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Abstract: Semantic segmentation based on optical images can provide comprehensive scene informa-
tion for intelligent vehicle systems, thus aiding in scene perception and decision making. However,
under adverse weather conditions (such as fog), the performance of methods can be compromised
due to incomplete observations. Considering the success of domain adaptation in recent years, we
believe it is reasonable to transfer knowledge from clear and existing annotated datasets to images
with fog. Technically, we follow the main workflow of the previous SDAT-Former method, which in-
corporates fog and style-factor knowledge into the teacher segmentor to generate better pseudo-labels
for guiding the student segmentor, but we identify and address some issues, achieving significant
improvements. Firstly, we introduce a consistency loss for learning from multiple source data to
better converge the performance of each component. Secondly, we apply positional encoding to
the features of fog-invariant adversarial learning, strengthening the model’s ability to handle the
details of foggy entities. Furthermore, to address the complexity and noise in the original version, we
integrate a simple but effective masked learning technique into a unified, end-to-end training process.
Finally, we regularize the knowledge transfer in the original method through re-weighting. We
tested our SDAT-Former++ on mainstream benchmarks for semantic segmentation in foggy scenes,
demonstrating improvements of 3.3%, 4.8%, and 1.1% (as measured by the mIoU) on the ACDC,
Foggy Zurich, and Foggy Driving datasets, respectively, compared to the original version.

Keywords: semantic segmentation in foggy scenes; unsupervised domain adaptation; UDA;
self-training

1. Introduction

Among the various perception methods, vision-based methods have attracted interest
due to their comprehensive, intuitive, and cost-effective advantages [1,2]. In particular,
robust semantic segmentation [3–10] based on visual images is important for autonomous
driving, as it can save on the huge costs of installing auxiliary sensors (like LiDAR), thereby
effectively aiding intelligent vehicles.

However, the segmentation models trained on clear-scene datasets often generalize
poorly under adverse weather conditions (such as foggy scenes [11]) due to the degradation
of visibility [12]. Meanwhile, the cost of directly producing annotations for foggy images is
much higher than for clear ones, which makes it difficult to address the problem of semantic
segmentation in foggy scenes (SSFS) using a traditional fully supervised training strategy.
At present, the most common way is to transform it into a domain adaptation (DA) problem
[13], which uses finely annotated datasets containing clear scenes (such as Cityscapes [14])
as the source domain and foggy scenes as the target domain (with no labels) to transfer
the segmentation knowledge by training a DA model. Domain adaptation methods are
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often based on Generative Adversarial Networks (GANs) [15] and self-training [16]. GAN-
based DA methods regard domain differences as noise that needs to be aligned across
the input [15,17,18], feature [19], and output spaces [20,21]. Self-training methods [22–25]
use the current model to generate pseudo-labels on the target domain and perform self-
guidance. But directly using DA methods makes it challenging to handle large dual-domain
differences (such as style differences between cities and visual degradation caused by haze),
resulting in poor-quality pseudo-labels. These methods tend to easily generate a large area
of classification error at the boundary between fog and objects [11]. Some methods [26–28]
introduce intermediate domains to reduce the domain gap by collecting or generating a set
of images with different degrees of haze or from different time periods using curriculum
learning strategies. But they require a large amount of data and are prone to accumulating
errors. Recently, introducing a single clear domain as an intermediate domain [29] has
gained attention, as this approach only requires collecting clear images from the target
city to serve as the intermediate domain. Cycle training or spatial alignment can then be
used on this domain to guide the segmentation of target domain images. However, the
intermediate domain and target domain information are still treated independently and
not fully utilized. In contrast, our method integrates information from various domains
through cyclical training, thus achieving the organic integration of information.

Despite the importance of both style gap and fog gap, most methods still focus on
only one of them, resulting in little improvement when facing real foggy scenes. This may
be due to the different training paradigms. When dealing with the fog gap, adversarial
training strategies or explicit fog modeling approaches are often used, whereas excellent,
newly developed methods mainly adopt self-training strategies [22,23,25,30] when dealing
with the style gap. Simply combining the two strategies can cause interference between
sub-modules due to chaotic backward gradients. Recently, the authors of SDAT-Former
[1] proposed a strong teacher for foggy road scene semantic segmentation, which differs
from previous domain adaptation methods, as it considers both style and fog knowledge,
successfully transferring style-invariant knowledge and fog-invariant knowledge to the
teacher segmentor [25,31]. This enables the teacher segmentor to have a broader perspective
and generate superior pseudo-labels in the target domain, thereby guiding the training
of the student segmentor (the main segmentor to be published). Specifically, this method
divides the entire training process into several mini-epochs, each consisting of four itera-
tions that perform fog-invariant adversarial learning, intermediate domain style feature
learning, information integration, and target domain mask domain adaptation, respectively.
This effectively solves the mutual interference between gradients and successfully han-
dles the problem of significant style and fog differences, surpassing the previous year’s
state-of-the-art solutions on mainstream foggy scene semantic segmentation benchmarks.

However, SDAT-Former [1] still has many drawbacks. Firstly, the extraction of style
features in the intermediate domain is cumbersome and cannot be integrated into an end-to-
end training process. SDAT-Former first trains an LSGAN [17] to apply the source domain
style to the intermediate domain images, then uses DAFormer [25] to predict the labels of
the transformed images. These training steps are performed offline and consume significant
computational resources and time. Additionally, when the intermediate domain changes,
the corresponding models need to be retrained to generate new data. The style features
learned by the GAN-based models may not be comprehensive due to down-sampling
operations for calculating discrimination probabilities [17] and artifacts [1]. In this case,
the label-based learning approach is prone to introducing noise, which can damage the
model. Secondly, in the fog-invariant feature learning step, the original feature dimension
is too low, but the actual variations in fog may be subtle, leading to the extracted features
not being representative enough. Furthermore, the three components of SDAT-Former
contribute equally to the parameters of the teacher segmentor, but in reality, they should be
assigned weights or dynamically adjusted. Finally, the performance of each component
eventually converges to a stable condition, but the SDAT-Former method does not take this
factor into account or adopt appropriate consistency constraints to accelerate convergence.
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Based on the above, we propose the improved “SDAT-Former++” which is shown
in Figure 1. This new version retains the cyclical training strategy from SDAT-Former
[1] but incorporates substantial optimizations. To address the complexity of intermediate
domain learning, we introduce a simple but effective strategy using masked autoencoder
learning [32,33], which can align the context by predicting masked images. This approach
enables the model to better distinguish similar categories such as roads and sidewalks. By
directly recovering the masked intermediate domain images, we use a basic backbone to
learn the style features of the intermediate domain in a complete and artifact-free manner.
Moreover, the knowledge is directly saved in the model’s parameters, thus facilitating an
end-to-end training process without the need for extra offline operations. Additionally,
the model can start training directly when the intermediate domain changes, achieving
a complete separation between the model and the data. To tackle the problem of low
feature dimensions and inadequate representations in fog-invariant learning, we introduce
positional encoding [34,35] to separate more high-dimensional details, making the fog
discriminator more sensitive and compelling the fog-invariant feature extractor to be
robust. To address the issue of evenly distributed knowledge transfer, we introduce weight
perturbations based on a random distribution for regularization.

Figure 1. The main idea of the proposed method. Unlike the original SDAT-Former, we optimize
the learning of style information and add feature enhancement for fog-invariant feature learning,
greatly reducing the computing consumption and integrating the processing pipeline. We also add
consistency learning and dynamic weighting when processing the knowledge transfer.

Compared to the original SDAT-Former publication, this paper provides more com-
prehensive experimental results and technical details. In addition to the existing ACDC
[36] and Foggy Zurich [27] datasets, a more challenging dataset, Foggy Driving Dense [37],
is also included. We also conduct extensive ablation experiments and provide favorable
entropy analysis evidence.

The contributions of this work can be summarized as follows:

• To the best of our knowledge, this work is the first to propose an end-to-end cyclical
training domain adaptation semantic segmentation method that considers both style-
invariant and fog-invariant features.

• Our method proves the importance of masked learning and feature enhancement in foggy
road scene segmentation and demonstrates their mechanisms through visualizations.

• Our method significantly outperforms SDAT-Former on mainstream benchmark
datasets for foggy road scene segmentation and exhibits strong generalization in rainy
and snowy scenes. Compared to the original method, SDAT-Former++ pays more
attention to the more important categories in road scenes and is more suitable for ap-
plications in intelligent vehicles. We test our SDAT-Former++ method on mainstream
benchmarks for semantic segmentation in foggy scenes and demonstrate improve-
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ments of 3.3%, 4.8%, and 1.1% (as measured by the mIoU) on the ACDC, Foggy Zurich,
and Foggy Driving datasets, respectively, compared to the original method.

2. Method
2.1. Overview

Suppose there are Ns labeled images
{(

xi
s, yi

s
)}Ns

i=1 from the clear source domain s,

where yi
s is the pixel-level segmentation label for xi

s, and Nt unlabeled images
{

xk
t

}Nt

k=1
from

the target foggy domain t. Our goal is to transfer segmentation knowledge from the clear
source domain s to the foggy target domain t using our proposed SDAT-Former++ method.
Motivated by the success of DAFormer [25], we use a similar framework including a
“student” segmentor and a “teacher” segmentor to train in a self-training manner. However,
since the images in domain s and domain t were taken in different cities and under different
weather conditions, they exhibit a large domain gap caused by two factors, i.e., the style
factor and the fog factor, which poses a challenge to this method. Therefore, we introduce

an intermediate domain m with Nm unlabeled images
{(

xj
m

)}Nm

j=1
. This domain shares

similar fog influence (no fog) to the source domain and similar style variation to the target
domain (imaged in the same city). We also call these images the “reference images” Iref

of the foggy images Ifog. Thus, our main goal is to cumulatively transfer four kinds of
knowledge to the “teacher” segmentor to generate more robust pseudo-labels of t, thereby
empowering the “student” segmentor to complete the segmentation tasks: (a) segmenting
the knowledge from s, (b) segmenting the style knowledge from m, (c) segmenting the
knowledge from t, and (d) identifying and removing fog. Among these, (c) and (d) focus on
overcoming the “fog gap” between s and t, whereas (b) focuses on the “style gap”. Figure 2
depicts the framework of our proposed method.

Concretely, we reorganize the training workflow cyclically, where every four iterations
constitute a “mini-epoch”. The segmentation knowledge from s can be learned from labels{(

yi
s
)}Ns

i=1 in a supervised way (Figure 2A), and we train it throughout the process. In the
first iteration of a mini-epoch, a fog-pass filter [38] is trained for discriminating fog factors
from the clear source domain m and foggy target domain t (Figure 2B.1). Here, we use
positional encoding (PE) [34,35] to enhance the features and capture more high-frequency
information. In the second iteration, the segmentor backbone is trained to generate features
that fool the fog-pass filter (Figure 2B.2). These two iterations aim to train a robust extractor
for fog-invariant features in an adversarial manner. For the third iteration, we abandon the
complex operation mode in the original version of the method [1] and use a feature extractor
with a decoder to recover the masked images {(x̃j

m)}Nm
j=1 from the intermediate domain and

extract style features. In the last iteration, the parameters stored in the teacher segmentor
can be updated by the “student” segmentor (containing knowledge from s), the “teaching-
assistant” backbone (containing style knowledge from m), and the fog-invariant backbone
(containing fog-invariant knowledge) in an exponential moving average (EMA) [31] way
with dynamic weight (DW) (Figure 2D. Then, the self-training process is performed on the
target foggy domain t. Thus, the “teacher” can be “strong” enough to handle the domain
gap and guide the student (main) segmentor.

2.2. Sub-Modules

The main workflow includes 6 sub-modules: (a) “student” segmentor fθ (can be
published as the final segmentor), (b) “teaching assistant” backbone bsi

ψ (learns the style
knowledge), (c) decoder dr for reconstruction, (d) “teacher” segmentor hϕ, (learns knowl-
edge from the target domain), (e) fog-invariant backbone bfi

ω , and (f) fog-pass filter F (learns
to recognize fog factors).

All the segmentors contain a backbone and decoder head. The backbone follows the
design of Mix Transformers (MiT) [39] to produce multi-level feature maps, whereas the
decoder head follows ASPP [40] to predict segmentation maps. The fog-invariant backbone
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bfi
ω shares the same architecture as MiT for subsequent knowledge transfer. The fog-pass

filter F follows the design in FIFO [38]. The detailed architectures are described later.

Figure 2. The overall workflow of our method. (Left) Training flow within a mini-epoch that can be
repeated as the base training unit. (Right) The sub-process (A–E) includes learning segmentation and
style knowledge from the source and intermediate domains (A,C), attempting to train the backbone
producing fog-invariant features adversarially (B.1,B.2), transferring all knowledge to the teacher
(D), and compelling it to generate better pseudo-labels for supervision (E).

2.3. Supervised Training on Source Domain

Denote H and W as the height and width of the input image size and C as the number
of object categories. First, we can use fθ to learn the segmentation knowledge from the
labeled source domain

{(
xi

s, yi
s
)}Ns

i=1 using a categorical cross-entropy loss function:

Li
s = −

H×W

∑
p=1

C

∑
c=1

y(i,p,c)
s log fθ(xi

s)
(p,c)

(1)

2.4. Masked Learning on the Intermediate Domain

In the original version of SDAT-Former [1], an LSGAN [17] is used to transfer styles
between the source domain and the intermediate domain. Then, the source styles are
applied to the later images to narrow the domain gap. Next, a DAFormer [25] model is
used to predict the transformed images {(x̃j

m)}Nm
j=1 and generate pseudo-labels, which have

the same spatial layout as the original images {(xj
m)}Nm

j=1. This method adds two offline
training steps and results in a significant loss in the resolution and details of the predicted
values, even leading to artifacts. Training based on such pseudo-labels inevitably introduces
noise. Moreover, when changing the intermediate domain, we have to reconfigure two
pre-trained networks, influencing the deployment.

Since learning based on intermediate domain data aims to capture style features,
pseudo-labels may not be necessary. In this section, we introduce a more concise method to
model masked images. Specifically, we employ a uniform distribution to randomly sample
a mask:

Mmb+1:(m+1)b
nb+1:(n+1)b

= [v ≥ r] with v ∼ U(0, 1) (2)
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where [∗] is the Iverson bracket, b is the patch size, r is the mask ratio, and m ∈ [0..W/b− 1]
and n ∈ [0..H/b− 1] are the patch indices. Thus, we obtain the masked intermediate image
x̃j

m through element-wise multiplication of the mask and image:

x̃j
m = M� xj

m (3)

Then, we try to use encoder bsi
ψ and decoder dr to recover the original image:

xj,rec
m = bsi

ψ(dr(x̃j
m)) (4)

We force the model to adopt the L1 loss function to recover the original image infor-
mation. As a result, the feature extraction network obtains more realistic and context-aware
style features, which are difficult to achieve through label-based approaches and do not
lead to any resolution loss or noise:

Lrec
m = |xj,rec

m − xj
m| (5)

The knowledge from the intermediate domain can be stored in the parameters of bsi
ψ ,

which can be passed to the “teacher” segmentor rather than being directly transferred to
the final segmentor. This part is described in Section 2.7.

2.5. Fog-Invariant Feature Learning

Here, we focus on overcoming the fog gap between the intermediate domain and the
target domain. Since Section 2.4 described the learning of cross-style knowledge, now,
we only need to process the fog factor. That is, the final segmentor should output the
fog-invariant features from the pair of foggy and non-foggy images. To achieve this, we
design a fog-invariant feature extractor bfi

ω and a fog-pass filter F based on the architecture
of FIFO [38].

2.5.1. Training the Fog-Pass Filter

Given a pair of images (Ia, Ib) from the mini-batch, bfi
ω can output L layer features

of each image. We follow FIFO [38] to calculate these features’ Gram matrix to capture
a holistic fog representation denoted as {(ua,l , ub,l)}L

l=1. Denote F l as the fog-pass filter
attached to the lth layer feature. The fog factors of these two images can be computed by
fa,l = F l(ua,l) and fb,l = F l(ub,l), respectively.

To enhance the representation of the fog factors, we follow previous works [34,35,41]
and adopt a sinusoidal positional encoding scheme to capture the high-frequency details:

ψ(f) = (sin(ω1f), cos(ω1f), ..., sin(ωnf), cos(ωnf)) (6)

where the frequencies ω1, ω2, ...ωn are learnable during training and n is the positional
encoding dimension. The role of the fog-pass filter is to inform the fog-invariant backbone
bfi

ω about how Ia and Ib are different in terms of fog conditions through ψ(fa,l) and ψ(fb,l).
For this purpose, the fog-pass filter learns a space of fog factors, where those of the same
fog domain are grouped closely together and those of different domains are far apart. The
loss function for F l is designed as follows:

LF l = ∑
(a,b)

(1−Π(a, b))
[
m− d(ψ(fa,l), ψ(fb,l))

]2

+Π(a, b)
[
d(ψ(fa,l), ψ(fb,l))−m

]2
(7)

where d() is the cosine distance, m is the margin, and Π(a, b) denotes the indicator function
that returns 1 if Ia and Ib are of the same fog domain and 0 otherwise.
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2.5.2. Fog Factor Matching Loss

In contrast to the function of the fog-pass filter, which attempts to separate the fog
factors of different fog domains, the fog-invariant backbone bfi

ω learns to close the distance
between the fog factors. To this end, the second loss matches the two fog factors given by
frozen fog-pass filters:

Ll
f sm(ψ(f

a,l), ψ(fb,l)) =
1

4d2
l n2

l

dl

∑
i=1

(ψ(fa,l
i )− ψ(fb,l

i ))
2

(8)

where dl and nl denote the dimensions of their fog factors and the spatial size of the lth

feature map, respectively. The knowledge from fog-invariant training can be also stored in the
parameters in bfi

ω and can be passed to the “teacher” segmentor, as described in Section 2.7.

2.6. Self-Training on the Target Domain and Consistency Learning

We use a teacher segmentor hϕ to directly address the two gaps (style + fog) between
the source domain and the target domain to obtain better domain adaptation performance.
Specifically, hϕ can first produce pseudo-labels for the foggy target domain data

ỹ(k,p,c)
t =

[
c = arg maxc′hϕ(xk

t )
(p,c′)

]
(9)

Additionally, a quality (confidence) estimation is produced for the pseudo-labels. Here,
we use the ratio of pixels exceeding a threshold τ of the maximum softmax probability

qk
t =

∑H×W
p=1

[
maxc′hϕ(xk

t )
(p,c′) ≥ τ

]
H ×W

(10)

The pseudo-labels and their quality estimates are used to additionally train the seg-
mentor hϕ on the target domain

Lk
t = −

H×W

∑
p=1

C

∑
c=1

qk
t ỹ(k,p,c)

t log hϕ(xk
t )

(p,c)
(11)

The self-training process can be more efficient if the segmentor is trained on augmented
data [42]. In this work, we follow DACS [23] and employ color jitter, Gaussian blur, and
ClassMix [43] for data augmentation to learn more domain features. To accelerate the
training, we introduce a consistency learning strategy between teacher hϕ and student
fθ . Specifically, for one specific sample x, we use the Kullback–Leibler divergence as a
consistency loss, forcing convergence between the teacher and student

Lcon(x) = ∑
i

KLdiv( fθ(x), hϕ(x)) (12)

2.7. Cyclical Training with Knowledge Transferring

The above steps facilitate domain adaptation learning from different levels, but they
need to be organically combined. If we include so many backward processes in a single
iteration, the gradient propagation could be easily confused and the sub-modules could
face potential interface issues Thus, we use cyclical training and build a “strong teacher”
to merge the above-mentioned knowledge. We divide every four iterations into a “mini-
epoch”. Considering that fog-invariant feature learning works adversarially, we allocate
the 1st and 2nd iterations to train the fog-pass filter F and fog-invariant backbone bfi

ω

successively. The 3rd iteration is allocated to intermediate domain learning using the
teaching-assistant segmentor gψ. For the 4th iteration, since the intermediate feature
extractor bsi

ψ does not need to complete segmentation, we remove the pre-updating used
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in [1] to prevent interface issues. All the knowledge can be transferred to the teacher
segmentor through an optimized three-step exponentially moving average (EMA[31])
update (Figure 2D):

ht+1
ϕ = α1ht

ϕ + (1− α1)b
fi|t
ω

ht+2
ϕ = α2ht+1

ϕ + (1− α2) f t
θ

ht+3
ϕ = α3ht+2

ϕ + (1− α3)b
si|t
ψ

(13)

where αi = α + δi δi ∼ N(0, V) , i.e., the parameters are perturbed by a normal
distribution and thus the knowledge can be regularized. Then, we conduct self-training on
the target domain, as described in Section 2.6. In our proposed method, we use EMA [31] to
update the model parameters because it can transmit domain knowledge while protecting
the segmentor from the noise in the pseudo-labels [44]. Thus, the teacher segmentor can be
powerful enough to guide the student segmentor in the domain adaptation training. In the
ablation study, we discuss EMA updating in detail.

3. Results
3.1. The Network Parameters

Our implementation was based on the mmsegmentation framework [45] and PyTorch [46].
The MiT-b5 backbone (used in fθ , hϕ, gψ, and bfi

ω) produced a feature pyramid with channels
of 64, 128, 320, and 512. The ASPP decoder used nch = 256 and dilation rates of 1, 6, 12,
and 18. All encoders were pre-trained on the ImageNet-1k [47] dataset. The fog-pass filters
F were composed of a fully connected layer and LeakyReLU layer to convert the Gram
matrix of the feature maps into fog vectors.

3.2. Implementation Details

The main workflow was trained by AdamW [48], the learning rate was 6× 10−5 with
a weight-decay of 0.01, and linear learning rate warm-up followed the “poly” strategy
after 1.5k iterations. All the input images and labels were cropped to 512× 512, and the
maximum number of training iterations was 40k. Following DACS [23], we used the same
data augmentation parameters and set α = 0.99, τ = 0.968, and the perturbation variance
V = 0.1. We set the weight of the source domain supervised learning loss (Equation (1)) to
1 and the weight of the intermediate domain style feature learning loss (Equation (5)) to 0.5.
Following FIFO [38], we set the loss weights for both the fog-pass-filter loss (Equation (7))
and the fog factor matching loss (Equation (8)) to 0.001, with m = 0.1. We set the weight of
the consistency learning loss (Equation (12)) to 0.1 to avoid learning errors from the teacher
network. The weight of the loss function in the target domain had already been determined
based on confidence and did not need to be set manually. The dimension n for positional
encoding was set to 512. All the experiments were conducted on a single Tesla-v100 GPU
with a memory of 32 GB and equipped with CUDA 10.2.

3.3. Datasets

Cityscapes [14] is a real-world dataset composed of street scenes captured in
50 different cities. The data split includes 2975 training images and 500 validation im-
ages with pixel-level labels. The Cityscapes dataset is the source domain and shares the
same class set with all the datasets mentioned in this paper.

ACDC [36] contains four categories of adverse conditions (fog, snow, rain, and night-
time) with pixel-level annotations. Each category contains 1000 images and is split into a
train set, validation set, and test set at a ratio of about 4:1:5. The annotations of the test set
were withheld for online testing. We mainly used the foggy images. Moreover, the ACDC
dataset also provides clear reference images of each foggy image, which can be used as the
intermediate domain.



Remote Sens. 2023, 15, 5704 9 of 19

Foggy Zurich [11] contains 3808 real foggy road views from the city of Zurich and
its suburbs. It is split into two categories of fog density—light and medium—consisting
of 1552 and 1498 images, respectively. It has a test set, Foggy Zurich-test, which includes
40 images with labels that are compatible with those of Cityscapes.

Foggy Driving [11] contains 101 real-world foggy images collected from the Internet
with different sizes and fog densities, including a challenging subset of 21 images with
“dense fog” (referred to as Foggy Driving Dense) [37]. The dataset can only be used
for evaluation.

The comparison results are shown in Table 1 and Table 2.

Table 1. Performance comparison I. Experiments were conducted on the ACDC [36] and Foggy
Zurich-test (FZ) [27] dataset, measuring the mean intersection over union (mIoU) (%) across all
19 classes following the Cityscapes [14] benchmark.

Experiment Method Backbone ACDC FZ Experiment Method Backbone ACDC FZ
- DeepLabv2 [49] 33.5 25.9 LSGAN [17] DeepLabv2 29.3 24.4
- RefineNet [50] 46.4 34.6 Multi-task [51] DeepLabv2 35.4 28.2
- MPCNet [4] 45.9 39.4 AdaptSegNet [20] DeepLabv2 31.8 26.1

Backbone

- SegFormer [39] 47.3 37.7 ADVENT [21] DeepLabv2 32.9 24.5
DCPDN [52] DeepLabv2 33.4 28.7 CLAN [22] DeepLabv2 38.9 28.3
MSCNN [53] RefineNet 38.5 34.4 BDL [30] DeepLabv2 37.7 30.2

DCP [54] RefineNet 34.7 31.2 FDA [55] DeepLabv2 39.5 22.2
Non-local [56] RefineNet 31.9 27.6 DISE [19] DeepLabv2 42.3 40.7

Dehazing

SGLC [57] RefineNet 39.2 34.5 ProDA [24] DeepLabv2 38.4 37.8
SFSU [11] RefineNet 45.6 35.7 DACS [23] DeepLabv2 41.3 28.7

CMAda [27] RefineNet 51.1 46.8 DAFormer [25] SegFormer 48.9 44.4Synthetic
FIFO [38] RefineNet 54.1 48.4

DA-based

CuDA-Net [26] DeepLabv2 55.6 49.1
SDAT SDAT-Former [1] SegFormer 56.0 49.0 Ours SDAT-Former++ SegFormer 59.3 53.8

3.4. Performance Comparison

We compared our method to several categories of methods, including:

• Backbones: RefineNet [50], Deeplabv2 [49], MPCNet [4], and SegFormer [39].
• Dehazing methods: MSCNN [53], DCP [54], SGLC [57], DCPDN [52], and non-local [56].
• DA-based methods: LSGAN [17], AdaptSegNet [20], Multi-Task [51], ADVENT [21],

CLAN [22], BDL [30], FDA [55], DISE [19], ProDA [24], DACS [23], DAFormer [25],
and CuDA-Net [26].

• Synthetic methods: SFSU [11], CMAda [27], and FIFO [38]

The configuration of each type of method was as follows. We trained the backbone
methods on the Cityscapes dataset with labels and tested them on the ACDC and Foggy
Zurich datasets to evaluate their performance across the domains. We set the source
domain for the DA-based methods as clear Cityscapes, representing the s domain in our
method. We used the fog images from ACDC and Foggy Zurich (with medium-level fog)
as the target domain data. For the intermediate domain m, we combined the ACDC fog
reference set (1000 images) with a manual selection of 600 clear images from the Foggy
Zurich dataset (light-level fog). For the synthetic methods, the paradigm was to fine-
tune the segmentation model pre-trained on clear weather images from Cityscapes. This
fine-tuning used synthetic foggy images, such as those from Foggy Cityscapes DBF [11],
along with labels corresponding to their clear weather images. We first used the dehazing
methods to dehaze the foggy images and then used the corresponding backbone segmentor
for predictions.

We compared our method to other outstanding works on the relatively easy ACDC-
test [36] and Foggy Zurich-test [27] datasets. Table 1 shows the results, and the results
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from the ACDC dataset can be found on the https://acdc.vision.ee.ethz.ch/benchmarks#
semanticSegmentation (accessed on accessed on 11 February 2023). ACDC-fog benchmark
website (with our method named “SDAT-Former++”). Our method significantly outper-
formed the baseline algorithm DAFormer [25], yielding 10.4% and 9.4% higher mIoU values
on the two datasets, respectively. Our method also outperformed the recently proposed
MPCNet (in RS 2023 [4]) and SGLC (in CVPR23) [57], thus demonstrating the necessity of
developing semantic segmentation methods for foggy scenarios. Compared to the original
SDAT-Former [1], our method achieved improvements of 3.3% and 3.4%. This indicates that
our method is robust without any special operations or removal of fog. Since the ground
truths from the ACDC-test dataset were withheld, we used the Foggy Zurich-test [27] and
Foggy Driving Dense datasets for qualitative comparison. The upper three rows in Figure 3
show the results on the challenging Foggy Driving Dense dataset [11], and the bottom
three rows correspond to Foggy Zurich images output by DAFormer [25] (our baseline),
CuDA-Net [26], MPCNet [4], SDAT-Former [1], and SDAT-Former++. Due to DAFormer’s
inability to handle style differences in intermediate domains, it failed to handle the sky
in foggy conditions. CuDA-Net removed these artifacts but made mistakes in identifying
objects occluded by fog (as shown by the yellow box). MPCNet tended to classify fog as
buildings or fences. In contrast, our method was highly accurate in segmenting details and
handling fog.

Input DA-F CD-Net MPCNet SDAT-F SDAT-F++ GT
Figure 3. Qualitative comparison with other methods. Since the ground truths from the ACDC-test
dataset were withheld and the fog in the images from the Foggy Driving dataset was light, we randomly
selected images from the challenging Foggy Driving Dense dataset (top three lines) and Foggy
Zurich-test dataset (bottom three lines) with dense fog to compare the performance of our method
with that of other methods.

Then, we tested our method on the Foggy Driving (FD) [11] and the more challenging
Foggy Driving Dense (FDD) [37] datasets. Many methods lost competitiveness or were
completely ineffective on these datasets, so only a subset of methods was chosen for
comparison. In Table 2, it can be seen that our method achieved improvements of 8.1%
and 12.6% in terms of the mIoU over the baseline algorithm DAFormer [25] on FD and
FDD, respectively. Our method also outperformed CuDA-Net (with improvements of 1.9%

https://acdc.vision.ee.ethz.ch/benchmarks#semanticSegmentation
https://acdc.vision.ee.ethz.ch/benchmarks#semanticSegmentation
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and 3.0%) and FIFO (with improvements of 4.7% and 2.4%). In Figure 3, it can be seen that
our method better preserved the segmentation of small objects in the images, for example,
the “pole” in the second row, the traffic lights in the third row, and the road signs in the
fourth row. This indicates that our method can effectively distinguish small objects while
removing the effects of fog, which is crucial for the stability of segmentation.

Table 2. Performance comparison II. Experiments were conducted on the Foggy Driving [11] and
Foggy Driving Dense [37] datasets, measuring the mean intersection over union (mIoU) (%) across
all classes.

Experiment Method Backbone FD FDD
- DeepLabv2 [49] 26.3 17.6
- RefineNet [50] 34.6 35.8Backbone
- SegFormer [39] 36.2 37.4

CMAda3 [27] RefineNet 49.8 43.0
Synthetic

FIFO [38] RefineNet 50.7 48.9
AdaptSegNet [20] DeepLabv2 29.7 15.8

ADVENT [21] DeepLabv2 46.9 41.7
FDA [55] DeepLabv2 21.8 29.8

DAFormer [25] SegFormer 47.3 39.6
DA-based

CuDA-Net [26] DeepLabv2 53.5 48.2
SDAT-Former[1] SegFormer 54.3 50.8

Ours
SDAT-Former++ SegFormer 55.4 51.2

4. Discussion
4.1. Effectiveness of Fog-Invariant Feature Learning

In Table 3, it can be seen that the non-modified DAFormer, which is also the baseline
of the original SDAT-Former, only yielded an mIoU of 48.92% on ACDC. Since we used
adversarial training to acquire fog-invariant features, cyclical training was necessary to
avoid gradient interference. This shows that the segmentor achieved an mIoU gain of
+4.92% after the addition of this component, which was the most significant contribution to
the performance improvement.

Table 3. Ablation study. We conducted an ablation study on the ACDC-test dataset, measuring the
mIoU (%) across all classes.

Experiment mIoU Gain
Initialization DAFormer 48.92 +0.00

Cyclical(w/o DW 1) imd(ls+da) 2 fog_inv 3(w/o PE 4) mIoU Gain
10.23 −38.69

3 49.88 +0.96
3 50.52 +1.60

3 3 51.61 +2.69
3 3 53.84 +4.92

SDAT-F [1]

3 3 3 55.98 +7.06
Cyclical(w/ DW) imd(masked) con_learn 5 fog_inv(w/ PE) mIoU Gain

3 50.34 +1.42
3 52.63 +3.71

3 51.33 +2.41
3 3 56.19 +7.27
3 3 3 58.42 +9.50

SDAT-F++

3 3 3 3 59.28 +10.36
1 Indicates dynamic weight allocation. 2 Indicates use of LSGAN [17] and DAFormer [25] to obtain pseudo-labels.
3 Note that cyclical training is necessary for fog-invariant learning; we did not experiment with fog-invariant
learning alone. 4 Indicates positional encoding. 5 Consistency learning.
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As depicted in the qualitative results in Figure 4, without fog-invariant learning, the
segmentor exhibited prediction drift in foggy conditions, such as misidentifying the sky as
vegetation and road, which is consistent with the reports in FIFO [38].

For SDAT-Former++, a 9.50% improvement in the mIoU was achieved after performing
fog-invariant feature learning, and the incorporation of positional encoding resulted in
a further performance improvement (4.58% higher), indicating that positional encoding
effectively enhanced the depiction of fog-related details in images. Figure 5 demonstrates
this in two aspects: (1) capturing motion blur and (2) improving the identification of
obscured objects within the fog. As shown in the first row, the original SDAT-Former
exhibited incomplete segmentation of nearby objects, whereas SDAT-Former++ effectively
overcame motion blur, thereby contributing to safer vehicle behavior. In the second row,
SDAT-Former failed to detect a tree hidden in the dense fog, whereas the new version with
positional encoding accurately captured this obscured element.

Input DA-F w/o imd w/o fog_inv SDAT-F++ GT
Figure 4. Qualitative results of ablation study. These experiments were conducted on the Foggy
Zurich-test dataset. Both points (i.e., intermediate domain style learning (Column 3) and fog-invariant
feature learning (Column 4)) yielded significant improvements compared to the baseline.

Figure 5. Qualitative results for the incorporation of positional encoding in fog-invariant learn-
ing. From left to right: input image, performance without/with position encoding. Compared to the
original method [1], our method can better overcome incomplete segmentation caused by motion
blur and effectively identify objects obscured by dense fog.

4.2. Effectiveness of Style-Invariant Features Learning

In Figure 4, without the help of the intermediate domain, the segmentor misjudged
the sky and some ground categories, even with the fog-invariant module. Interestingly,
the original DAFormer identified the sky as buildings, but after adding the intermediate
domain information, this prediction became vegetation and road. This also illustrates the
influence of style information implicitly.

The knowledge from the intermediate domain was mainly used to help the segmentor
address the style gap. For SDAT-Former, the segmentor achieved an mIoU gain of +1.60%
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by learning on the intermediate domain. For SDAT-Former++, this gain was 3.71%. As
mentioned before, pseudo-label learning based on style transformations introduces noise.
Figure 6 shows some bad pseudo-labels with artifacts and incomplete segmentation of
entities. This can inevitably affect training. After SDAT-Former++ adopted mask learning,
these problems were avoided.

Figure 6. Qualitative comparison of using masked learning in the intermediate domain. From left
to right: Input image, bad prediction by SDAT-Former [1], refined prediction by our method. The
original version uses style transfer, which can inevitably lead to artifacts in predictions, whereas
SDAT-Former++ does not.

4.3. Effectiveness of Cyclical Training

The main purpose of cyclical training was to integrate different training paradigms.
It did not significantly improve the performance of the segmentor, but its absence could
have been fatal. In Table 3, it can be seen that our segmentor obtained an mIoU gain of
+0.96% using cyclical training because no changes happened in the sub-modules. After
using dynamic weight allocation, the performance improved by +1.42%. However, without
cyclical training, our model only achieved an mIoU of 10.2, which means that training
failed. In addition, cyclical training was also necessary for fog-invariant feature learning.
This method effectively prevents gradient confusion in the temporal dimension and is a
promising training strategy for the future.

4.4. What Does SDAT-Former++ Learn?

To further investigate the roles of masked learning and fog-invariant learning, we visu-
alized the feature maps of the style-invariant backbone bsi

ψ and the fog-invariant backbone
bfi

ω. We averaged the second dimension of the multi-channel tensor, where brighter pixels
indicate higher values. In Figure 7, from left to right are the intermediate domain image,
the output of bsi

ψ without masked learning (SDAT-Former [1]), its target domain image,
and the output of bfi

ω without and with positional encoding. Qualitatively, the model bsi
ψ

focused more on contextual information and extracted more complete features after using
masked learning, which was mostly domain-independent (such as edges and contours).
On the other hand, the fog-invariant backbone performed a distinct “binary classification”
on objects and fog, with the classification becoming more refined after the use of feature
enhancement through positional encoding. Both of these knowledge transfer processes
were handed over to the teacher network hϕ, demonstrating the robust recognition ability
of SDAT-Former++.
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Input(M) bsi
ψ w/o ML bsi

ψ w/ ML Input(T) bfi
ω w/o PE bfi

ω w/ PE

Figure 7. Qualitative feature maps of bsi
ψ and bfi

ω . From left to right: intermediate domain image,
output of bsi

ψ without masked learning (SDAT-Former [1]) and the case with it, target domain image,

output of bfi
ω without and with positional encoding.

4.5. Sensitivity Analysis/Adaptability to Fog

We did not design additional modules specifically for fog processing, but our method
demonstrated excellent anti-fog interference performance, which was analyzed using
entropy. The brighter the pixels in the entropy map, the higher the uncertainty, indicating
that the model was more likely to make incorrect judgments. Conversely, the model output
more certain segmentation results. However, the model also generated high-certainty but
incorrect segmentation. Therefore, only the segmentation models that resulted in low
entropy predictions and conformed to the distribution of the real-world scenario were
truly notable. We performed predictive entropy analysis on the images from the Foggy
Driving Dense dataset [37], as shown in Figure 8. The baseline model DAFormer [25]
made highly uncertain predictions on fog-obscured pixels, potentially leading to unsafe
situations. SDAT-Former alleviated this but still retained uncertainty. In contrast, our
model generated lower uncertainty in dense fog conditions while still producing accurate
road and sky segmentation results, demonstrating the exceptional reliability of our method.
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Figure 8. Entropy analysis. From left to right: input images (dense fog), entropy map output by
DAFormer [25], entropy map output by SDAT-Former [1], and entropy map output by our method.
Our method resulted in lower prediction entropy for the pixels occupied by fog, indicating higher
confidence in its predictions.

4.6. Number of Images from the Intermediate Domain

We explored the effect of intermediate domain images with varying quantities from dif-
ferent datasets, which is shown in Table 4. Firstly, using an exclusive intermediate domain
led to optimal results on the current dataset but did not achieve the same performance on
another dataset. For example, using intermediate domain images from the ACDC dataset

Figure 8. Entropy analysis. From left to right: input images (dense fog), entropy map output by
DAFormer [25], entropy map output by SDAT-Former [1], and entropy map output by our method.
Our method resulted in lower prediction entropy for the pixels occupied by fog, indicating higher
confidence in its predictions.

4.6. Number of Images from the Intermediate Domain

We explored the effect of intermediate domain images with varying quantities from dif-
ferent datasets, which is shown in Table 4. Firstly, using an exclusive intermediate domain
led to optimal results on the current dataset but did not achieve the same performance on
another dataset. For example, using intermediate domain images from the ACDC dataset
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resulted in a segmentor mIoU of 47.42% on the Foggy Zurich dataset. This was due to the
style variations between the datasets. Secondly, in the same dataset, the number of images
from the intermediate domain had little influence on the final performance. In other words,
the corresponding relationship between the clear domain and the foggy domain does not
need to be very strict, indicating the segmentor has adaptability in both fog-invariant
feature learning and intermediate domain segmentation learning.

Table 4. Discussion about the usage of intermediate domain images. We chose different numbers
of clear images from the different datasets, denoted asM. The results are measured by the mIoU (%).

Discussion of Numbers mIoU
400 1 600 2 1000 3 1600 4 ACDC FZ

3 56.19 47.42
3 54.17 51.61

3 59.28 53.82

Number of images from
intermediate domain

3 58.34 53.97
1 Clear reference images from the training set of the ACDC fog dataset. 2 Manually selected images from the
“light fog” category in the Foggy Zurich dataset. 3 Combination of 400 images from the ACDC dataset and
600 images from the FZ dataset. 4 Remaining 600 reference images from the ACDC fog validation/test set.

4.7. Generalization to Rainy and Snowy Scenes

We found that SDAT-Former++ could make better predictions for clear images (Figure 9).
We used the trained SDAT-Former++ to re-predict the intermediate domain images and
obtained surprisingly high-quality pseudo-labels. This indicates that the target domain is
also an “extension domain” to the intermediate domain, forcing the model to complete
more difficult tasks, potentially improving performance in the current task. Furthermore,
we tested our method on the rain and snow validation sets of the ACDC dataset (Table 5
and Figure 9), showing improvements compared to DAFormer, indicating the potential of
our method in addressing the understanding of different adverse scenes.

Table 5. Generalization to other adverse scenes. We conducted zero-shot testing on the snowy and
rainy validation sets of the ACDC dataset.

Generalization on ACDC Validation Subsets Rain Snow
SegFormer(no UDA) [39] 40.62 42.03
DAFormer(baseline) [25] 48.27 49.19

SDAT-Former [1] 53.99 58.04
Method

SDAT-Former++ 56.83 60.14
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Figure 9. Qualitative results of generalization on rainy and snowy images. From left to right:
input images, predictions of DAFormer [25], predictions of SDAT-Former [1], and predictions of our
method. These experiments were conducted on the ACDC rain and snow subsets. We directly used
the checkpoint acquired by this paper to test without any extra training. The newly proposed SDAT-
Former++ greatly improved segmentation compared to DAFormer and the original SDAT-Former.

Figure 9. Qualitative results of generalization on rainy and snowy images. From left to right:
input images, predictions of DAFormer [25], predictions of SDAT-Former [1], and predictions of our
method. These experiments were conducted on the ACDC rain and snow subsets. We directly used
the checkpoint acquired by this paper to test without any extra training. The newly proposed SDAT-
Former++ greatly improved segmentation compared to DAFormer and the original SDAT-Former.

4.8. Order of EMA Updating

EMA updating is a temporal ensemble algorithm, signifying that (a(x + b) 6= ax + b);
thus, different sequences of EMA updating may affect the final parameters of the segmentor.
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In Table 6, we present the results of an ablation study on the order of EMA updating. The
results show that altering the sequence of EMA updating concerning the teacher segmentor
had little effect on performance, which can be attributed to cyclical training.

Table 6. The order of EMA updating. We designed three different sequences for parameter updating.

Order of EMA Updating mIoU Gain
Fi 2→T 3 S 1→T TA 4→T ACDC FZ

1 2 3 58.14 52.78
2 1 3 59.24 53.80
1 3 2 59.17 53.68

Configuration

1 2 3 59.28 53.82
1 “S” represents the student segmentor fθ . 2 “Fi” represents the fog-invariant backbone bfi

ω . 3 “T” represents the
teacher segmentor hϕ. 4 “TA” represents the teaching-assistant backbone bsi

ψ .

4.9. Memory Consumption Comparison

Our method does not require all modules to work simultaneously. We adopt cyclical
training where every four iterations constitute one mini-epoch, and only two–three modules
need to be executed in each iteration. Specifically, in the first and second iterations, only
the student segmentor fθ and the fog-related modules (bfi

ω and F ) are involved. The third
iteration needs fθ , bsi

ψ , and dr, whereas the fourth iteration needs fθ and hϕ. The transferring
of EMA parameters does not increase memory consumption. Due to the introduction of
new loss functions, our method consumes more memory compared to previous methods,
but it does not exceed the limit of a Tesla V100 (32 GB). During the testing phase, our
method only deploys fθ ; thus, the consumption is consistent with the original SegFormer
[39]. In this context, our method is more like online knowledge distillation, aiming to train
a better student network. We provide a comparison of the memory consumption between
our method and DAFormer [25], SegFormer [39], and SDAT-Former [1] during the training
and testing phases in Table 7.

Table 7. Memory consumption comparison. We recorded the memory consumption during training
and testing when batch_size =1, with an input size of 512× 512 for both the source domain and target
domain images, measured in GB.

Memory Consumption Comparison (GB)
Train Test

Mini-epoch Iter 4n Iter 4n + 1 Iter 4n + 2 Iter 4n + 3
SegFormer [39] 5.7
DAFormer [25] 11.3

SDAT-Former [1] 5.9 7.7 8.3 11.9
SDAT-Former++ 6.4 8.5 9.4 13.3

5.7

5. Conclusions

We propose a stronger domain-adaptive teacher-guided semantic segmentation method
called SDAT-Former++. It improves both style-invariant and fog-invariant feature learning.
Specifically, we replace the strategy of generating pseudo-labels using supervised learning
with a simple yet effective masked learning strategy. This integrates all training processes
into an end-to-end framework, greatly simplifying the training process and improving
performance. Furthermore, we enhance the fog-invariant feature learning module by
introducing positional encoding, guiding the model to learn more refined fog-related
features and scene contours. In the information integration part, we use consistency
learning to accelerate model convergence and narrow the gap between the student and
teacher segmentors.

Experimental results demonstrate that SDAT-Former++ surpasses the baseline meth-
ods on mainstream foggy road scene datasets. It achieves improvements of 3.3%, 4.8%,
1.1%, and 0.4% on the ACDC Fog, Foggy Zurich, Foggy Driving, and Foggy Driving Dense
datasets, respectively. Through analysis of the model outputs, we find that both intermedi-
ate domain learning and fog-invariant feature learning in SDAT-Former++ have positive



Remote Sens. 2023, 15, 5704 17 of 19

effects, alleviating the issue of prediction artifacts in the baseline methods. When facing
dense fog, the proposed method exhibits lower uncertainty and demonstrates good safety
performance. Visualizing the model’s feature maps also reveals that intermediate domain
data primarily focuses on learning domain-style independent features (such as contours
and edges), whereas fog-invariant feature learning differentiates between fog and entities
in the images. Masked learning enables the model to better capture contextual information
rather than specific details, and positional encoding generates better contour information,
assisting the main segmentation model in producing better edges. Our method also shows
generalization ability to other adverse scenes such as rainy and snowy scenes.

In future studies, we plan to further research the fog factor and attempt to more
accurately avoid its influence. We also plan to research the unified segmentor, which is
suitable for all adverse conditions.
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