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Abstract: Inspired by the success of Convolutional Neural Network (CNN)-based deep learning
methods for optical image segmentation, there is a growing interest in applying these methods to
Polarimetric Synthetic Aperture Radar (PolSAR) data. However, effectively utilizing well-established
real-valued CNNs for PolSAR image segmentation requires converting complex-valued data into
real-valued representations. This paper presents a systematic comparison of 14 different real-valued
representations used as CNN input in the literature. These representations encompass various ap-
proaches, including the use of coherency matrix elements, hand-crafted feature vectors, polarimetric
features based on target decomposition, and combinations of these methods. The goal is to assess
the impact of the choice of PolSAR data representation on segmentation performance and identify
the most suitable representation. Four test configurations are employed to achieve this, involving
different CNN architectures (U-Net with ResNet-18 or EfficientNet backbone) and PolSAR data
acquired in different frequency bands (S- and L-band). The results emphasize the importance of
selecting an appropriate real-valued representation for CNN-based PolSAR image segmentation.
This study’s findings reveal that combining multiple polarimetric features can potentially enhance
segmentation performance but does not consistently improve the results. Therefore, when employing
this approach, careful feature selection becomes crucial. In contrast, using coherency matrix elements
with amplitude and phase representation consistently achieves high segmentation performance across
different test configurations. This representation emerges as one of the most suitable approaches for
CNN-based PolSAR image segmentation. Notably, it outperforms the commonly used alternative
approach of splitting the coherency matrix elements into real and imaginary parts.

Keywords: PolSAR; F-SAR; deep learning; segmentation

1. Introduction

The ability to acquire information-rich image data of the earth’s surface regardless
of cloud cover and daylight makes Polarimetric Synthetic Aperture Radar (PolSAR) sys-
tems important components in earth observation. The active sensors transmit and receive
differently polarized microwaves, interacting with scatterers within the observed area. An-
alyzing the complex-valued measured signal, which is sensitive to the scatterers’ geometric
form and geophysical parameters, enables a range of applications, including parameter
retrieval (e.g., soil moisture [1,2] or surface roughness [3,4]) and the generation of land cover
maps [5–7]. The task underlying the latter application is pixel-wise land cover classification,
also known as PolSAR image segmentation, that is usually performed using supervised
machine learning classifiers. A typical classification process involves the extraction of
polarimetric features using target decomposition (e.g., eigenvalue decomposition or model-
based decomposition [8–13]) and hand-crafted texture features (e.g., GLCM [14]). These
features are subsequently used as input to machine learning classifiers such as Random For-
est (RF) or Support Vector Machine (SVM) ([15–18]). In recent years, the application of deep
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learning models, particularly Convolutional Neural Networks (CNNs), for PolSAR image
segmentation has been increasingly studied and has shown superior performance [19–22].
The main advantage of CNNs over shallow learning methods (such as RF and SVM) is that
task-specific spatial image features are automatically learned during training, making the
design of heuristic hand-crafted image features obsolete.

Different CNN architectures are used for PolSAR image segmentation, which is either
pixel, patch, or image based. Pixel- and patch-based methods, proposed, for example,
in [20,21], commonly apply CNN models, which consist of a sequence of convolutional and
pooling filters followed by fully connected layers, to the entire image in a sliding-window
fashion. In contrast, in image-based approaches, CNN models with an encoder–decoder
structure, known as Fully Convolutional Networks (FCNs), incorporate a broader image
context and allow the pixel-wise classification of large image patches within a single for-
ward path. Several established FCN models, such as FCN-8/FCN-32 [23], U-Net [24],
SegNet [25] or PSPNet [26], have been successfully adapted and applied for PolSAR im-
age segmentation [5,27–32]. Complex-valued CNNs, as proposed in [33,34], have been
developed to handle the complex-valued nature of PolSAR images effectively. These net-
works enable filtering, activation, and feature aggregation in the complex domain and
demonstrate successful applications in the PolSAR segmentation. Despite their potential,
complex-valued neural networks require additional resources compared to real-valued
networks, due to the increased computational demands of complex arithmetic opera-
tions. This can lead to challenges in terms of training time and computational efficiency.
Another challenge in the field of complex-valued CNNs is the limited research activity
attributed to the predominant focus on real-valued neural networks in the broader machine
learning community.

In contrast, real-valued CNNs have the advantage of being extensively studied and
developed over the years, resulting in a wealth of research, techniques, and tools. It is
necessary to convert the complex-valued data into a suitable real-valued representation
to leverage the potential of this research advantage for PolSAR image analysis, including
the use of established models and various optimization techniques. The choice of a real-
valued representation that captures the essential information embedded in PolSAR data
is not unique. This has resulted in using different representations used as CNN input
in the existing literature. A commonly employed representation is derived directly from
the spatially averaged coherency matrix that comprehensively describes the scattering
processes statistically. In [35–46], a real-valued representation is constructed and used as
a CNN input by concatenating the three real-valued diagonal entries with the real and
imaginary components of the upper triangle entries into nine separate image channels. In
contrast, Zhang et al. [47] propose representing complex-valued entries of the coherency
matrix by their magnitude and phase. This approach aims to preserve the meaningful
coupling between complex-valued data’s real and imaginary components. A further real-
valued representation, frequently used as the CNN input [20,48–53], is the six-dimensional
feature vector proposed in [20]. This representation, composed of the trace of the coherency
matrix, two power-normalized diagonal elements, and three relative correlation coefficients,
offers the advantage that five elements are normalized to a suitable value range of [0, 1]. To
enhance the CNN-based segmentation, several studies [21,28,54,55] suggest incorporating
domain and model-based knowledge regarding target scattering mechanisms by adding
polarimetric features to the input layer.

The selection of a real-valued representation determines how well the information
content of complex-valued data is preserved and presented to the CNN. Consequently, it is
expected to influence the segmentation performance substantially. However, in the litera-
ture on CNN-based PolSAR image segmentation, this parameter is frequently neglected,
and experiments often only employ a single, occasionally arbitrarily chosen, real-valued rep-
resentation. The influence of the choice of the representation on segmentation performance
has only been studied in a limited number of works, often in conjunction with other research
objectives such as the development of new neural network architectures [21,56,57]. The
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current gap in the field lies in the absence of a comprehensive and systematic comparison
of different PolSAR data representations in the context of CNN-based image segmentation.
This knowledge gap may lead to the suboptimal performance and increased computational
resources required for calculating and storing potentially unnecessary PolSAR features.

To fill this research gap, this study investigates the impact of the selected real-valued
representations on the CNN-based PolSAR image segmentation performance. The primary
objective of this research is to identify the most appropriate real-valued representation by
conducting a comprehensive analysis of its influence on the segmentation performance
across various CNN architectures. Specifically, this study investigates which of the follow-
ing approaches for representing PolSAR data is the most suitable:

1. The direct use of the coherency matrix elements represented by nine real values;
2. The use of the six-dimensional feature vector proposed in [20];
3. The use of physically interpretable features based on polarimetric target decomposition; or
4. The use of a combination of coherency matrix elements and various polarimetric

features.

The paper’s content is structured as follows: First, in Section 2, various real-valued
PolSAR representations commonly used as the input for PolSAR segmentation in the
literature are presented. These representations are then compared in the context of this
study. Subsequently, in the same section, two distinct CNN architectures employed for
PolSAR image segmentation in this study are introduced. Section 3 contains a detailed
account of the experimental setup, including the data used for the experiments and the
specific training strategy adopted for the CNN models. The results of the experiments
are presented in Section 4 and subsequently discussed in Section 5. Finally, in Section 6,
the conclusion of the study, summarizing the essential findings and their implications,
is presented.

2. Methods

Different real-valued representations are chosen as the input for representative deep
learning models to assess their impact on the performance of CNN-based PolSAR image
segmentation. In the following section, the selected real-valued representations that have
been used as input for CNN models in previous studies, along with their categorization, are
presented. Subsequently, two specific CNN architectures are introduced that are employed
in this study for PolSAR image segmentation.

2.1. Real-Valued PolSAR Data Representations

In general, the signal measured by a PolSAR system is represented by the complex-
valued scattering matrix S that describes the transformation, induced by observed scatterers,
of the transmitted plane wave vector Et into the received plane wave vector Er:(

Er
h

Er
v

)
=

[
shh shv
svh svv

](
Et

h
Et

v

)
(1)

According to the Backscattering Alignment convention, the backscattered signal is mea-
sured in the same polarization plane as the transmitted signal. Following this convention
and assuming the commonly used monostatic configuration where the transmitter and
receiver share the same antenna, the reciprocity theorem holds. This theorem dictates that
for reciprocal scattering media, the equality shv = svh holds true. The scattering matrix
provides a complete characterization of deterministic (point-like) scatterers. However, in
observing natural environments, multiple scatterers typically contribute to a single resolu-
tion cell, resulting in distributed scatterers. To describe this type of scattering behavior, a
statistical formalism is required, which is represented by the averaged coherency matrix
〈T〉. This matrix is obtained by spatial or temporal averaging of the outer product of the
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scattering vector kp, which is derived from the vectorization of the scattering matrix S
using the Pauli basis:

〈T〉 = 〈kp · k∗Tp 〉 with kp =
1√
2

shh + svv
shh − shh

2shv

. (2)

Here ∗ denotes the complex conjugation and T the matrix transpose. 〈T〉 is a hermi-
tian positive semi-definite matrix with real-valued power elements on the diagonal and
complex-valued cross-correlations in the upper and lower triangle. Thus, the matrix is
defined by nine real-valued parameters. 〈T〉 is widely used as a comprehensive descriptor
of distributed scattering phenomena, making it a common starting point for PolSAR image
segmentation. However, to utilize real-valued CNNs for this task, the complex-valued ma-
trix 〈T〉 associated with each pixel needs to be transformed into a real-valued representation.
This transformation can be achieved by either concatenating the nine independent real-
valued parameters of 〈T〉, combining the entries into a feature vector, extracting physically
interpretable features based on target decomposition methods, or employing a combination
of these approaches. Table 1 provides an overview of various real-valued PolSAR data
representations used as input for CNN models in the existing literature.

Table 1. Real-valued PolSAR data representations used as input for CNN-based image segmentation.

Category Description Components Related Publications

〈T〉-elements

T9_real_imag T11, T22, T33, Re(T12), Im(T12), Re(T13), Im(T13),
Re(T23), Im(T23)

[35–46]

T9_amp_pha T11, T22, T33, |T12|, arg(T12), |T13|, arg(T13),
|T23|, arg(T23)

[47]

T9_amp T11, T22, T33, |T12|, |T13|, |T23| [58]

〈T〉-feature vector Zhou RVR1, RVR2, RVR3, RVR4, RVR5, RVR6 [20,48–53]

Target decomposition

Pauli T11, T22, T33 [31]

Yamaguchi Yodd, Ydouble, Yvolume [59]

VanZyl VZodd, VZdouble, VZvolume [60]

CP H, A, ᾱ [54,59]

Combination

Gao RVR1, RVR2, RVR3, RVR4, RVR5, RVR6, T11,
T22, T33

[61]

Geng T11, T22, T33, |T12|, |T13|, |T23|, Yodd, Ydouble,
Yvolume

[62]

ChenTao H, A, ᾱ, span, θnullRe[T12], θnullIm[T12] [21]

H_A_ᾱ_span H, A, ᾱ, span [63]

Qin
T11, T22, T33, |T12|, arg(T12), |T13|, arg(T13),
|T23|, arg(T23), λ3, A, ᾱ, RVR1, RVR4, RVR5,
RVR6

[56]

Mix

H, A, ᾱ, span, θnullRe(T12), θnullIm(T12), T11, T22,
T33, |T12|, arg(T12), |T13|, arg(T13), |T23|,
arg(T23), λ3, RVR1, RVR4, RVR5, RVR6, Yodd,
Ydouble, Yvolume

-

The first category, labeled as 〈T〉-elements, consists of representations derived directly
from the coherency matrix 〈T〉. The most frequently utilized representation is called
T9_real_imag, which is obtained by simply concatenating the real-valued diagonal elements
and the real and imaginary parts of the upper triangle off-diagonal elements. In contrast, the
equally computationally straightforward T9_amp_pha representation, which incorporates
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the amplitude and phase information of complex-valued elements, is less commonly
used. This is despite the findings of [47], suggesting the potential of this representation
for improved suitability in the CNN-based segmentation. To capture the significance of
polarimetric phase differences, in this study, the representation T9_amp_pha is contrasted
with T9_amp. The latter representation, used as CNN input in [58], solely considers the
amplitude of the complex-valued elements.

The second category, labeled as 〈T〉-feature vector, is represented by the six-dimensional
PolSAR data representation proposed in [20]. It is successfully used as an input for CNN
models in several works [48–53]. The feature vector is composed of the total scattering
power of all polarimetric channels in logarithmic scaling (RVR1), normalized power ratios
(RVR2 and RVR3) and relative correlation coefficients (RVR4, RVR5, RVR6):

RVR1 = 10 log10(T11 + T22 + T33) (3)

RVR2 = T22/(T11 + T22 + T33) (4)

RVR3 = T33/(T11 + T22 + T33) (5)

RVR4 = |T12|/
√

T11 · T22 (6)

RVR5 = |T13|/
√

T11 · T33 (7)

RVR6 = |T23|/
√

T22 · T33. (8)

According to [20], this representation is tailored explicitly for neural networks due to
the constrained value range of power ratios and correlation coefficients. However, the
superiority of this representation over the previously mentioned ones has not yet been
analyzed.

The third category, labeled as Target decomposition, comprises representations based
on physically interpretable polarimetric features extracted using coherent or incoherent
target decomposition approaches. The Pauli representation is based on the coherent de-
composition of the scattering matrix S into matrices that correspond to a surface (Sa),
double-bounce (Sb), or volume scattering (Sv) mechanisms:

S = aSa + bSb + cSc with a =
shh + svv√

2
, b =

shh − svv√
2

, c =
√

2shv. (9)

The intensities |a|2, |b|2, and |c|2 quantify the power scattered by the associated scattering
mechanism. The Pauli decomposition is widely used to represent and visualize polarimet-
ric information as a color image and is employed as CNN input in [31]. The analysis of
the scattering matrix S, which is only capable of characterizing deterministic scatterers,
is insufficient to describe distributed scatterers accurately. Therefore, the analysis of a
second-order descriptor, such as the coherency matrix, has to be considered. Model-based
incoherent decomposition methods, such as the four-component Yamaguchi decomposition
proposed in [10] and the three-component decomposition proposed in [60], are commonly
employed to represent the coherency matrix as a combination of matrices corresponding
to elementary scattering mechanisms. In this study, the resulting proportions of surface,
double-bounce, and volume scattering obtained from these methods are combined into
three-channel images, serving as input for CNNs. Further physically interpretable features
that are frequently employed for land cover classification include entropy H, which mea-
sures the degree of randomness in the scattering process, mean alpha angle α, which relates
to the dominant scattering mechanism, and anisotropy A. These features are based on the
eigenvalue decomposition of the coherency matrix proposed in [8]. An attempt to enhance
the CNN-based PolSAR image segmentation using these features is described in [54].

Since representing PolSAR data with only three polarimetric features causes a loss of
information, several researchers propose to combine multiple features to obtain a more com-
prehensive data description. These types of representations are assigned to the last category
Combination in Table 1. To improve the performance of CNN-based segmentation, Gao
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et al. ([61]) propose a dual-branch network to combine the six-dimensional feature vector
(Zhou) with Pauli decomposition parameters. Another combination is proposed in [62]
that is composed of the amplitudes of the coherency matrix and scattering mechanism
contributions according to the Yamaguchi decomposition. Chen and Tao [21] assemble the
well-known features H, A, ᾱ and the total scattering power (span) with so-called null angle
features, which describe the target orientation diversity. The included null angle features,
are defined as:

θnullRe(T12)
= −1

2
arg(Re(T13) + jRe(T12)) (10)

θnullIm(T12)
= −1

2
arg(Im(T13) + jIm(T12)) (11)

In [21], the ChenTao representation is compared to the T9_real_imag representation as an
input for a patch-based CNN classification. It achieves slightly higher accuracies on two
PolSAR datasets. To specifically investigate the usefulness of the two null angle parameters,
the analysis presented here also includes a comparison to the representation based on the
feature subset H_A_ᾱ_span. A further approach to combine polarimetric features within
a CNN-based segmentation is proposed by Qin et al. in [56]. Their analysis identifies a
suitable CNN input set of 16 components, which includes elements of 〈T〉, the smallest
eigenvalue λ3 of 〈T〉, A and ᾱ as well as RVR1, RVR4, RVR5, RVR6. Adapting to that,
this work includes the PolSAR data representation referred to as Qin in the investigation.
Finally, a representation denoted as Mix is evaluated, which combines the ChenTao and
Qin representations with the power of elementary scattering mechanisms based on the
Yamaguchi decomposition. The Mix representation consists of 23 components, making
it the most extensive representation in this comparison. Some of the extracted features,
such as the amplitudes of elements in 〈T〉 and scattering power contributions, exhibit
distributions that deviate significantly from a normal distribution and possess a high
dynamic range. These characteristics can potentially have a detrimental effect on the
accuracy of segmentation, considering that CNNs are optimized for processing normally
distributed RGB images. To mitigate this issue, the affected features are logarithmically
scaled to approximate a normal distribution and reduce the dynamic range. Another
crucial step in preprocessing is the standardization of features. This process converts the
various feature values into a common unit, making them comparable. In image processing,
z-standardization is typically employed, which involves subtracting the mean and dividing
by the standard deviation. However, it is important to consider that the extracted PolSAR
features may contain outliers, such as unusually high backscatter values caused by artificial
structures. These outliers can greatly influence the mean and standard deviation, making
z-standardization inadequate for achieving balanced feature scales. To address this issue, a
robust standardization method based on the median and quantile range is employed:

Iijc,scaled =
Iijc −median(Ic)

p98(Ic)− p02(Ic)
, (12)

where Ic denotes the image data of component c, Iijc denotes the value of one pixel in Ic,
and p98(Ic) and p02(Ic) denote the 98th and 2nd percentiles of Ic, respectively.

To form CNN input layers based on the selected real-valued representations, the
corresponding scaled components are combined into a multi-channel image I, where
I ∈ RW×H×C. Here, W and H represent the width and height of the image, and C represents
the number of channels corresponding to the number of components in the representation.

It should be noted that concatenating the individual components into a multi-channel
image deviates partially from the approach used in the cited works. The choice of the
concatenation approach is motivated by its widespread use in the literature and its com-
patibility with established CNN models. Additionally, it ensures a fair comparison of
the representations, as the same CNN architecture with an identical number of trainable
parameters can be used for each representation.
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2.2. CNN Segmentation Models

To analyze the suitability of the previously described PolSAR representations for
CNN-based segmentation, two different CNN models are used, which are presented below.
Both models are based on U-Net, a FCN introduced in [24] that consists of an encoding
and a decoding path. The general structure of U-Net is visualized at the top of Figure 1.
Within the encoder, contextual image features are extracted by the repeated application
of convolution, activation, and aggregation. Thereby, the spatial dimension is reduced,
while the feature dimension, which encodes the relevant image information, increases.
Within the decoder, the resulting feature maps are gradually spatially up-sampled until the
original spatial image dimension is reached, and a combination of convolution and softmax
activation realizes a pixel-wise classification. To retain fine-scale spatial information, skip
connections concatenate feature maps from the encoding path (blue) to up-sampled feature
maps in the decoding path (grey).

Figure 1. The used U-Net model with two different encoder networks, ResNet-18 and EfficientNet-b0,
for feature extraction. The following abbreviations are used: Convolutional layer (Conv), Fully
Connected layer (FC), Squeeze and Excitation (SE). After each Conv, batch normalization and
activation using the Rectified Linear Unit (ReLU) function are performed but omitted in this figure
for a clearer representation.

As an encoder, an arbitrary CNN model can be used for feature extraction. Since the
extracted features provide the basis for the final class separation, the choice of the CNN
model significantly influences the segmentation result. In this work, two common models,
a Residual Network (ResNet) proposed in [64] and an EfficientNet proposed in [65], are
used as encoders. Both are visualized in Figure 1. ResNets are specific deep CNNs that are
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proven to be very powerful for the classification of RGB images. The high performance
of this model has been achieved by introducing the concept of residual learning, which
enables the training of very deep networks. Instead of direct mapping functions that
transform an input into the desired output, residual functions are learned with reference to
the layer inputs. This is realized using residual blocks (highlighted in orange in Figure 1).
These contain so-called shortcut connections that perform an identity mapping of the
input, which is added to the output of subsequent layers. In this work, ResNet-18, whose
architecture is detailed in Figure 1, is used as the encoder of the U-Net model.

EfficientNet was proposed by Google in 2009 [65]. By scaling the network’s depth,
width, and resolution in a structured way, good performance can be achieved with low
resource consumption. The network is mainly built using mobile inverted bottleneck
(MBConv) blocks introduced in [66] that are shown in Figure 1. This building block includes
a so-called inverted residual block, which first employs point-wise convolution (1 × 1
convolution) to project an input feature map into a higher dimensional space, subsequently
performs depth-wise convolution, and finally projects the resulting feature map back to a
lower dimensional space. The input feature map is added to the output feature map using
a residual shortcut connection. The inverted residual block is extended by a Squeeze and
Excitation (SE) block ([67]) consisting of a global pooling and two Fully Connected layers
(FCs). This block allows the recalibration of channel-wise feature responses, which enables
the network to provide higher weighting to relevant features. In this work, EfficientNet-b0,
shown in Figure 1, is used as an encoder of the U-Net model.

In addition to the presented architectures, many other networks can be used as en-
coders, such as VGG, Inception, MobileNet, etc. ResNet-18 and EfficientNet-b0 were chosen
as encoders in this work because they offer a good compromise between classification
accuracy and the number of trainable parameters.

3. Experimental Setup

To identify the most suitable real-valued PolSAR data representation for the CNN-
based segmentation, the two described CNN models are trained and tested using PolSAR
data collected in two different frequency bands (S and L) taken from the Pol-InSAR-
Island benchmark dataset [68]. Four test configurations are obtained by varying the CNN
architecture and the frequency band used for data acquisition. This allows for evaluating
the generalizability and robustness of individual representations against these variations.
Additionally, the influence of the choice of data representation on the segmentation results
compared to the effects of altering the CNN architecture or the frequency band can be
assessed. The following presents the data used for training and testing the models and the
applied training strategy.

3.1. Dataset

Commonly used benchmark datasets for PolSAR image segmentation include PolSF [69],
the Flevoland AIRSAR dataset, and the Oberpfaffenhofen E-SAR dataset. However, these
datasets have a significant drawback regarding the complexity of the segmentation tasks
they provide. The Oberpfaffenhofen and PolSF datasets have very few generic classes,
while the Flevoland dataset only includes rectangular cultivated crop fields, lacking diverse
spatial arrangements of classes. Hence, high segmentation accuracies can already be
achieved using simple classifiers. This limits the ability to compare sophisticated deep
learning approaches. To address this limitation, in this paper, the recently published Pol-
InSAR-Island dataset [68], which offers a more challenging segmentation task, is used
for evaluation. The Pol-InSAR-Island dataset contains multi-frequency Pol-InSAR data
acquired over the East Frisian island Baltrum by the airborne F-SAR system developed by
the German Aerospace Center (DLR) [70]. The data, captured simultaneously in the L- and
S-band, are provided as geocoded 6 × 6 Pol-InSAR coherency matrices T6 on a 1 m × 1 m
grid for each frequency band. Since this paper focuses on PolSAR image segmentation,
only the upper left 3× 3 submatrix that represents the polarimetric coherency matrix of
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the master scene is used in our experiments. Before feature extraction, the image data are
preprocessed using the Refined-Lee filter with a window size of 9× 9 to obtain averaged
coherency matrices and suppress speckle noise.

The provided reference data yields pixel-wise labels of twelve predominantly natural
land cover classes: Tidal flat (TF), Water (W), Coastal shrub (CS), Dense, high vegetation (DV),
White dune (WD), Peat bog (PB), Grey dune (GD), Couch grass (CD), Upper salt marsh (US),
Lower salt marsh (LS), Sand (S) and Settlement (SE). A visualization of the dataset is given
in Figure 2. The dataset contains 5,450,807 labeled pixels, divided into spatially disjoint
training and test data in roughly equal proportions. Table 2 shows the varying number
of labeled pixels per class, which have to be taken into account during model training
and testing.

Figure 2. The Pol-InSAR-Island dataset. The geographic location is shown at the top. The PolSAR
images are visualized using the Pauli decomposition for L-band and S-band data. The reference land
cover map with 12 classes is shown on the right side.
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Table 2. Percentage of labeled pixels per class contained in the training and the test data.

TF W CS DV WD PB GD CG US LS S SE

Training 7.09 17.98 5.29 2.04 6.72 0.87 17.78 8.17 8.01 5.85 14.92 5.28

Test 8.07 17.31 3.65 1.43 6.44 1.15 19.88 7.56 9.51 4.75 14.62 5.63

In this study, the training data from the Pol-InSAR-Island dataset is divided into two
subsets: one for supervised model training (training set) and the other for validating the
model’s performance on unseen data during hyperparameter tuning (validation set). The
training-to-validation data ratio is chosen as 3:1. The test data provided by the Pol-InSAR-
Island dataset is exclusively used to evaluate the final models.

In order to enhance the robustness of the trained models and minimize overfitting,
data augmentation techniques are employed to increase the amount of training data. This
involves applying horizontal and vertical flipping and rotation by 90◦, 180◦ or 270◦ to
image patches cropped from the training area.

3.2. Model Training

The evaluation of the considered PolSAR representations involves four different test
configurations arising from using the two CNN models and separately evaluating S-band
and L-band PolSAR image data. A model is trained, tuned, and tested for each data
representation and test configuration following the setup described below.

During model training, validation, and testing, image patches with spatial dimensions
of 128× 128 pixels are cropped from the training, validation, and test areas, respectively. It
is worth noting that the class Peat bog is spatially concentrated within an area of approxi-
mately 300 m × 200 m. Therefore, larger patch sizes would result in insufficient patches
encompassing this class. The batch size, representing the number of training patches
processed within one training iteration, is set to 64. In this study, a thorough optimization
of patch and batch size was not conducted, as the primary focus is not on model finetuning
but rather on comparing different input data under the same training conditions.

Model training is conducted for a maximum of 100 epochs, with early termination
after 30 epochs if no improvement in validation accuracy is observed. The learning rate,
a crucial hyperparameter influencing training convergence, is adjusted using a dynamic
approach based on the cosine annealed warm restart learning scheduler proposed in [71].
This approach reduces the learning rate following a cosine function. It includes multiple
warm restarts, where the initial learning rate is decreased by a factor of 0.5 to avoid
abrupt changes in training weights during advanced stages. Additionally, the number of
training epochs until the following restart increases by a factor of 1.2. This work uses the
implementation provided by [72]. The optimization of the training loss is performed using
stochastic gradient descent (SGD) with a momentum of 0.9 and weight decay of 0.0005,
following the proposed training strategy in [71].

In contrast to the standard approach in U-Net-based segmentation, this work utilizes
the Focal Tversky Loss (FTL) proposed in [73] instead of the categorical cross-entropy loss.
This decision is driven by the significant class imbalance observed in the training dataset,
as shown in Table 2. Initial tests using a categorical cross-entropy loss revealed that the
model disregards the underrepresented classes Peat bog and Dense, high vegetation after a
few training epochs. Even a class-specific weighted categorical cross-entropy loss function
did not lead to stable training results. The adoption of FTL is based on findings from a
survey on loss functions for semantic segmentation conducted in [74]. FTL incorporates the
Tversky similarity index, which quantifies the overlap between predicted and true classes
and facilitates the balancing of False Positives (FP) and False Negatives (FN). The Tversky
similarity index is defined as:
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TIc =
∑N

i=1 picgic

∑N
i=1 picgic + α ∑N

i=1 pic̄gic + β ∑N
i=1 picgic̄ + ε

, (13)

where p and g denote the predicted and true probabilities of a pixel i belonging to class c or
c̄. The hyperparameters α and β, which sum up to 1, determine the weighting between FP
and FN samples in the Tversky similarity index. The constant ε prevents division by zero
to ensure numeric stability. The FTL introduces a focal parameter γ to further allow the
model to prioritize samples from underrepresented classes. The loss function is defined as:

FTLc = ∑
c
(1− TIc)

1
γ . (14)

While the FTL provides more stable training compared to categorical cross-entropy loss,
the class Peat bog remains neglected. To address this, an additional weight factor of 1.8
is applied to pixels belonging to this class, determined through experimental testing.
The choice of FTL hyperparameters α, β and γ significantly impacts the segmentation
results. Finding a single parameter set that maximizes segmentation accuracy across all
data representations and model architectures is not feasible. To ensure a fair comparison
between the representations, specific parameter sets are determined for each combination of
data representation, model architecture, and frequency bands that achieve optimal results
on the validation data. The tested values for α are 0.3 and 0.6, and the tested values for γ
are 0.5, 0.75, and 1.2. After selecting the optimal model parameters, the trained models
are used to predict land cover classes for the test data, which were not used for training
or validation.

4. Results

In the following, the results of the four test configurations: ResNet-U-Net on L-Band
data, ResNet-U-Net on S-Band data, EfficientNet-U-Net on L-Band data, and EfficientNet-
U-Net on S-Band data are presented. First, separate analyses are conducted for every
test configuration. Subsequently, the results are summarized and considered collectively,
enabling the identification of patterns and trends across the different test configurations.
To quantify the segmentation results achieved on the test data, the Intersection-over-
Union (IoU) is considered, which is a widely used metric for evaluating image segmentation
results. It measures the overlap between the predicted segmentation mask and the reference
mask. The formula for calculating IoU for one class i is given by:

IoUi =
TPi

TPi + FPi + FNi
(15)

where TPi represents the number of correctly predicted pixels of class i, FPi represents the
number of pixels incorrectly predicted as class i, and FNi represents the number of pixels
of class i that were missed. The IoU ranges from 0 to 1, where 1 indicates a perfect overlap
between the predicted and reference masks.

The mean IoU is used to evaluate multi-class segmentation. It is obtained by summing
up the IoU for each class and dividing it by the total number of classes. The mean IoU
is chosen for two reasons. Firstly, it provides a measure of the overall accuracy of the
segmentation by considering both FP and FN. Secondly, it is robust to class imbalance in
the test data.

4.1. ResNet-U-Net on L-Band Data

Figure 3 presents the segmentation results for L-band data obtained using the ResNet-
U-Net model. The plot shows the mean IoU for each data representation used as input
for the ResNet-U-Net model. The data representations on the y-axis are ordered based on
their segmentation performance. The names of the data representations are color-coded
according to their category in Table 1 (gray: 〈T〉-elements, pink: 〈T〉-feature vector, olive:
Target decomposition, cyan: Combination).



Remote Sens. 2023, 15, 5738 12 of 26

The best performance, achieving a mean IoU of 82.73%, is obtained using the most
extensive set of components called Mix, which comprises 23 components. The top five
representations, each of which leads to a segmentation performance with mean IoU over
80%, also include Gao, Geng, T9_amp_pha, and H_A_α_span.

The success of using these data representations as input for the ResNet-U-Net model
suggests that incorporating additional components contributes to improved segmenta-
tion performance. For example, the representation Mix outperforms Qin, Yamaguchi, and
ChenTao, which are subsets of the component set used in Mix. Similarly, combining the
representations Pauli and Zhou, referred to as Gao, yields better results than using either of
them individually. The same applies to the representation Geng, which combines T9_amp
and Yamaguchi.

However, the assumption that using more components always leads to better segmen-
tation accuracy is contradicted by counterexamples. For instance, using the representation
T9_amp_pha performs better than the representation Qin, which combines T9_amp_pha with
additional components. Another interesting behavior is observed when comparing the
three representations CP, H_A_α_span, and ChenTao. The three-channel representation CP,
consisting of H, A, and α, achieves a relatively low accuracy with a mean IoU of 74.09%.
Adding the complementary component span (H_A_α_span) improves the segmentation
accuracy by 6.67%. However, when the components θnullRe(T12)

and θnullIm(T12)
are also

included (ChenTao), the mean IoU decreases to 74.79% (+0.7% compared to CP, −5.97%
compared to H_A_alpha_span).

Another notable observation in the results is the poor performance when using the
representation T9_real_imag. During the model training, it was observed that convergence
could not be achieved within 100 epochs.

Figure 3. Segmentation results for L-band data obtained using ResNet-U-Net measured by mean
IoU [in %]. The data representations are color-coded according to their category (gray: 〈T〉-elements,
pink: 〈T〉-feature vector, olive: Target decomposition, cyan: Combination).

The class-wise mean IoU for each data representation is presented in Table 3 to provide
a more detailed overview of the achieved results. The following description excludes the
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result of the non-converged model for T9_real_imag. In general, the classes Tidal flat, Water,
and Sand are recognized with high accuracies, with mean IoU values greater than 90%,
regardless of the chosen representation. The class Settlement is also identified with similarly
high accuracies. Despite the limited availability of training data for the Peat bog class,
it is reliably identified with IoU ranging from 79.40% to 96.43%. The most challenging
task is distinguishing between Coastal shrub and Dense, high vegetation. This difficulty is
suspected to arise from similar scattering mechanisms characterized by a high volume
scattering component. The class White dune is completely ignored in the model predictions
when using the representations T9_amp, Zhou, and ChenTao. The examination of predicted
segmentation maps in Figure 4 reveals that image regions representing the White dune class
are almost entirely assigned to the Grey dune class.

Table 3. Segmentation results for L-band data obtained using ResNet-U-Net measured by class-wise
and mean IoU [in %]. The highest scores for each class are printed in bold.

Input TF W CS DV WD PB GD CG US LS S SE Mean

T9_real_imag 13.42 78.50 56.10 36.61 7.70 79.30 38.79 20.76 1.54 29.48 49.07 92.53 41.98
T9_amp_pha 98.22 97.73 69.66 56.44 78.61 92.84 78.07 66.47 64.26 83.74 97.06 91.81 81.24
T9_amp 91.87 95.49 64.89 49.91 0.00 83.83 64.60 75.33 70.25 76.41 95.68 91.99 71.69
Pauli 90.07 94.93 67.01 62.48 67.90 87.39 75.66 73.56 65.47 77.15 97.08 91.70 79.20
Zhou 96.59 95.17 57.75 46.36 0.00 91.52 64.59 75.51 61.20 79.01 97.12 91.49 71.36
Gao 97.80 95.24 70.34 58.03 82.30 87.34 79.33 77.68 63.65 84.46 98.01 92.14 82.19
CP 94.36 95.13 57.58 44.87 65.20 79.40 76.18 56.03 73.00 58.48 94.64 94.18 74.09
Yamaguchi 93.11 96.36 66.09 52.19 74.33 86.30 75.78 68.02 58.03 72.19 99.00 87.95 77.45
VanZyl 89.66 96.22 61.88 46.61 64.30 96.43 72.15 71.80 58.88 70.70 94.31 90.02 76.08
ChenTao 97.55 98.50 64.43 51.62 0.00 91.91 66.78 76.42 73.67 86.53 97.74 92.29 74.79
H_A_ᾱ_span 92.08 97.51 67.78 59.37 69.22 92.57 77.38 74.60 70.65 76.13 98.89 92.97 80.76
Geng 94.70 96.36 70.47 54.91 80.45 85.69 77.77 75.30 66.11 83.17 97.53 94.53 81.42
Qin 92.83 92.02 60.69 44.37 78.88 83.46 78.16 73.69 67.47 84.01 92.33 85.26 77.76
Mix 90.57 96.26 67.66 63.65 76.32 95.90 78.59 72.65 70.53 88.57 98.75 93.31 82.73

Figure 4. Predicted segmentation maps using various data representations. The area belonging to the
class White dune, according to the reference labels, is marked by red hatching. These areas are faultily
predicted as Grey dune.
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4.2. ResNet-U-Net on S-Band Data

In the following, the outcomes obtained by employing the same CNN architecture but
varying the frequency band of the underlying data from the L-band (wavelength of about
20 cm) to the S-band (wavelength of about 10 cm) will be discussed.

Several observations can be made using the results presented in Figure 5. The ranking
order of the representations remains similar to that observed in the L-band data results.
The representations T9_amp_pha, Gao, and H_A_α_span continue to achieve high mean IoU,
placing among the top performers. Further, the representations Zhou, CP, T9_amp, and
T9_real_imag rank among the lower performers, with the latter failing to achieve model
convergence during training.

Figure 5. Segmentation results for S-band data obtained using ResNet-U-Net measured by mean
IoU [in %]. The data representations are color-coded according to their category (gray: 〈T〉-elements,
pink: 〈T〉-feature vector, olive: Target decomposition, cyan: Combination).

However, a notable difference between L-band and S-band data segmentation is
observed in segmentation accuracy when using the Mix representation. While it performs
exceptionally well in classifying the L-band data, it only achieves a moderate ranking (8th
place) when applied to the S-band data. This outcome further highlights that enriching
input data with additional components, potentially containing supplementary information,
does not guarantee an improvement in segmentation performance and may even lead to a
degradation of results.

Examining the class-wise segmentation results in Table 4 provides further insights.
Consistently with the previous findings, classes that are easily distinguishable, such as Tidal
flat, Water, Sand, and Settlement, continue to exhibit minimal misclassifications. Challenges
persist in accurately classifying the Coastal shrub and Dense, high vegetation classes. Further-
more, the representation ChenTao, T9_amp, and Zhou fail to detect the White dune class.
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Table 4. Segmentation results of S-band data obtained using ResNet-U-Net measured by class-wise
and mean IoU [in %]. The highest scores for each class are printed in bold.

Input TF W CS DV WD PB GD CG US LS S SE Mean

T9_real_imag 72.05 86.54 57.45 27.62 2.69 72.25 52.98 41.32 45.25 61.07 91.55 89.03 58.32
T9_amp_pha 94.72 97.86 64.64 53.73 70.77 95.30 77.27 80.77 73.32 87.10 97.50 90.59 81.96
T9_amp 93.19 95.81 57.84 53.53 0.00 94.35 62.56 77.30 64.25 78.69 97.27 89.39 72.01
Pauli 86.33 95.49 60.53 51.11 59.78 95.01 74.00 75.48 65.81 82.66 97.39 94.29 78.16
Zhou 77.27 90.11 62.71 40.84 0.00 91.84 66.05 77.36 72.24 82.57 95.49 91.67 70.68
Gao 92.27 95.98 68.83 60.23 69.15 88.78 75.34 76.57 67.76 87.02 96.21 93.23 80.95
CP 83.12 89.85 58.47 53.46 72.55 93.34 73.49 56.00 62.31 50.20 76.53 93.22 71.88
Yamaguchi 78.27 93.46 61.28 40.17 66.50 92.94 73.45 68.93 61.81 84.15 93.08 90.78 75.40
VanZyl 86.10 95.71 62.26 0.00 61.52 95.39 73.73 74.82 63.20 82.38 95.13 92.87 73.59
ChenTao 95.16 97.00 60.31 58.23 0.00 93.75 66.12 72.57 71.48 75.43 94.44 89.63 72.84
H_A_ᾱ_span 96.66 96.91 63.41 52.54 61.70 92.21 70.36 73.96 57.87 85.64 95.81 91.24 78.19
Geng 95.40 96.08 66.69 46.04 67.06 88.01 73.53 77.35 55.97 82.70 96.28 90.80 77.99
Qin 97.38 97.41 61.34 49.81 52.51 97.21 74.37 80.51 69.04 88.58 96.18 92.10 79.70
Mix 98.46 97.73 64.82 51.21 0.00 94.44 66.77 76.12 71.1 89.62 96.05 94.56 75.07

4.3. EfficientNet-U-Net on L-Band Data

In the following, the results obtained using EfficientNet as the encoder within the
U-Net model are discussed. Changing the encoder results in learning different spatial
features extracted from the provided data representations and used in the segmentation.

The results for L-band data are given in Figure 6 and Table 5. In the following, the
results will be contrasted with the previously presented results obtained from the ResNet-
U-Net segmentation for L-band data (Section 4.1).

Figure 6. Segmentation results for L-band data obtained using EfficientNet-U-Net measured by mean
IoU [in %].The data representations are color-coded according to their category (gray: 〈T〉-elements,
pink: 〈T〉-feature vector, olive: Target decomposition, cyan: Combination).
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Table 5. Segmentation results of L-band data obtained using EfficientNet-U-Net measured by class-
wise and mean IoU [in %]. The highest scores for each class are printed in bold.

Input TF W CS DV WD PB GD CG US LS S SE Mean

T9_real_imag 0.00 32.32 37.58 27.43 0.00 0.00 27.34 0.00 0.00 0.00 1.22 52.00 14.83
T9_amp_pha 96.59 96.91 64.81 49.09 74.06 80.02 77.67 68.72 68.09 81.91 95.97 91.81 78.80
T9_amp 86.51 95.21 64.11 49.82 83.10 71.81 78.60 72.88 67.71 76.50 97.27 92.03 77.96
Pauli 82.62 92.83 66.89 61.81 75.03 91.25 75.80 67.46 62.21 73.31 94.69 93.93 78.15
Zhou 89.13 94.73 69.45 48.77 80.18 75.49 75.84 69.08 68.40 71.91 96.06 89.67 77.39
Gao 89.62 95.08 67.22 55.90 85.86 88.43 79.41 72.05 66.58 70.17 97.89 90.32 79.88
CP 90.22 91.96 53.68 47.09 75.61 81.45 69.03 55.85 65.42 58.84 90.86 92.87 72.74
Yamaguchi 84.64 92.48 64.41 53.88 75.25 85.07 75.93 63.56 60.80 73.02 98.50 87.34 76.24
VanZyl 93.37 93.61 53.00 36.12 68.77 71.23 72.70 67.81 55.86 67.68 92.03 91.12 71.94
ChenTao 98.67 95.89 67.03 55.43 72.41 86.90 75.91 65.49 67.34 84.76 94.03 93.32 79.77
H_A_ᾱ_span 85.42 91.73 62.94 49.29 79.01 83.05 77.99 68.71 64.04 69.33 94.60 92.82 76.58
Geng 81.70 92.82 67.64 56.80 83.05 81.04 77.28 64.39 60.87 70.83 96.65 90.75 76.99
Qin 96.37 96.16 61.77 52.49 80.90 86.53 75.58 61.88 62.78 84.23 97.45 92.94 79.09
Mix 95.27 95.62 52.79 30.20 63.70 78.31 71.90 60.36 63.12 73.68 97.04 86.34 72.36

Regarding the similarities, it is worth noting that the representation T9_real_imag once
again fails to achieve model convergence during training. Furthermore, the representations
Gao and T9_amp_pha consistently perform well, securing their positions among the top five
representations. Another notable similarity is that the Pauli representation yields the best
performance among the representations of the category Target decomposition. In terms of
specific class separabilities, the classes Tidal flat, Water, Sand, and Settlement continue to be
relatively easy to classify. In contrast, the classes Coastal shrub and Dense, high vegetation
pose more significant challenges.

Considering the differences, the most significant change in achieved mean IoU is
observed using the representation Mix. Applying the ResNet-U-Net architecture, the use of
Mix ranks as the best-performing representation with a mean IoU of 82.73% (see Section 4.1).
In contrast, using the EfficientNet-U-Net, it exhibits the third worst performance with a
mean IoU of only 71.94%. The utilization of any representation that is a subset of the
Mix representation, namely ChenTao, Qin and T9_amp_pha, leads to improved results.
This further emphasizes that the combination of components, which, on the one hand,
increases the information density but, on the other hand, also introduces redundancy in
the data, can deteriorate the segmentation capability of the CNN. Alongside the observed
degradation in segmentation performance for the Mix representation, there is a significant
decrease of more than 4% in the segmentation performance for the Geng, VanZyl, and
H_A_α_span representations. Conversely, significant performance increases are observed
for T9_amp (+6.27%), Zhou (+6.03%) and ChenTao (+4.98%). Analyzing the class-wise results,
a noteworthy difference is the successful recognition of the White dune class across all
representations.

The key insight from comparing the results obtained using EfficientNet or ResNet as
the backbone is that both the choice of architecture and the input representation strongly
influence the segmentation performance. No clear favorite representation consistently
outperforms others across the two models, nor does one favorable model consistently
outperform the other regardless of the used PolSAR data representation as input.

4.4. EfficientNet-U-Net on S-Band Data

Investigating the segmentation results of this test configuration, given in Figure 7 and
Table 6, the following observations can be made:
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Figure 7. Segmentation results for S-band data obtained using EfficientNet-U-Net measured by mean
IoU (in %). The data representations are color-coded according to their category (gray: 〈T〉-elements,
pink: 〈T〉-feature vector, olive: Target decomposition, cyan: Combination).

Table 6. Segmentation results of S-band data obtained using EfficientNet-U-Net measured by class-
wise and mean IoU (in %). The highest scores for each class are printed in bold.

Input TF W CS DV WD PB GD CG US LS S SE Mean

T9_real_imag 0.00 0.10 41.78 20.21 0.00 55.65 20.37 7.65 1.45 38.17 0.00 63.60 20.75
T9_amp_pha 94.11 96.95 60.05 40.22 49.04 91.45 75.50 70.65 74.67 74.95 94.53 89.45 75.97
T9_amp 70.89 88.26 49.66 37.47 51.37 90.10 70.96 61.03 63.02 67.20 96.55 91.53 69.84
Pauli 88.23 96.62 60.31 37.06 0.00 91.74 65.89 73.98 64.73 84.22 94.05 90.08 70.58
Zhou 86.74 92.23 54.86 36.42 65.09 84.80 71.91 72.47 63.96 74.46 92.15 90.92 73.83
Gao 83.19 93.54 63.58 36.07 53.84 77.35 70.66 68.89 66.15 80.26 96.15 93.05 73.56
CP 64.28 81.20 46.50 49.39 24.87 46.83 62.84 48.14 55.67 48.26 49.69 87.89 55.46
Yamaguchi 41.30 70.80 55.79 41.74 36.08 74.49 65.31 61.70 55.93 76.25 72.69 85.35 61.45
VanZyl 89.28 94.94 63.31 52.26 54.03 96.47 74.24 78.16 72.33 85.71 94.54 92.74 79.00
ChenTao 95.62 94.83 54.58 47.37 70.48 84.70 76.67 59.77 71.99 47.83 93.72 90.83 74.03
H_A_ᾱ_span 93.72 96.42 64.01 40.29 63.57 93.36 71.18 70.92 59.78 83.40 94.10 90.44 76.76
Geng 79.86 92.22 58.31 31.66 33.71 68.37 61.75 68.39 54.81 73.23 91.79 89.85 67.00
Qin 84.71 93.59 59.03 50.62 64.54 75.20 78.03 74.58 75.24 76.84 93.26 94.61 76.69
Mix 95.44 93.58 39.03 33.07 59.65 78.36 69.06 59.98 65.42 66.90 90.80 86.18 69.79

Similar to all other test configurations, the use of T9_real_imag does not converge
during training, resulting in poor segmentation results on the test data. Another common-
ality is that T9_amp_pha consistently ranks within the top five performing representations,
while the CP representation (here, second-worst mean IoU) falls within the bottom five.
Additionally, the H_A_α_span representation (rank 2) and Qin (rank 3), which have already
been among the top five representations in two other tests, prove to be suitable here as well.
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A striking difference from other results is the notable performance improvement
when using the VanZyl representation as input. In different test configurations, this data
representation ranges in the middle or lower ranks (9, 9, 13), while in this particular
test configuration, it achieves the best segmentation results. Regarding the class-specific
results, it is noticeable that when using the Pauli representation, the class White dune is
not predicted.

In general, the segmentation results obtained from the EfficientNet-U-Net are more
influenced by changes in the frequency band compared to the results from the ResNet-
U-Net. In contrast to the ResNet-U-Net tests, the ranking of the tested representations
between S-band and L-band data significantly changes when utilizing the Efficient-U-Net.

4.5. Comprehensive Results Evaluation

The previous individual analyses of the results demonstrate that while the represen-
tation T9_real_imag consistently proves to be an unsuitable input for the applied CNN
models, no data representation always delivers the best segmentation result across all
tests. However, discernible trends and patterns can be observed, which will be discussed
in the following. Figure 8 provides an overview of the mean IoU achieved by each data
representation across all test configurations. It is intended to simplify the overall evaluation
regarding the suitability of the tested data representations as an input for a CNN-based
segmentation. For each representation, Figure 8 illustrates the range between the worst and
best segmentation results, with the red marker indicating the mean value of the four test
results. The representations are ordered on the y-axis based on their mean IoU averaged
across the four test configurations.

Moving on to the specific results, the representation T9_amp_pha, which consistently
ranks among the top 5 representations in all tests, achieves the best average result with
79.50% mean IoU. The representation Gao ranks second in this order. However, the poor
performance in the fourth test (S-band image segmentation using EfficientNet-U-Net) leads
to a relatively high range between the worst and best performance at 8.63%. Additionally,
the minimal mean IoU achieved by Gao (73.56%) is lower than the minimal results obtained
by the representations T9_amp_pha, Qin, and H_A_α_span. The Qin representation demon-
strates the smallest variations in segmentation accuracy across the four test configurations,
consistently achieving good results between 76.69% and 79.71%. Similarly, the H_A_α_span
representation, which contains only four components, proves to be a suitable CNN input
with accuracies between 76.58% and 80.76%. Among the representations that perform less
favorably, with an average mean IoU of below 75% across the four test configurations, are
Yamaguchi, T9_amp, Zhou, and CP.

The following examines the impact of incorporating individual components into a
representation on segmentation performance. In certain instances, this leads to an in-
crease in segmentation accuracy. Notably, the inclusion of the span component significantly
enhances the performance of the initially subpar CP representation, resulting in the above-
average performing H_A_α_span representation. The inferior performance using CP can
be attributed to the absence of backscattering intensity information in this representation.
Another example highlighting the impact of adding informative components to a represen-
tation on segmentation performance is the superior performance of T9_amp_pha compared
to T9_amp. The two representations differ solely by including or excluding co- and cross-
polar phase differences. It can be concluded that these phase differences provide valuable
information for distinguishing different land cover classes, thereby enhancing segmentation
accuracy. However, providing more information in the form of additional concatenated
components as an input to the CNN does not directly lead to increased segmentation
accuracy. This is evident from the results obtained using the most information-rich repre-
sentation Mix. Utilizing subsets of this representation, namely Qin, T9_amp_pha, ChenTao,
and H_A_α_span, leads to more stable and predominantly improved results.

To examine the influence of three factors (model architecture, frequency band, and
data representation) on segmentation accuracy, a comparison is conducted by analyzing
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the differences between the maximum and minimum achieved accuracies under each factor
variation. It is important to note that the T9_real_imag representation is excluded from
this analysis.

Figure 9a focuses on the impact of the frequency band on segmentation results. It
presents the difference in segmentation performance between L-band and S-band data for
each data representation using a fixed CNN architecture. The ResNet-U-Net models (grey
bars) generally exhibit less than 5% difference in IoU when comparing L-band and S-band
data. However, the Mix representation shows a higher difference of 7.66%. The median
difference is 1.95% (minimum 0.32%; maximum 7.66%). In contrast, when employing
the EfficientNet-U-Net, larger differences in segmentation performance between L- and
S-band data are observed, with a median difference of 6.32%, a minimum of 0.18%, and a
maximum difference of 17.28%.

Figure 9b displays the difference in segmentation performance between the ResNet-U-
Net and EfficientNet-U-Net models for each data representation, using the same frequency
band. For L-band data, the median difference in mean IoU between the two models is
4.14% (minimum 1.05%; maximum 10.37%). When classifying S-band data, the median
difference is slightly higher at 5.41% (minimum 1.19%; maximum 16.42%).

Figure 9c illustrates the difference between the highest and lowest results obtained
when varying the data representation while keeping the model and frequency band con-
stant. The differences are 11.37% (ResNet-U-Net, L-band), 11.29% (ResNet-U-Net, S-band),
7.93% (EfficientNet-U-Net, L-band), and 23.54% (EfficientNet-U-Net, S-band).

It is essential to interpret the difference values between the plots with caution. Plots
(a) and (b) compare only two configurations (L-band and S-band, ResNet and EfficientNet),
while plot (c) encompasses 13 different representations. Nevertheless, this analysis empha-
sizes that selecting an appropriate CNN architecture and frequency band is not the sole
consideration in evaluating segmentation accuracy. Equally important is the thoughtful
selection of a suitable representation for PolSAR data.

Figure 8. Mean IoU across all test configurations. The span between the lowest and highest mean
IoU is shown for each representation. The red line marks the average result across all tests. The data
representations are color-coded according to their category (gray: 〈T〉-elements, pink: 〈T〉-feature
vector, olive: Target decomposition, cyan: Combination).
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Figure 9. Differences in mean IoU varying one parameter: (a) frequency band, (b) model architecture,
or (c) data representation.

5. Discussion

To address the central question of how the selection of a real-valued representation of
PolSAR data influences the segmentation performance using CNNs, 14 different representa-
tions used as CNN input were tested. The tests involved four configurations with varying
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CNN architectures (ResNet-U-Net and EfficientNet-U-Net) and frequency bands (S-band
and L-band) of the underlying data. The results underscore the critical role of choosing a
suitable representation of PolSAR data in developing the CNN-based segmentation. This is
particularly evident through the differences in mean IoU values of 11.37%, 11.29%, 7.93%,
and 23.54% obtained, which arise between the most suitable and the least suitable data
representation for a fixed test configuration. While no representation consistently achieved
the highest accuracy across all test configurations, a detailed analysis allows us to draw
general conclusions about the different representation categories outlined in Section 1.

Among the representations belonging to the first category 〈T〉-elements, which di-
rectly represent the unique entries of the complex-valued coherency matrix using nine real
values, are T9_real_imag and T9_amp_pha. The T9_real_imag representation consistently
exhibited poor performance, failing to achieve model convergence during training and
resulting in the worst segmentation results on test data. This can be attributed to separating
the real and imaginary parts, which disrupts the essential relationship between them and
leads to the loss of crucial information. Despite this plausible explanation, the finding is
surprising, given the status of T9_real_imag as one of the most frequently used represen-
tations in the context of CNN-based PolSAR image segmentation (see Table 1). Notably,
only three of the cited works in Table 1, namely [38,40,75], incorporate an inter-channel
relationship and thus the relationship between the real and imaginary parts into CNN
processing using 3D convolutional layers or depth-wise convolutional layers, respectively.
Particularly for the other approaches, it would be worthwhile to investigate whether a
change in data representation can improve the results.

The presented analysis demonstrates that splitting complex entries into amplitude and
phase, as conducted in the real-valued T9_amp_pha representation, significantly improves
model convergence and segmentation performance. This is consistent with the findings
of [47]. Among all the tested representations, T9_amp_pha consistently ranked among the
top five in segmentation accuracy across all test configurations, resulting in the highest
average mean IoU. Consequently, T9_amp_pha emerges as one of the most suitable real-
valued representations for CNN-based segmentation.

The second category, 〈T〉-feature vector, is addressed in this study using the frequently
employed six-dimensional feature vector proposed in [20], referred to as Zhou. However,
utilizing this representation consistently yielded inferior segmentation results compared to
the T9_amp_pha representation and is therefore not recommended. One possible explanation
for this poorer performance is excluding the co- and cross-polarized phase difference in the
Zhou representation.

Category 3 representations (Target decomposition) generally ranked lower in mean
IoU than other representations. Although the three components of these representations
provide physically interpretable features that enhance human understanding of the data,
they fail to fully capture the information contained in the coherency matrix, resulting
in suboptimal CNN-based segmentation results. For instance, the CP representation,
comprising the H, A, and α, lacks information about backscattering intensities, which
play a crucial role in distinguishing land cover classes. This limitation becomes evident
when comparing the results to the significantly better performance of the H_A_α_span
representation, which incorporates information about backscattering intensities.

In the fourth category, Combination, representations are investigated that combine
elements or features of the coherency matrix with expert-designed polarimetric features.
Some of the tested feature combinations, notably Gao and Qin, exhibited good results,
outperforming the segmentation accuracy achieved by T9_amp_pha in two out of the
four tests. However, the overall results contradict the hypothesis that providing more
information generally leads to improved segmentation performance. This observation
highlights a general characteristic of CNN models. It suggests that CNNs, in general, may
struggle to handle redundancies or less significant features within the input data. The
standard 2D convolutional layers, commonly employed in CNN architectures following the
input layer, do not inherently allow for selecting or weighting meaningful input channels
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or capturing valuable inter-channel relationships. This limitation applies to various CNN
models and is not specific to the models used in this study. To fully exploit the potential
of combined feature representations in CNN-based segmentation, future research should
investigate CNN architectures that directly apply channel attention mechanisms, such as
SE blocks [67], Efficient Channel Attention [76], or Convolutional Block Attention [77],
to the input channels. Promising approaches that pursue such methods are proposed
in [40,75,78].

Regarding the generalization of the conclusions drawn here, it is crucial to consider
the limitations of the chosen research design. One significant limitation is that the tests
were conducted solely on a single study site and a single sensor. This limitation arose
due to the lack of available labeled PolSAR datasets with sufficient complexity for the
segmentation task. To mitigate this limitation, this study includes data collected in different
frequency bands and utilizes various CNN architectures, thereby introducing a certain
degree of variation. However, it is desirable to conduct tests on additional suitable datasets
in the future to assess the transferability of the results to other sensors and test areas.

Another limitation of the conducted analysis is that the fusion of polarimetric features
was exclusively tested using the concatenation of features within the input layer of the
CNN. This method was chosen to enable the immediate application of the numerous
freely available CNN models. However, more sophisticated approaches have already
been proposed for incorporating polarimetric features into the CNN-based segmentation.
These approaches include the multi-branch method proposed in [61] and the integration of
feature selection using attention modules proposed in [75,78]. However, including these
models in our study would have shifted the focus from selecting the data representation
to selecting the CNN architecture. A direct comparison of data representations would not
have been possible, as increasing the input layer dimension in these models typically leads
to a significant increase in the number of trainable network parameters.

All in all, the study highlights the crucial role of data representation in CNN-based
PolSAR image segmentation. For future development, we recommend using the real-
valued T9_amp_pha representation as the input for a CNN-based analysis of PolSAR data
due to its fidelity to the original data, computational efficiency, and elimination of the
need for task-specific feature selection. The latter advantage, in particular, simplifies
the segmentation workflow and reduces the complexity associated with manual feature
extraction or feature engineering, making the approach more accessible and applicable to a
wide range of radar remote sensing tasks. Potential applications that can benefit from a
streamlined workflow include land cover classification, object detection, environmental
monitoring, and disaster management.

6. Conclusions

In conclusion, this study investigated the impact of choosing a real-valued PolSAR
data representation on the CNN-based image segmentation. The objective was to deter-
mine the most suitable representation as the input for CNN, yielding good segmentation
results for PolSAR data across different frequency bands and various CNN architectures.
Fourteen real-valued representations of PolSAR data were thoroughly compared. These
representations were derived through various approaches, including the direct use of the
coherency matrix elements, combination of coherency matrix elements into a feature vector,
utilization of target decomposition methods, or a combination of these techniques.

For the segmentation of PolSAR images obtained in the S- or L-band, two distinct
U-Net-based CNN models were employed, one utilizing ResNet-18 and the other employ-
ing EfficientNet-b0 as the encoder. The observed significant differences in the achieved
segmentation results using different representations, which could be as high as 23.54%, un-
derscore the necessity of considering the choice of PolSAR data representation in optimizing
CNN-based segmentation approaches.

While no single representation emerged as consistently superior across all conducted
tests in terms of segmentation results, several valuable insights were obtained. The com-
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monly used approach in the literature, which directly utilizes the coherency matrix elements
with a separation into real and imaginary parts of the complex-valued elements, proved
unsuitable in our experiments. The models failed to converge during training, resulting in
poor segmentation performance on the test data. In contrast, the direct representation of
the coherency matrix elements based on magnitude and phase consistently yielded good
results. This representation stands out as one of the top-performing approaches tested here.
It is recommended as a suitable input for CNN-based segmentation, primarily due to its
proximity to the original data and low computational cost for creation and processing.

Utilizing a feature vector created from power ratios and correlation coefficients of
the coherency matrix elements did not provide any advantages in terms of segmentation
results. Likewise, representing PolSAR data based on physically interpretable features
resulting from Pauli, VanZyl, or Yamaguchi target decomposition generally led to inferior
performance. Furthermore, it was observed that combining multiple features only led to
improved segmentation results in specific cases. The effectiveness of feature combinations
needs to be evaluated on a case-by-case basis for each application. Therefore, from our
perspective, the general representation of the coherency matrix divided into amplitude
and phase is preferred, as it eliminates the need for feature selection, calculation, and
storage. This representation can serve as a starting point for further advancements in
future research. On top of that, we consider the development of CNN architectures that
apply channel-attention mechanisms directly to the input layer, thereby incorporating
the inter-channel relationships of the PolSAR data representation as another promising
research direction.
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