more difficult to segment remote sensing images.
This issue is exactly the intractable part that FSS needs to solve.
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4. Discussion
4.1. Ablation Study

To prove the effectiveness of the FTNet, we carried out an ablation study. The mIoU
was selected as the metric. Our baseline was that the architecture removed the HTM
and FTM. To further justify the effectiveness of our HTM, we adopted a vanilla trans-
former module (VTM) for comparison. There were four repeat blocks in the VTM without
concatenation; each block was the same as the first in the HTM.

Effects of the HTM and FTM. Table 5 shows the results of the five forms. They were
the baseline, adding the FTM, adding the HTM, adding the VTM, and adding both the
HTM and FTM. As illustrated, the mIoU of the baseline was similar to that of BAM [19]
and the HDMNet [26]. After adding our tailored modules, the FTNet’s performance was
significantly boosted.

Table 5. The mIoUs (%) of the ablation study. The best results are denoted in bold. The baseline is the
architecture that removed the FTM and HTM.

Method
FSS-IRS-DeepGlobe FSS-IRS-Potsdam FSS-IRS-Vaihingen Average

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

Baseline 19.29 30.56 11.56 17.84 21.69 21.72 17.51 23.37
Baseline + FTM 31.62 33.80 22.57 20.86 24.73 27.61 26.31 27.42
Baseline + HTM 38.41 43.40 23.03 23.99 23.31 25.41 28.25 30.93
Baseline + VTM 21.23 – 20.27 – 23.16 – 21.55 –

Baseline + HTM + FTM 41.37 44.57 24.68 25.58 24.75 26.44 30.27 32.20

Compared to the baseline, the mIoUs in the one-shot and five-shot settings were
improved by 50.26% and 17.33%, respectively, after adding the FTM. Furthermore, adding
the HTM improved the result by 61.34% and 32.35%, respectively. What surprised us the
most is that our complete structure with both the FTM and HTM achieved the highest
mIoUs, which were 72.87% and 37.78% higher than the baseline in the one-shot and five-
shot settings, respectively. We note that adding the FTM obtained a result comparable
to our complete architecture in the one-shot setting and a higher result in the five-shot
setting on the FSS-IRS-Vaihingen dataset. These results prove the effectiveness of the
proposed modules.

As illustrated in the HDMNet [26], a transformer module follows a backbone similar to
ours. Unlike the HDMNet, we added the HTM to fuse low- and high-level information after
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the prior mask and prototype. Thus, our model’s performance was improved. As shown
in Table 5, adding the VTM raised the mIoU from 17.51 to 21.55 in the one-shot setting.
However, our HTM’s result was 31.09% higher than the VTM’s result in the one-shot setting.
Furthermore, our device was out of memory when we trained the architecture with the
VTM in the five-shot setting. Therefore, we could not collect the five-shot result using the
VTM. The experimental results justify that our HTM is more effective than the VTM.

The visualization results of the five forms are shown in Figure 6. They are the results
based on FSS-RSI-DeepGlobe in the one-shot setting. It is important to note that these qual-
itative results were unstable across different test rounds, and we consider the quantitative
results in Table 5 on the entire dataset to be more reliable.
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Effects of different classes. We counted the mIoUs of each class on the whole bench-
mark, and the results are shown in Figure 7. To sum up, the FTNet had an unbalanced
accuracy for each category. On the FSS-RSI-DeepGlobe dataset, the FTNet had a higher
mIoU for agricultural, forested, and barren but a lower mIoU for the remaining three
categories. On the FSS-RSI-Potsdam dataset, the category with the highest mIoU was
“building”, which was 156.40% higher than “clutter”. On the FSS-RSI-Vaihingen dataset,
the best class was “tree”, which was 206.92% higher than the categories of “impervious
surface”. On the FSS-RSI-AISD dataset, the mIoU of “building” was higher. We believe
that “building” had a more regular shape relative to “road”, which was more conducive to
the prediction of the network.

When combined with the pixel distribution in each category in Figure 4, the seg-
mentation results of FSS-RSI-DeepGlobe and FSS-RSI-Potsdam are independent of the
number of pixels. On the FSS-RSI-Vaihingen dataset, the smallest pixel ratio was obtained
for “impervious surface”, and the mIoU in this category was also the smallest. On the
FSS-RSI-AISD dataset, the ratio of pixels was the opposite of the ratio of mIoUs. We do not
have enough evidence to prove that the accuracy was related to the pixel ratio. Balancing
the number of pixels in our benchmark and improving the semantic segmentation accuracy
of each category will need to be considered in the future.
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4.2. Limitations

This work introduces FSS into the field of remote sensing image segmentation. Our
model achieved an absolute advantage over other SOTA methods, as our experiment shows.
The results prove the effectiveness of our approach. However, we need to note that in
the FSS-RSI task, the mIoU was only about 30%, which is still far from actual application
needs. On the one hand, this phenomenon is attributable to the fact that FSS-RSI is a
very challenging task. The training data and the test data were irrelevant. On the other
hand, most of the categories in our benchmark did not have fixed shapes, such as low
vegetation, impervious surface, and agriculture, which were difficult even for generic
semantic segmentation [5,9]. In addition, FSS-RSI did not work well with categories with
similar appearances, such as the barren and rangeland areas in the FSS-RSI-DeepGlobe
dataset and all categories in the FSS-RSI-AISD dataset.

Some previous works on remote sensing images using FSS have achieved high accu-
racy [51,52]. Their training and testing data came from the same remote sensing dataset,
which was different from our task. And the categories they contained were common cate-
gories with fixed shapes, such as airplanes, ships, or cars. In order to extend FSS-RSI to a
broader range of applications, some innovative works need to be proposed. For example,
tailored models must be designed for categories with no fixed shape to improve their
segmentation accuracy. Moreover, FSS-RSI combined with the usual semantic segmenta-
tion, which simultaneously segments novel and known categories, would be promising
future work.

5. Conclusions

To address the limitations of FSS for remote sensing, we extended the task to a new
field called FSS-RSI. Specifically, we established a novel benchmark for evaluating FSS-RSI,
which may be useful for other researchers. Moreover, we propose the FTNet with an FTM
and an HTM. The FTM transforms the support feature, query feature, and prototype into a
domain-agnostic space called the feature anchor. The HTM establishes abundant matching
correlations between the support and query patches. In this way, our model can process
remote sensing data with data from irrelevant domains.

Experiments were conducted on PASCAL-5i and our benchmark. The FTNet achieved
comparable accuracy to the cutting-edge methods on the in-domain data but obtained
an absolute advantage on the FSS-RSI data. The proposed method outperformed the
suboptimal model by 25.39% and 21.31% in the one-shot and five-shot settings, respectively.
We hope our method will be helpful for few-shot semantic segmentation for remote sensing.
For future work, we will focus on two interesting aspects: (1) designing tailored models to
improve the accuracy of the FSS-RSI and (2) dealing with FSS problems in some exceptional
cases, such as object occlusion, light changes, and similar appearance.
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Appendix A

We indicated in Section 2.2.2 that the gaps between ps
new and f q

m, new and between
f s
m, new and f q

m, new were significantly reduced after using the FTM. To confirm this, we
compared the distance between the support and query features before and after using
the FTM.

Specifically, for features f s
m and f q

m before the use of the FTM, we applied the global
averaging pooling operation to change their shape from (B, C, H, W) to (B, C, 1, 1), which
is the same shape as ps. B, C, H, and W indicate the tensor’s batch, channel, height, and
width, respectively. We defined B = 1 for convenience. The same operation was conducted
on f s

m, new and f q
m, new. Thus, f s

m, f q
m, ps, f s

m, new, f q
m, new, and ps

new were all vectors with
the shape of (1, C, 1, 1). The main purpose of the FTM was to transform the features
into a domain-agnostic space. We could not directly describe this domain-agnostic space.
However, we demonstrated this point by comparing the distance between the support and
query features as an alternative. This was plausible because the most important purpose of
FSS is to reduce the gap between these two features.

Indeed, the L2 norm was adopted as a metric. We calculated the distance d f s
m− f q

m
=∥∥∥ f s

m − f q
m

∥∥∥
2
, dps− f q

m
=
∥∥∥ps − f q

m

∥∥∥
2
, d f s

m,new− f q
m,new

=
∥∥∥ f s

m,new − f q
m,new

∥∥∥
2
, and dps

new− f q
m,new

=∥∥∥ps
new − f q

m,new

∥∥∥
2
, respectively. We collected 600 samples from the above four distances

when testing on the FSS-RSI-DeepGlobe dataset. In Figure A1, we present a visualization
of the whole results.

Figure A1a,b presents the distances before the use of the FTM with average distances
of 3.40 and 75.85, respectively. Figure A1c,d presents the distances after the use of the FTM,
with average distances of 0.47 and 0.88, respectively. The feature distances after the FTM
are much smaller than those before the FTM. Thus, we further prove that the FTM is a
useful module to reduce the gap between the support and query features.
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Appendix B

To clarify that the HTM hierarchically enhances matching between the support and
query features, the Frobenius norm was adopted as a metric. We denoted features before
the HTM as f s

front and f q
front. That is, f q

front = f q and f s
front = f s �Ms, where f q, f s, and Ms

are the features presented in Figure 2. Moreover, we denoted features after each trans-
former block as f s

after,0, f q
after,0, f s

after,1, f q
after,1, f s

after,2, f q
after,2, f s

after,3, and f q
after,3, respec-

tively. The features after merging the four transformer blocks were denoted as f s
merge

and f q
merge. Our purpose was to calculate the Frobenius norms as Ffront =

∥∥∥ f s
front − f q

front

∥∥∥
F
,

Fafter,0 =
∥∥∥ f s

after,0 − f q
after,0

∥∥∥
F
, Fafter,1 =

∥∥∥ f s
after,1 − f q

after,1

∥∥∥
F
, Fafter,2 =

∥∥∥ f s
after,2 − f q

after,2

∥∥∥
F
,

Fafter,3 =
∥∥∥ f s

after,3 − f q
after,3

∥∥∥
F
, and Fmerge =

∥∥∥ f s
merge − f q

merge

∥∥∥
F
, respectively. Similar to

the information presented in Appendix A, we collected 600 samples from the above six
distances when testing on the FSS-RSI-DeepGlobe dataset. In Figure A2, we present a
visualization of the results.

As shown in Figure A2a–f, the Frobenius norms decreased gradually, and their average
values were reduced from 244.03 to 91.40. Indeed, the transformer is a dense image
extraction and matching structure, which is difficult to explain using precise theory. We
hope that Figure A2. will justify that the HTM can hierarchically enhance matching between
the support and query features. Moreover, our ablation study, as presented in Section 4.1,
can further prove the effectiveness of the HTM.
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Appendix C 

Apart from the FSS-RSI, we further proved the performance of the FTNet on the in-
domain dataset. The experiment was performed on PASCAL-5i, and we followed the 
commonly used data division of four folds, but we reported only the results in the one-
shot setting. The results are shown in Table A1. As already known, a trick is used in the 
BAM and HDMNet. That is, the image pairs containing novel classes during training are 
removed. But in other works, novel classes are set as the background. This trick im-
proves the performance of the BAM and HDMNet. We did not use this trick for fairness, 
i.e., we adopted the same strategy as for the other methods such as the HSNet and 
PFENet. Thus, we retrained the BAM and HDMNet according to their official settings. 
The results of their meta branches are shown in Table A1. 
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Appendix C

Apart from the FSS-RSI, we further proved the performance of the FTNet on the
in-domain dataset. The experiment was performed on PASCAL-5i, and we followed the
commonly used data division of four folds, but we reported only the results in the one-
shot setting. The results are shown in Table A1. As already known, a trick is used in the
BAM and HDMNet. That is, the image pairs containing novel classes during training are
removed. But in other works, novel classes are set as the background. This trick improves
the performance of the BAM and HDMNet. We did not use this trick for fairness, i.e., we
adopted the same strategy as for the other methods such as the HSNet and PFENet. Thus,
we retrained the BAM and HDMNet according to their official settings. The results of their
meta branches are shown in Table A1.

Table A1. The mIoUs (%) of different methods on the in-domain dataset. The best results are denoted
in bold. Suboptimal results are underlined.

Method Fold0 Fold1 Fold2 Fold3 Average

PFENet 63.23 70.79 53.28 57.25 61.14
RPMMs 59.50 71.58 55.40 51.96 59.61
HSNet 63.03 69.50 59.64 59.88 63.01
BAM 60.94 70.75 61.77 59.45 63.23

HDMNet 66.92 75.83 67.79 69.37 69.98
FTNet 62.42 71.06 58.00 58.91 62.60

As can be seen, the HDMNet is the best model, reaching the highest mIoU on three
folds. And its average mIoU on all four folds was the highest, reaching 69.98. The PFENet
and RPMMs also achieved good results on PASCAL-5i, reaching 61.14 and 59.61, respec-
tively. The FTNet obtained a suboptimal result on Fold1, which was 10.54% lower than the
HDMNet on all folds. However, our primary goal was FSS-RSI. The results in Table A1
further demonstrate the effectiveness of our model on FSS-RSI tasks. Figure A3 illustrates
our model’s qualitative results on PASCAL-5i.
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