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Abstract: UAV-based target positioning methods are in great demand in fields, such as national
defense and urban management. In previous studies, the localization accuracy of UAVs in complex
scenes was difficult to be guaranteed. Target positioning methods need to improve the accuracy with
guaranteed computational speed. The purpose of this study is to improve the accuracy of target
localization while using only UAV information. With the introduction of depth estimation methods
that perform well, the localization errors caused by complex terrain can be effectively reduced. In
this study, a new target position system is developed. The system has these features: real-time
target detection and monocular depth estimation based on video streams. The performance of the
system is tested through several target localization experiments in complex scenes, and the results
proved that the system can accomplish the expected goals with guaranteed localization accuracy and
computational speed.

Keywords: complex scene; UAV remote sensing; monocular depth estimation; monocular
target positioning

1. Introduction

In recent years, with the development of UAV technology, the research direction of
remote sensing images has gradually increased, such as remote sensing image registra-
tion [1–6], image fusion [7,8], etc. UAVs are increasingly used in complex scenes or special
perspectives, such as environment monitoring [9,10], search and rescue [11,12], surveying
and mapping [13–15], power inspection [16], and intelligent agriculture [17,18]. The target
positioning method has high practical value in UAVs for Earth observation missions, such
as national defense, emergency management, and urban management.

Unlike vehicle-mounted lenses, UAVs have a higher degree of freedom in spatial
location, which makes it difficult to use a stable scale standard for UAV remote sensing
images. This problem leads to the fact that when target localization methods are applied
in UAV remote sensing images, more information needs to be obtained to determine the
scale information of the remote sensing images. Common localization methods include
laser ranging, point cloud modeling, and binocular localization. Both laser ranging and
point cloud modeling require specialized sensors on the UAV. This brings more challenges
to the range of UAVs and limits the application scenarios of UAVs to some extent. Using
fewer sensors to obtain more and more accurate remote sensing information as much as
possible is the trend of UAV civilization development.

Currently, binocular localization methods are mostly used in the fields of target
tracking [19], Simultaneous Localization and Mapping (SLAM) [20], and autonomous
driving [21]. The principle of binocular positioning is to calculate the relative depth using
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parallax information and the absolute depth information from the baseline to achieve
the effect of localization. Ma et al. [22] uses the UAV binocular positioning method to
locate insulators.

The monocular localization method mostly relies on spatial triangulation. Sun et al. [23]
uses the flight height of UAV on the internal reference of camera to achieve the calculation
of target localization. Madhuanand et al. [24] proposes the depth estimation of tilted remote
sensing images from UAV.

The binocular positioning method increases the hardware cost and the amount of
remote sensing data due to the addition of a video acquisition unit, which shortens the UAV
endurance. In addition, binocular localization relies on parallax information, which leads
to a baseline length that limits the maximum depth range that can be trusted. The baseline
length of binocular cameras can be limited by the size of the UAV. On the other hand, the
size of the UAV limits the maximum depth range of binocular localization methods, which
imposes significant limitations on the use scenarios for UAV localization.

Monocular vision target positioning method relies mostly on the establishment of
spatial triangles. Currently, in addition to constructing spatial triangles by assuming the
ground level, depth estimation is mostly used to determine the depth of the target for target
localization calculation. Currently, monocular depth estimation methods allow prediction
of relative depth. These methods are mostly used in fields, such as the autonomous driving
of cars. Since the in-vehicle camera height is stable to the ground, a more accurate scale
factor can be obtained by predicting the camera height, which is used to obtain the mapping
relationship from relative depth to absolute depth. However, this method has difficulty
producing good results for obtaining the scale factor of UAV remote sensing images. This is
due to the difficulty of determining a stable reference plane as the ground in remote sensing
images, especially in complex scenes with undulating heights, multiple planes or no planes.
This makes it a challenge to obtain the absolute depth of UAV remote sensing images.

A new solution is proposed to address these problems. This solution uses the motion of
the UAV as a scaling criterion and combines optical flow estimation with the UAV position
information. The optical flow estimation model predicts the motion relationship of each
pixel point, and then solves the depth information to achieve absolute depth estimation of
monocular remote sensing images. In order to solve the problem of UAV target localization,
we also build a UAV target positioning system, which takes the monocular UAV as the
sensor, and the ground equipment takes up all the computational work, with open access to
the target detection module and the absolute depth estimation module. We also constructed
two datasets for remote sensing images, which are used for training the target detection
model and optical flow estimation model, respectively.

The main contributions of this work are as follow:

1. We propose a solution for estimating the absolute depth of monocular remote sensing
images. It combines the optical flow estimation model with the UAV motion infor-
mation, and solves the problem of not being able to obtain accurate absolute depth
information in complex scenes, such as no-plane and multi-plane.

2. A UAV targeting system is proposed. This system deploys the components in a
distributed manner, with the monocular UAV acting as a sensor. The device on the
ground combines a target detection module with an absolute depth estimation module
to perform real-time operations on the received remote sensing image sequences.

3. We constructed two datasets for training the target detection network and the optical
flow estimation network, respectively.

This paper is structured as follows. The Section 2 is an overview of the related work
in our research process. The Section 3 describes our proposed methodology in detail. The
description of data used in the experiments and experimental results are described in
Section 4, and finally, the Conclusion.
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2. Related Work

We review several currently used methods for target position, as well as a selection of
well-performing depth estimation models using self-supervised or ground truth readily
available supervised training, which includes monocular and stereo-based training.

2.1. Target Positioning Methods on UAV

Target positioning methods on UAVs are mainly divided into laser ranging [25,26],
point cloud modeling [27], and visual position [28]. Laser ranging and point cloud modeling
both rely on specialized sensors to directly acquire the relative position of the target and
the UAV.

Visual positioning methods can be further divided into stereo and monocular vision
Stereo vision generally refers to synchronized stereo image pairs, which are acquired by
binocular cameras, and the depth information is predicted by calculating the parallax
relationship between the binocular images to achieve target position. Since the baseline
of binocular cameras directly limits the calculation of the parallax relationship, binocular
cameras with shorter baselines are generally only used in indoor environments to ensure
the accuracy of the calculation.

Monocular cameras lack the baseline as a constraint on the scale information compared
to binocular cameras, so some kind of more stable parameter is usually used to constrain
the scale information. For example, a camera on the ground will use the camera height as
a constraint to convert the relative depth information predicted by the monocular depth
estimation network into absolute depth information. UAVs cannot find the correct datum
to complete the constraint in complex environments, such as multiplanes, mountains, and
cliffs during flight.

In this work, we propose a new benchmark for real-time depth estimation during UAV
flight based on the motion information of UAVs.

2.2. Monocular Depth Estimation with Self-Supervised Training

Unsupervised learning-based monocular depth estimation methods have become a
hot topic in monocular depth estimation research because they do not rely on the depth
truth during network training [29–31].

In the absence of truth depth information, the depth estimation model can be trained
using image reconstruction as a supervised signal based on the geometric relationship
between image pairs. During the training process, the input images can be stereo image
pairs acquired by a multi-ocular camera or image sequences acquired by a monocular
camera. The reprojection of images are calculated based on the predicted depth, and then
the training of the model is completed by minimizing the reprojection error.

2.2.1. Stereo Training

The ability to use stereo image pairs for supervised training of monocular depth
estimation networks is due to the ability to obtain parallax information of stereo images
by predicting pixel differences between image pairs, thus obtaining depth values that can
be used as supervised information. Stereo-based approaches have now been extended for
semi-supervised data, generative adversarial networks, additional consistency, temporal
information, etc.

The production of datasets requires binocular cameras with fixed relative positions,
mostly mounted on ground vehicles, such as cars. Such remote sensing datasets are difficult
to produce and few public datasets are available.

The baseline length of the binocular camera is the main factor limiting the maximum
depth information by acquiring surveillance information through stereo image pairs. When
performing a mission, the UAV flies at an altitude of about 40 m. When the baseline length
is too short, it is difficult to predict the pixel differences between stereo image pairs, and
thus no effective supervision information can be obtained. Additionally, too long baselines
make the flight cost and flight safety of UAVs increase dramatically. Therefore, using stereo
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images for training supervision of the monocular depth estimation network is a less feasible
option in the task of this scenario.

2.2.2. Monocular Training

In the absence of sufficient constraints, the more common form of self-supervised
training today uses video streams, or image sequences, captured by monocular cameras.
Along with the depth prediction, the camera’s pose must be estimated. The pose estimation
model is only used in training to constrain the depth estimation network by participating
in reprojection calculation.

In 2019, proposed methods such as minimum reprojection loss and full-resolution
multi-scale sampling to significantly improve the quality of depth estimation through self-
supervised monocular training. On this basis, in 2021, ref. [32] proposed the ManyDepth,
an adaptive approach to dense depth estimation that can make use of sequence information
at test time, when it is available.

In 2021, Madhuanand et al. [24] first proposed a self-supervised monocular depth
estimation model for oblique UAV videos. In that study, they used two consecutive time
frames to generate feature maps as a way to generate the inverse depth, and added a
contrast loss term in the training phase, which is the image produced by the model closer
to the original video image.

3. Materials and Methods
3.1. Positioning System

The complete system is deployed in a distributed manner on three types of devices,
4G/5G devices for controlling the UAV and sending remote sensing images with UAV
location information, computing devices, usually computers, for mission planning and
monitoring to target location computational tasks, and cloud servers for message forward-
ing between the first two types of endpoints. We recommend using a multi-rotor UAV as
a sensor for the system. A multi-rotor UAV can take off and land vertically in complex
scenarios without a runway, and it can fly at a controlled speed. This is ideal for flight
operations in complex scenarios. The computing device contains a target detection module
and an absolute depth estimation module. The sensors, the target detection module and
the depth estimation module are all connected to the system through an open interface,
and any sensor or model that satisfies the interface is able to replace the module units in
the system.

The YOLOv5 model is divided into several versions according to the complexity of the
network structure, including YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
The complexity of network structures of these five versions increases and the operation
speed decreases in order. When connecting YOLOv5 to the system, a combination of
computing speed and target detection recall and accuracy is required. The target detection
module takes key frames divided into equal time intervals as input, one frame at a time,
detects the target of the current frame and outputs the pixel coordinates.

The absolute depth estimation module is used to calculate the absolute depth of the
current frame. Unlike the target detection module, monocular depth estimation method
combining optical flow estimation with UAV motion information requires, in addition
to the current frame, the key frame of the previous frame and the UAV displacement
information corresponding to both frames of the current frame together as the input of
the module. The target detection module and the absolute depth estimation module are
executed in parallel, and when the two modules complete the calculation of the same
frame, the pixel coordinates, the absolute depth information of the current frame and the
corresponding UAV position of the current frame will be used as a set of inputs for target
localization calculation, and the GPS coordinates of the target are subsequently output. The
flow of the calculation is shown in Figure 1.
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Figure 1. The target detection model detects the current frame and outputs the pixel coordinates
of targets. The depth estimation model in parallel with it uses the previous frame to perform
depth estimation with the current frame and obtains the absolute depth based on the displacement
information of UAV. Finally the coordinate conversion model combines the pixel coordinates with
the depth information to obtain the global coordinate positioning of all targets.

Target positioning accuracy is influenced by various aspects such as UAV position
accuracy, flight altitude, and speed. Since the remote sensing image and UAV flight
information are transmitted separately, we mark the two kinds of information separately.
The alignment of the two types of information is achieved in milliseconds by tagging and
linear calculation. This reduces the impact of the UAV flight speed on the positioning error.
Additionally, in the mission, the flight speed of the UAV should be proportional to the
height relative to the scanned area. This is to ensure that the IOU of the area corresponding
to the front and back frames at the same time interval remains within a more stable range.
In order to take into account the flight safety and the clarity of the image, we generally
position the flight height around 40 m and the flight speed is 8 m/s.

3.2. Depth Estimate

The main idea is to establish the function relationship between optical flow information
and depth information by converting optical flow information into parallax information.

Considering that the rotation of the camera causes a significant change in the optical
flow information, the optical flow information is corrected using the rotation information
of the UAV before the calculation. Then by transforming the optical flow information
through the camera coordinate system, the scaling factor is obtained as the relative depth
of the camera displacement length. In the following, we will explain the method in several
key steps.

3.2.1. Optical Flow Correct

The pixel coordinate transformation caused by camera rotation is independent of the
depth information. The optical flow noise caused by rotation can be obtained by back-
projecting the pixel coordinates to the camera coordinate system, then reprojecting them to
the pixel coordinate system after the coordinate rotation transformation. By subtracting the
optical flow noise from the result of the optical flow estimation model, we can obtain the
optical flow information in the same directional view.

The inverse projection calculation requires the parameters of the camera. After cal-
ibrating the camera, we obtain the internal reference matrix, denoted as K. This matrix
represents the projection of the camera coordinate system with respect to the pixel coordi-
nate system.

[u, v, 1]> = K× [
x
z

,
y
z

, 1]> (1)
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where (u, v) denotes the pixel coordinates and (x, y, z) is the spatial position in the current
camera coordinate system corresponding to the pixel coordinates.

The inverse matrix of K is denoted as inv_K. The formula for the inverse projection is
expressed as:

[x0, y0, 1]> = inv_K× [u, v, 1]> (2)

(x0, y0, 1) denotes the corresponding point of the pixel point in the plane of z = 1 m in the
camera coordinate system.

The calculation also involves the rotational change of the spatial coordinate system.
If the angles of rotation around the three axes are set to θx, θy, and θz, then the rotation
matrices around each of the three axes are

Rx(θx) =

 1 0 0
0 cos(θx) −sin(θx)
0 sin(θx) cos(θx)


Ry(θy) =

 cos(θy) 0 sin(θy)
0 1 0

− sin(θy) 0 cos(θy)


Rz(θz) =

 cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1


(3)

The rotation can be decomposed into three steps. (1) The camera coordinate system
rotates around the x-axis p1, so that the z-axis is horizontal. (2) Rotates around the y-axis
y1 − y2, so that the projection of both z-axis on the horizontal plane is in the same direction.
(3) Rotates around the x-axis again −p2, so that the two coordinate systems are in the same
direction of the three axes. p1 and p2 are the corresponding pitch angle of the two frames,
while y1, y2 represent the yaw angle of the camera. The rotation matrix R is expressed by
the equation as:

R = Rx(−p2)× Ry(y1 − y2)× Rx(p1) (4)

Combining the above formulas, the angle correction is calculated as follows:{ > = K× R× inv_K× [u, v, 1]>

f lowc = [u, v]> + f low− [u′, v′]>
(5)

f low represents the optical flow information estimated by the model for the two frames,
and f low_c is what we need, after rotation correction.

3.2.2. Depth Computing

The main idea is to combine the optical flow, f lowc, with the displacement of the
camera to construct similar triangles. The depth information of the current frame is derived
by equiproportional calculation. We choose a plane in the 3D coordinate system to illustrate
the construction of the triangle, as shown in Figure 2.

Figure 2. Illustration of depth calculation for any pair of corresponding points.
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To facilitate the calculation, we use inverse projection to transform the pixel coordinates
so that all coordinate calculations can be placed under the same camera coordinate system.
The point P is the real position of any point in the current frame to one, and P′ is the
position of point P in the previous frame relative to the camera. After point P make a
parallel line parallel to z = 1 and intersect the line where OP′ is at the point P′′. Thus,
we obtain a set of similar triangles,4OAB with4OPP′′. The absolute depth of point P,
denoted as abs_d, is

abs_d =
|PP′′|
|AB| × 1 (6)

The length of AB can be found by f low_c through the inverse projection. PD is
perpendicular to PP′′ with the vertical point D. PP′′ is divided into two parts. PD is the
projection of camera displacement in the direction of PP′′ and DP′′ is the correction to
the previous value. Figure 2 shows two different positions of the points in relation to the
camera, corresponding to the cases where the correction value is greater than zero and less
than zero, respectively. The correction value is influenced by OB and AB, and is opposite in
sign to the cosine of the angle between these two vectors.

|AB| = inv_K× [ f low_u, f low_v, 0]>

|PP′′| = |PD|+ sign× |DP′′|

sign =


−1, cos(AB, OB) > 0

0, cos(AB, OB) = 0

1, cos(AB, OB) < 0

(7)

The length of DP can be found by the Rt4DPP′. Set the coordinates of point C as
(0, 0, 1), which is the projection point of O on the plane z = 1. We achieve the solution for
the length of DP′′ by constructing the second pair of equivalence relations as follows:{

|DP| = |PP′| × cos(AB, PP′)

|DP′′| = |PP′| × sin(AB, PP′)× |BC|
(8)

Finally, combining the above equations, the absolute depth is solved by:

abs_d = |PP′| × cos(AB, PP′) + sign× sin(AB, PP′)× |BC|
|AB| (9)

3.3. World Coordinate Calculation

The function of this method is to convert pixel coordinates to world coordinates. The
main process is divided into two parts. First, converting pixel to camera coordinates, and
then continuing the conversion to world coordinates through the both spatial coordinate
system conversion relationship.

Record the longitude of the camera as L, the latitude as B, and the elevation as H.
The Z-axis of camera coordinate system coincides with the camera optical axis, and the
direction is outward, so it only needs to be positively rotated around the X-axis by a pitch
angle, noted as p, and the Z-axis direction is vertical to the horizontal plane. Then, rotate B
around the Y-axis, and finally rotate the Z-axis 270°− L, the three axis direction and the
geocentric coordinate system to maintain the same. Finally, the formula of rotation matrix
RW is:

RW = Rz(270°− L)× Ry(B)× Rx(90° + p) (10)

The origin of the camera coordinate system can be regarded as the position of the UAV,
which is written as OC, and the center of the circle of the geocentric coordinate system is
written as OW . Then OWOC is the geocentric coordinate of the UAV, which is written as
(xOC, yOC, zOC). The conversion method through latitude, longitude and elevation is:
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xOC = (N + H)× cos B× cos L

yOC = (N + H)× cos B× sin L

zOC = (N × (1− E2) + H)× sin B

E2 =
a2 − b2

a2

N =
a√

1− E2 sin2 B

(11)

where the equatorial radius of the reference ellipsoid is noted as a and the polar radius of
the reference ellipsoid is b.

Finally, the conversion process of the target pixel coordinates is summarized as: xW
yW
zW

 = RW × inv_K×

 u
v
1

× abs_d + OWOC (12)

4. Results

In this section, we will show the positioning effect of our method in practical applica-
tions. The experiments are divided into four parts: (1) optical flow model training, (2) depth
calculation, and (3) target localization experiments in complex environments.

4.1. Models Training
4.1.1. Optical Flow Model

The purpose of introducing the optical flow estimation model is to find the correspon-
dence between the pixel coordinates in two frames. We select the currently well-performing
model, RAFT [33], and train it. It takes the optical flow estimation problem and estimates
the motion of all pixels end-to-end using deep neural networks and achieves higher accu-
racy and robustness than other optical flow algorithms. It has strong generalization over
many datasets, so we think it can also have good performance in remote sensing images.
RAFT performs well in terms of number of parameters, inference time, which can meet
the real-time requirements well. We reprojected remote sensing images of complex terrain
based on depth information with random orientation camera positional changes to form
the dataset used for network training. We show part of the dataset, as well as the test results
in Figure 3.

The whole dataset consists of 20 videos with a frame rate of 30 frames/s. The UAVs
fly at 20–60 m and have a flight speed of 1 m/s. The scene contents of the videos mainly
include forests, steep cliffs, mountains, etc. We obtained 7201 images by extracting key
frames, and modeled the scene through SLAM method. The modeling results serve as the
reference value source for depth information. The scene with point cloud is displayed in
Figure 4. We amplified all images by performing multiple random direction reprojection
operations on each one, and finally obtained a dataset containing 36,005 images. The
training set and verification set are randomly allocated according to the ratio of 8:2.
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(a) Trainning set.

(b) Test set.

Figure 3. Parts of dataset are shown. Each piece of data are divided into three parts, A (first row), B
(second row), and flow (third row). Flow is the pixel motion relationship from A to B. In the training
set, A is the original image and B is the reprojected image. In the test set, A is the previous frame
image and B is the current frame image.

Figure 4. Data set collection and experimental scenes. The scene on the left is Xishan Forest Park
(24◦57′6′′N 102◦38′24′′E) and on the right is Gudian Wetland Park (24◦46′34′′N 102◦44′57′′E).

4.1.2. Target Detection Model

We trained each of the five models with different specifications and complexity of
YOLOv5, in descending order of network complexity, YOLOv5n, YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. The datasets used for training and testing are from the same
source as the datasets used for training the optical flow model. To enlarge the dataset
size, we used data enhancement methods including rotation, scaling, and single-shoulder
transformation. The dataset contains 3080 images and 45,096 target labels. The ratio of
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training set to validation set is about 8:2. The trends of precision and recall in training are
shown in Figure 5. The performance effect of each model is shown in the Table 1. The
s(ms) represents the time required to process an image when the target detection model is
invoked alone. The comparison results show that YOLOv5 performs the best in terms of the
combined evaluation criteria of accuracy and recall. The YOLOv5x model is the preferred
choice for the experiments provided that the real-time requirements are met. Considering
the need to access two neural network models at the same time and to ensure the real-time
performance of the operation, we used YOLOv5l for the subsequent experiments.

Figure 5. The variation trend of precision (left) and recall (right) during training.

Table 1. Performance of different models on the RTX 2070 Super.

Model Precision Recall mAP@.5 s (ms)

YOLOv5n 0.823 0.606 0.687 3.6
YOLOv5s 0.848 0.673 0.726 5.5
YOLOv5m 0.881 0.693 0.752 7.1
YOLOv5l 0.904 0.698 0.763 10.0
YOLOv5x 0.889 0.726 0.778 16.1

4.2. Depth Calculation

In the experiment, we used the pictures collected in the places shown in Figure 4 that
did not appear in the training set to form the test set. The test set contains 604 images,
which are composed of three video key frames. Considering that our method requires two
adjacent frames for computation, we compared the results of 601sets except the first key
frame of each video.

We evaluated the effectiveness of our method by comparing it with the reference depth
theywere born using the SLAM method. We likewise compare with three other methods,
Monodepth2 [34], Madhuanand et al. [24], and CADepth [35]. Monodepth2 [34] uses a joint
training approach to train both PoseNet and DepthNet using consecutive image sequences
for self-supervised training. Madhuanand et al. [24] proposes for the first time to train a
depth estimation model using tilted drone videos. All these models are trained under the
same environment, dataset, and resolution as our method to make them comparable.

To evaluate the performance, we compared the Madhuanand et al. [24] according
to a series of metrics. These include Absolute Relative difference (Abs Rel), given in
Equation (13), used to calculate the average difference between the reference and corre-
sponding pixel position of the method’s predicted depth, Squared Relative difference
(Sq Rel) as given in Equation (14) which is used to represent the squared difference be-
tween reference and method predicted depth, Root Mean Square Error (RMSE), given in
Equation (15), accuracy as given in Equation (16).

AbsRel =
1
N

N

∑
i=1

|d(xi)− d′(xi)|
d(xi)

(13)
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SqRel =
1
N

N

∑
i=1

(d(xi)− d′(xi))
2

d(xi)
(14)

RMSE =

√√√√ 1
N

N

∑
i=1

(d(xi)− d′(xi))2 (15)

accuracy(δθ) =
1
N

N

∑
i=1

max(
d(xi)

d′(xi)
,

d′(xi)

d(xi)
) < θ (16)

where d(xi) is the reference depth of each pixel at the ith position and d′(xi) is the method
predicted depth at the ithh position. The accuracy of Equation (16) is the percentage of
pixels within a certain threshold θ. Based on the standard benchmarks of KITTI quantitative
evaluation, the thresholds are chosen as 5%, 15%, and 25%. The predicted depths of our
method with these depth estimation models are visualized in Figure 6. The quantitative
evaluation results are shown in Table 2. In steep and rugged scenes, our method has higher
accuracy. It is also obvious from the depth information visualization images that the depth
distribution predicted by our method is more consistent with the real depth distribution
and is not limited by the inherent depth distribution trend at any angle, in any terrain.

Figure 6. Qualitative comparison between (b) reference depths from SLAM, (c) Monodepth2 [34],
(d) Madhuanand et al. [24], (e) CADepth [35], (f) ours. The test image is given in (a).
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Table 2. Comparison of assessment results.

Method Abs Rel Sq Rel RMSE δ1.05 δ1.15 δ1.25

Monodepth2 0.479 3.961 6.001 0.715 0.881 0.967
Madhuanand et al. 0.460 3.506 5.816 0.727 0.893 0.973

CADepth 0.431 2.769 5.479 0.744 0.906 0.983
Ours 0.425 2.563 5.315 0.732 0.915 0.983

Areas with larger depth values are colored blue-purple, and smaller ones are yel-
low.Our method has clearer edges in a variety of scenes including cliffs, woods, slopes,
etc. Additionally, in a variety of depth distribution trends, our method can better and
more accurately reflect the changes in depth. However, in the edge region, our method
sometimes has errors, especially when the true depth value of the image edge varies widely.
Since there are no moving objects involved in the test set, the effect of depth prediction
for moving objects is not reflected in the test images. We also performed a quantitative
evaluation to compare the effects between several methods more accurately.

The quantitative metrics between the methods are shown in Table 2. The data in the
table are the evaluation metrics calculated by calculating the ratio of the reference depth to
the mean value of the predicted depth of each method, after scaling the predicted depth.
From the table, we can observe that our method achieves the best results for all three
evaluation metrics, Abs Rel, Sq Rel, and RMSE. At a threshold of 1.05, the accuracy of our
method is second only to CADepth and obtains the best results with the same effect as
CADepth at a threshold of 1.25.

4.3. Positioning in Complex Scenes

To demonstrate the effectiveness and accuracy of the method in complex scenes, we
designed several field positioning experiments. Experimenters were dispersed into scenes
as positioning targets. These scenes included hills, woods, cliffs, etc. The experiments were
conducted in the Xishan Forest Park (24◦57′6′′N 102◦38′24′′E) and the Gudian Wetland
Park (24◦46′34′′N 102◦44′57′′E). The target localization calculation was partially run on a
laptop with an i7-10875H CPU, RTX 2070 SUPER GPU and 16GB RAM. The computation
speed can reach more than 25 frames per second, which meets the real-time requirement.
Finally, the calculated points are displayed in the form of coordinates in Figure 7. The error
results of target localization are shown in Table 3.

The error distance of localization is derived by calculating the spatial distance between
the true and predicted coordinates. As can be seen from the settlement results in the
table, 75% of positioning accuracy errors remain within 5 m in complex scenarios. The
overly steep environment is still generally lower than the positioning accuracy in other
environments. However, the error can still be guaranteed to be within 8 m. Overall, this
method can meet the positioning requirements in complex scenes.

We cite different depth estimation methods involved in positioning for comparing the
effect of depth estimation methods on positioning errors. Since the exact distance from
the camera to a plane is not available in a complex environment, the scale factor of the
depth map cannot be calculated by predicting the camera height during the experiment.
We designed a computational method for the calculation of scale factor. This method
derives the scale factor corresponding to two depth maps by the different representations
of two depth maps with different UAV positions at the same spatial point. The formula is
as follows:

α1 × depth1 × inv_K×

 u1
v1
1

− α2 × depth2 × inv_K× R×

 u2
v2
1

+ b×

 0
0
1

 =

 x
y
z

 (17)

where (ui, vi) is a set of determined corresponding points, depthi is the relative depth
information corresponding to this pair of points, and R is the rotation matrix of the UAV.



Remote Sens. 2023, 15, 1036 13 of 16

The equation can be solved for three unknowns. αi is the scale factor corresponding to the
two depth maps. b represents the error distance, and the scaling factor is more accurate
only when the value of B is smaller. In the experiment, the absolute value of b is limited
to less than 0.2, which represents the selected corresponding point at a distance less than
0.2 m in space.

Figure 7. The positioning results shown in each image are consistent with the Positioning Lng, Lat
column in Table 3. The scene in (a–f) is in the Xishan Forest Park, which has steep terrain and contains
complex environments such as mountain roads and cliffs. The scene in (g–i) is in Gudian Wetland
Park, with selected scenes of woods, meadows, etc.

Table 3. Target positioning result.

Target True Longitude True Latitude Positioning Lng Positioning Lat Error (m)

a1 102.639 157 21° 24.951 883 18° 102.639 127 27° 24.951 882 77° 3.76
a2 102.639 136 54° 24.951 885 09° 102.639 108 36° 24.951 884 70° 3.54
a3 102.639 122 74° 24.951 903 36° 102.639 092 13° 24.951 902 94° 3.84

b1 102.748 050 46° 24.775 945 20° 102.748 080 81° 24.775 948 15° 3.88
b2 102.748 078 38° 24.775 971 45° 102.748 113 75° 24.775 974 88° 4.53

c1 102.639 120 85° 24.952 119 31° 102.639 129 03° 24.952 077 62° 5.70

d1 102.639 218 30° 24.952 030 52° 102.639 268 34° 24.952 003 49° 6.26
d2 102.639 229 35° 24.952 024 71° 102.639 268 16° 24.952 003 75° 4.855

e1 102.639 089 45° 24.951 474 45° 102.639 056 87° 24.951 429 16° 7.56

f1 102.639 087 48° 24.951 788 06° 102.639 062 24° 24.951 774 77° 3.09

g1 102.751 009 80° 24.776 486 35° 102.751 001 03° 24.776 471 37° 1.96
g2 102.751 072 92° 24.776 421 59° 102.751 063 57° 24.776 405 62° 2.09

h1 102.815 787 00° 24.850 202 96° 102.815 844 40° 24.850 186 42° 6.48

i1 102.749 808 07° 24.777 012 05° 102.749 815 47° 24.777 007 65° 1.265
i2 102.749 893 16° 24.777 027 97° 102.749 900 84° 24.777 023 40° 1.31
i3 102.749 972 73° 24.776 965 85° 102.749 985 78° 24.776 958 09° 2.23

The analysis of the positioning errors after plugging different depth estimation models
into the target positioning method is shown in Table 4. We calculated the minimum,
maximum, and average values of the errors, and counted the proportion of samples with
errors within 3 m, 5 m, and 8 m of the total samples, respectively. From the table, we can
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see that the target localization results using our depth estimation method have smaller
errors overall and more stable results.

Table 4. Target positioning result with different depth estimate method.

Monodepth2 Madhuanand et al. CADepth Error (m)

Errormin 2.47 2.66 1.73 1.265
Errormax 68.33 57.145 19.31 7.56
Errormean 22.6872 20.1564 12.2137 3.8969

δ3 0.125 0.125 0.125 0.3125
δ5 0.25 0.1875 0.5625 0.75
δ8 0.6875 0.6875 0.875 1.0

5. Discussion

In this paper, a new method is proposed for estimating the depth information of
UAV videos in complex scenes. This method is used to improve the accuracy of target
localization in complex scenes. The method we propose requires a progressive depth
calculation based on the pixel coordinate relationship between frames based on the motion
information of the UAV. The pixel motion used in the computation is predicted by the
trained optical flow estimation model. Although supervised training is performed, the
supervised signal can be obtained by reprojection calculation, which is less difficult to
obtain and more accurate. Moreover, the trained model is not limited by the original terrain
type because it is detached from the original scene of the terrain, and can be used for a
variety of multi-angle complex scenes.

In terms of target positioning, the computational process that introduces depth esti-
mation is detached from the dependence on elevation information and assumed planes,
which allows for much higher positioning accuracy in complex terrain, especially in scenes
with large elevation changes. The calculation of depth information is related to the pixel
motion distance. The smaller the pixel motion distance is, the larger the depth estimation
error is. When the displacement of the UAV is parallel to the imaging plane of the camera,
the pixel motion distance corresponding to the same spatial point reaches the maximum
and the depth estimation is the most accurate.

In our future work, we will further explore the depth estimation methods for remote
sensing videos in complex scenes, improve the depth estimation accuracy for reflective and
dynamic objects, and further improve the accuracy of target localization methods.
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