
Citation: Padilla-Zepeda, E.;

Torres-Roman, D.; Mendez-Vazquez,

A. A Semantic Segmentation

Framework for Hyperspectral

Imagery Based on Tucker

Decomposition and 3DCNN Tested

with Simulated Noisy Scenarios.

Remote Sens. 2023, 15, 1399.

https://doi.org/10.3390/rs15051399

Academic Editors: Jiaojiao Li, Qian

Du, Wei Li, Bobo Xi, Jocelyn Chanussot,

Rui Song and Yunsong Li

Received: 20 January 2023

Revised: 17 February 2023

Accepted: 22 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Semantic Segmentation Framework for Hyperspectral
Imagery Based on Tucker Decomposition and 3DCNN Tested
with Simulated Noisy Scenarios
Efrain Padilla-Zepeda † , Deni Torres-Roman *,† and Andres Mendez-Vazquez †

Center for Research and Advanced Studies of the National Polytechnic Institute, Telecommunications Group,
Av del Bosque 1145, Zapopan 45017, Mexico
* Correspondence: deni.torres@cinvestav.mx
† These authors contributed equally to this work.

Abstract: The present work, unlike others, does not try to reduce the noise in hyperspectral images to
increase the semantic segmentation performance metrics; rather, we present a classification framework
for noisy Hyperspectral Images (HSI), studying the classification performance metrics for different
SNR levels and where the inputs are compressed. This framework consists of a 3D Convolutional
Neural Network (3DCNN) that uses as input data a spectrally compressed version of the HSI,
obtained from the Tucker Decomposition (TKD). The advantage of this classifier is the ability to
handle spatial and spectral features from the core tensor, exploiting the spatial correlation of remotely
sensed images of the earth surface. To test the performance of this framework, signal-independent
thermal noise and signal-dependent photonic noise generators are implemented to simulate an
extensive collection of tests, from 60 dB to −20 dB of Signal-to-Noise Ratio (SNR) over three datasets:
Indian Pines (IP), University of Pavia (UP), and Salinas (SAL). For comparison purposes, we have
included tests with Support Vector Machine (SVM), Random Forest (RF), 1DCNN, and 2DCNN. For
the test cases, the datasets were compressed to only 40 tensor bands for a relative reconstruction
error less than 1%. This framework allows us to classify the noisy data with better accuracy and
significantly reduces the computational complexity of the Deep Learning (DL) model. The framework
exhibits an excellent performance from 60 dB to 0 dB of SNR for 2DCNN and 3DCNN, achieving a
Kappa coefficient from 0.90 to 1.0 in all the noisy data scenarios for a representative set of labeled
samples of each class for training, from 5% to 10% for the datasets used in this work. The source code
and log files of the experiments used for this paper are publicly available for research purposes.

Keywords: semantic segmentation; 3D convolutional neural network; noisy hyperspectral image;
Tucker tensor decomposition; spectral–spatial feature extraction

1. Introduction

Hyperspectral imaging studies the interactions between observed scenes and the
electromagnetic spectrum [1]. For example, it allows for measuring the amount of light
reflected into a spectral sensor. From these measurements, it is possible to obtain a distinc-
tive spectral signature composed of different wavelength channels [2]. If it is assigned a
label corresponding to the ground truth, with the help of a human expert or a clustering
algorithm, a Machine Learning classifier can be trained using supervised learning [2].
The hyperspectral image capturing process is far from ideal [3]; it is well known that
every signal will be prone to being corrupted by different kinds of noise depending on
the electronics’ quality, environment of capture, and many others factors. For example,
hyperspectral sensors are mounted on airplanes, drones, or satellites causing the capture
of data cubes to be highly expensive and noisy. Thus, the need for new methods that are
robust to noisy environments for expanding the possible range of applications. To address
this task, this work tests the performance of a 3DCNN for noisy hyperspectral images,

Remote Sens. 2023, 15, 1399. https://doi.org/10.3390/rs15051399 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15051399
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9880-7157
https://orcid.org/0000-0002-9813-7712
https://orcid.org/0000-0001-7121-8195
https://doi.org/10.3390/rs15051399
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15051399?type=check_update&version=2


Remote Sens. 2023, 15, 1399 2 of 28

which is a semantic segmentation algorithm based on the spatial–spectral feature extraction
pixel-by-pixel. Given the high computational complexity of the 3DCNN with the original
HSI, a dimensionality reduction method based on Tucker Decomposition compresses the
spectral dimension of the input, independent of the low signal-to-noise ratio.

1.1. Related Work

It is usual to consider data denoising as a preprocessing step for classification. As is
well known, there are many denoising algorithms for hyperspectral imagery [3–9], which
aims to recover the clean signal from the noisy one. These algorithms are particularly
useful when the posterior tasks analyze the spectral signature for qualitatively studies. On
the other hand, the pixel-based semantic segmentation (classification) could be based on
a wide range of algorithms, artificial neural networks architectures, or feature extraction
techniques; for example, Convolutional Neural Networks (CNNs) have demonstrated
outstanding results performing spatial and spectral feature extraction [2,10–15]. Semantic
segmentation techniques for RGB images, such as transfer learning [16–19], have been
applied to spectral imagery [20] in combination with fully convolutional models, such
as the well-known U-net [21–24]. There are other techniques specifically designed for
noise–robust classification, e.g., based on band fusion [25,26] or feature extraction as a
pre-processing step for a classification algorithm [27–31]. In some applications of optical
remote sensing satellites in orbit, using atmospheric correction as an example [32,33], for
hyperspectral [34,35] earth surface monitoring missions, the first task is to perform semantic
segmentation to obtain a classification mask, from which the atmospherically corrected
image is estimated.

This framework aims to classify the noisy data pixel by pixel. For example, 3DCNN can
extract spatial and spectral features despite the low Signal to Noise Ratio (SNR). However,
there is a drawback of using these models caused by the computational complexity of
having such huge datasets. Thus, we propose using Tucker Decomposition with a 3DCNN
to combine and improve the properties of DL and Decomposition in a single noise robust
framework. TKD shows excellent compression ratios with minimal or no effects in the
segmentation performance of DL models given that it found a lower-rank representation
of the original tensor, capturing the high spatial–spectral correlation of the data [36,37].
Not only that, in this work, we have shown that TKD helps to improve the classification
performance where there are a representative number of samples of each class for training.
Finally, in Table 1, we have a summary of the major papers consulted for the proposed
semantic segmentation framework.

Table 1. Main papers used for the proposed framework and its contribution.

Author Contribution

Tensor Kolda and Bader [38] Tensor theory
López et al. [36] Use of the TKD for semantic segmentation tasks

Noise Bourennane et al. [4] Noise theory and noise model
Liu et al. [39] Noise model and noise generation
Rasti et al. [3] Noise theory and classification test methodology

Classification Paoletti et al. [2] Classifiers code, architectures, and theory
Chen et al. [10] Spatial–Spectral feature extraction theory

Li et al. [40] 3DCNN architecture
Fu et al. [25] Noisy-robust classification

Metrics Grandini et al. [41] Metrics used for multi-class classification evaluation

Luque et al. [42] Impact of class unbalance for classification performance
metrics

1.2. Contributions

Our main contributions are three-fold:



Remote Sens. 2023, 15, 1399 3 of 28

• This work provides the remote sensing community with a framework based on a
3DCNN and Tucker Decomposition, performing semantic segmentation of noisy hy-
perspectral images, from an SNR of from 60 dB to 0 dB, outperforming other classical
classifiers such as RF and SVM.

• Taking advantage of the spectral correlation of the data, we perform the Tucker De-
composition compressing only in the spectral domain; for example, for the three data
sets studied to 40 new tensor bands and achieving a relative reconstruction error of
less than 1%. This compression of the spectral domain of the input space reduces
the computational complexity, consequently reducing the training time ratio by up to
29 times with respect to the original input space, depending on the case.

• TKD not only reduces the computational complexity but also increases the classification
performance. This improvement was most significant for training set sizes on the order
of from 5% to 3%. Furthermore, the behavior of TKD under different SNR are studied
for the three used datasets.

The remainder of this work explains the basic concepts of tensor algebra, the noise
model used, and the architecture of the DL model in Section 2. Section 3 describes the
proposed framework. Section 4 analyzes the experiments. Finally, Sections 5 and 6 present
the discussion and conclusions, respectively.

2. Mathematical Background

This section presents a short description of the theoretical concepts used in each
stage of the proposed semantic segmentation framework. First, tensor theory for HSI
representation and compression based on the TKD is used [38]. Second, a noise model
for hyperspectral imagery is used in this paper for noise generation [3,4,39]. Finally, DL
spectral and spatial feature extraction models [2,10,40] with metrics are used to compare
ground truth labels and predicted ones for unbalanced training scenarios [41–43].

2.1. Tensor Algebra

Nowadays, research in tensor data analysis is finding new novel properties and
applications on spectral images [4,8,9,36,44–48]. For this reason, this section presents an
overview of the tensors theory, and the representation of an HSI as a tensor.

For tensor algebra, the work of Kolda and Bader [38] is our main reference. Us-
ing its notation, a scalar is denoted by x, and the vectors and matrices are denoted by
x and X, respectively, which can also be seen as tensors. For example, a first-order ten-
sor is a vector, and a second-order tensor is a matrix. A third- or higher-order tensor is
denoted by X with elements xi,j,...,n. Thus, naturally, a third-order tensor may be repre-
sented as a cube of elements. Besides, xi is the ith column of a matrix X, and a(n), A(n)

are the nth vector or matrix in a sequence of vectors or matrices, respectively. Now, a
mode-n fiber is a vector obtained by fixing all indices, except the one corresponding to the
nth-dimension [38] (pp. 457–460). X(n) is a mode-n matricization of an Nth-order tensor X,
where the mode-n fibers are arranged to be the matrix columns. Lastly, ‖X‖ denotes the ten-
sor norm of X ∈ RI1×I2×···×IN , as described by Equation (1); this is analogous to the matrix
Frobenius norm.

‖X‖ =

√√√√ I1

∑
i1=1

I2

∑
i2=1
· · ·

IN

∑
iN=1

x2
i1i2···iN

. (1)

An element of the new vector space generated by the outer product of the N vector
spaces on the same field R is an Nth-order tensor X. Thus, a tensor can be seen as a
multi-dimensional array of N dimensions. The order of a tensor is also called the ways
or modes [38]. An hyperspectral image H in Figure 1 can be represented as a third-order
tensor H ∈ RI1×I2×I3 , where I1 and I2 are image height and width, respectively. I3 is the
number of bands in which the electromagnetic spectrum is captured. Then, the element
xi1,i2,i3 is the pixel value at position (i1, i2) at band i3.



Remote Sens. 2023, 15, 1399 4 of 28

I1

I2

I3

Figure 1. AVIRIS HSI of Indian Pines, NW Indiana. NASA/JPL [49].

In order to introduce the concept of TKD, the concepts of rank-one, vector outer
product, n-mode product, and n-rank are required. A rank-one tensor of the Nth-order
X ∈ RI1×I2×···×IN can be represented as the outer product of vectors [38],

X = a(1) ◦ a(2) ◦ · · · ◦ a(N), (2)

where the symbol “◦”, at Equation (2), represents the vector outer product. Thus, each
element xi1,i2,...,in of X is obtained from the corresponding vector elements [38]:

xi1,i2,...,in = a(1)i1
a(2)i2
· · · a(N)

iN
for all 1 ≤ in ≤ In. (3)

The n-rank, rankn(X), is the column rank of the matrix X(n). For easy-reading reasons,
it is defined rankn(X) as Rn of X for n = 1, ..., N. For an HSI represented as a third-order
tensor, H ∈ RI1×I2×I3 , rank1(H), and rank2(H) correspond to the spatial domain of the
image, such that 1 ≤ rank1(H) ≤ I1 and 1 ≤ rank2(H) ≤ I2. In the same way, rank3(H)
and 1 ≤ rank3(H) ≤ I3 corresponds to the spectral domain. Finally, for the n-mode
product of a tensor with a matrix, X×n U, with U ∈ RJ×In , the resultant tensor will have
dimensions I1 × · · · × In−1 × J × In+1 × · · · × IN [38] (pp. 460–461):

(X×n U)i1···in−1 jin+1···iN =
In

∑
in=1

xi1i2···iN ujin . (4)

Tucker in 1966 introduced the now-called Tucker Decomposition [50]. It is a form
of higher-order PCA and there are several tensor decompositions derived from this one.
The Tucker Decomposition (TKD) decomposes a tensor of Nth-order into a core tensor of
the same order but could have different dimensions, multiplied by a transformation matrix
along each mode [38]. The Tucker Decomposition for a third-order tensor, e.g., see Figure 2,
for an HSI representation, X ∈ RI×J×K, is defined as:

X ≈ G×1 A×2 B×3C =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqr ap ◦ bq ◦ cr = [[G; A, B, C]], (5)

where P ≤ I, Q ≤ J and R ≤ K.



Remote Sens. 2023, 15, 1399 5 of 28

I × P J ×Q

K× R

Figure 2. Tucker Decomposition of Indian Pines HSI, a third-order tensor.

Element-wise, the Tucker Decomposition in Equation (5) is provided by:

xijk ≈
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqr aipbjqckr for i = 1, ..., I, j = 1, ..., J, k = 1, ..., K. (6)

The entries of the core tensor G ∈ RP×Q×R “show the level of interaction between the
different components”. P, Q, and R are the new dimensions of the factor matrices A, B,
and C, respectively, which can be seen as the principal components in each mode. “If P, Q,
R are smaller than I,J,K, the core tensor G is a compressed version of X”.

According with Kolda and Bader [38], for Rn = rankn(X), an exact Tucker Decom-
position of rank (R1, R2, ..., RN) can be computed. Another case is “the truncated Tucker
Decomposition of rank (R1, R2, ..., RN), when Rn < rankn(X) for one or more n, then it will
be necessarily inexact and more difficult to compute.” Tucker Decomposition can compress
along selected dimensions. To do this, we use the Tucker1 Decomposition, defined in [38],
which fixes two factor matrices to be the identity matrix,

X ≈ G×1 A = [[G; A, I, I]]. (7)

2.2. Noise Model

Noise is intrinsic to any signal and hyperspectral imaging is not an exception. There
are many sources and kinds of noise present on HSIs mentioned in this section. In general,
the noise can be distinguished into two classes [4]: the fixed pattern noise and the random
noise. The first one is due to calibration errors, and it is not of interest in this work. Instead,
random noise, due to its stochastic nature, can be studied and generated from a suitable
noise model. For new-generation imaging spectrometers used in hyperspectral imagery,
the random noise mainly comes from two aspects: Signal-Dependent (SD) photonic noise
and Signal-Independent (SI) electronic noise, also known as thermal (Johnson) noise [51].

Although, the noise model used in this paper is due to the work of Bourennane et al. [4],
we are not addressing the signal denoising process; rather, we use it for the simulation of the
noisy data scenarios. For this, we carefully study the calculation of variances focused on the
implementation of a noise generator in Section 3.2. Using the tensor theory, the noisy HSI is
represented as a sum of the clean signal and additive noise [3].

H = X+N, (8)

where H,X,N ∈ RI1×I2×I3 . H is the noisy HSI, X is the clean signal, and N is the noise for
both photon and thermal noise [4]. Note that H is quantized depending on the capturing
sensor; this process is described in Section 3.2 by Equation (26). The noise model in
Equation (8) is valid under the assumption of high-SNR of X. The variance of the noise
depends of each pixel value xi1,i2,i3 in the clean signal X. The tensor N is composed of the
sum of two tensors, the photonic noise tensor P ∈ RI1×I2×I3 , and the thermal noise tensor
T ∈ RI1×I2×I3 . Thus:

N = P+ T, (9)



Remote Sens. 2023, 15, 1399 6 of 28

where P is dependent of the clean signal X, and T is signal independent.
The improvement of the Charged Couple Device (CCD) sensors for new generation

instruments exhibited a tendency to increase the spatial resolution. Therefore, the number
of photons that reach a pixel per unit time becomes smaller, causing the random fluctuation
of photons arriving at the sensor. Consequently, the photonic noise is now more relevant
than before [4]. Photonic noise follows Poisson distribution [52], but it can be approximated
by a Gaussian distribution [53]. A single photon noise element pi1,i2,i3 of tensor P ∈
RI1×I2×I3 can be expressed in terms of its corresponding element xi1,i2,i3 of the clean signal X
as follows [53]:

pi1,i2,i3 =
(
xi1,i2,i3

)γ · ui1,i2,i3 , (10)

where ui1,i2,i3 is a stationary, zero-mean uncorrelated random process independent of xi1,i2,i3
with variance σ2

u”. “In the case for earth remote sensing images captured by instruments
mounted in airborne or spaceborne platforms, the exponent γ is equal to 0.5” [51]. Thus:

pi1,i2,i3 =
√

xi1,i2,i3 · ui1,i2,i3 . (11)

The thermal agitation of the charge carriers inside the electronics of the instruments
used for hyperspectral images causes the thermal noise. A single thermal noise element of
the noise tensor T is denoted by ti1,i2,i3 ; this random process can be modeled as an additive
zero-mean white Gaussian noise with variance σ2

t [4].
From Equations (8) and (9), the noise model used in this paper is:

H = X+P+ T. (12)

Element-wise, using Equations (10) and (11), the noise model is:

hi1,i2,i3 = xi1,i2,i3 +
√

xi1,i2,i3 · ui1,i2,i3 + ti1,i2,i3 . (13)

To highlight the dependency, another useful notation for Equation (9) is [39]:

N(X) = NSD(X) +NSI . (14)

ni1,i2,i3(X) =
√

xi1,i2,i3 · ui1,i2,i3 + ti1,i2,i3 . (15)

Given this, Equation (12) can be rewritten as:

H(X) = X+NSD(X) +NSI . (16)

This SD and SI noise model is used in the framework of this paper, because it considers
two of the main sources of random noise for new generation sensors.

2.3. Spectral–Spatial Deep Learning Models

Generally, spectral signatures of equally labeled pixels are highly correlated between
them, and this is a feature that most of the classification algorithms take advantage of for
class separation. Spatial correlation is present when a group of neighbor pixels belongs
to the same class, which is a common case for remote sensing optical images of the earth
surface. Convolutional Neural Networks (CNN) are DL models designed to extract features
of neighbor pixels and bands, based on this, the architecture depends on the feature analysis
they perform. CNNs for HSI classification are divided in three kinds: spectral, spatial,
and spectral–spatial [2].

For the Spectral DL model (1DCNN) in Figure 3, the spectral pixels xi ∈ Nnbands

are the input data, where nbands is the number of bands of the image with or without
compression. On each convolutional layer (CONV), 1D-kernels are applied, such that
K(l) × q(l), obtaining as a result an output X(l) composed of K(l) feature vectors [2].



Remote Sens. 2023, 15, 1399 7 of 28

  Pixel vector   

Compressed  HSI
Fully   connected   

layers

C
lassi fica tio n

Feature vector Output

Figure 3. Traditional architecture of spectral convolutional model employed using 1DCNN [2].

Spatial DL models (2DCNN) consider the spatial information obtained from the
neighbor pixels of the HSI, see Figure 4. For that reason, the input will be spatial patches
of d × d pixels cropped from the complete HSI with the pixel of interest at the center.
To extract spatial features, on each CONV layer, 2D-kernels are applied over the input data,
such that K(l) × k(l) × q(l), obtaining K(l) feature maps as a result [2].

Spatial-Spectral 
patches   

Compressed  HSI Fully   connected   
layers

C
lassi fica tio n

Output   
volumeFeature   map

Figure 4. Traditional architecture of spatial convolutional model employed using 2DCNN [2].

Spectral–spatial DL models (3DCNN) extract spectral and spatial features at the same
time, see Figure 5. Similarly, as with 2DCNN, the features are extracted from spatial patches
of d× d, associated with a single pixel of the HSI. This model uses 3D-kernels, such that
K(l) × k(l) × k(l) × q(l), extracting K(l) feature volumes as output [2].

Spatial-Spectral 
patches   

Compressed  HSI
Fully   connected   

layers

C
lassi fica tio n

Feature vol.

Output vol.

Figure 5. Traditional architecture of spectral–spatial convolutional model employed using 3DCNN [2].

All these spectral feature extraction DL methods basically infer the ground truths
based on the spectral signature. Moreover, remote sensing images exhibit an obvious
correlation between neighbor pixels, causing the spatial feature extraction to be a good
candidate for this task. Spectral–Spatial feature extraction adopts both characteristics,
creating features volumes from a pixel of interest, and, additionally, contains information



Remote Sens. 2023, 15, 1399 8 of 28

from its neighbor pixels. For this reason, we use 3DCNN, which is used for the classification
of hyperspectral remote sensing noisy images.

2.4. Unbalanced Classification Performance Metrics

Unbalanced classification performance metrics are a key piece for this framework, because
we cannot guarantee the same number of labeled samples per each class for HSIs to be tested.
Each image will have different spatial Ground Truth (GT) distribution, and there is a need to
highlight that, when identifying targets with a low sample count, classical metrics in multi-class
classification may show biases. For example, the Overall Accuracy is defined as the number of
correct classified samples divided by the overall number of samples. This metric is not reliable
when the classification problem is imbalanced. The Average Accuracy metric is essentially an
average of the accuracies per each class. If the classification problem shows an unbalanced
distribution of classes, this metric takes into account the accuracy per each class as equal,
independent of the number of samples. On the other hand, Cohen in 1960 evaluated the
classification of two raters (prediction of the model and the actual GT) in order to measure
the agreement between them [41]. Cohen’s Kappa coefficient (K) is widely used for the
performance evaluation of remote sensing image classification. For this reason, all the
results in this work are presented with this metric.

Given a predicted classification map Ŷ, obtained from the trained classifier, and the
ground truth Y, of the HSI, a multi-class confusion matrix M =

(
mi,j
)
∈ Zc×c is computed,

where c is the number of classes in Y.
For the case of a binary confusion matrix, Cohen´s Kappa coefficient is defined as follows:

K =
Po − Pe

1− Pe
. (17)

where Po is the accuracy achieved by the model, Pe is the level of accuracy to obtain by
chance. For a multi-class confusion matrix, K is defined as:

K =
∑c

k=1 mk,k ∑c
i=1 ∑c

j=1 mi,j −∑c
k=1

(
∑c

i=1 mi,k ∑c
j=1 mk,j

)
(

∑c
i=1 ∑c

j=1 mi,j

)2
−∑c

k=1

(
∑c

i=1 mi,k ∑c
j=1 mk,j

) . (18)

The case when K = 1 shows a perfect agreement between the GT and predicted
labels. K = 0 means that there is a chance of agreement, but if K is negative, it is a clear
disagreement. Each class classification must have importance; for that reason, all the results
are presented with Cohen’s Kappa coefficient, but the other two metrics (OA and AA) can
be consulted in the log files available in the public repository of this paper [54].

3. Proposed Framework

The proposed framework consists of the following three blocks:

• Noise Generation and Quantization: Having as input the clean signal power,
the variances for signal-dependent and independent noise processes are calculated
for a specified SNR. In order to follow the non-negative integer values of a digital image,
a quantization is performed.

• Tucker Decomposition: Transforms H into a new input space through a core-tensor G
and factor matrices IA, IB and C, where G is a spectrally compressed version of H.

• Deep Learning Model: The model is fitted in terms of the Softmax loss with G and the
class labels present in the ground truth Y, evaluating the prediction Ŷ of the trained
model with metrics that consider a possible unbalanced class scenario.

In Figure 6, a block diagram of the proposed framework is shown.



Remote Sens. 2023, 15, 1399 9 of 28

Signal-Dependent 
Noise Generator

Signal-Independent 
Noise Generator

Noise 
Variance 

Calculation

Noise Generation and Quantization

Source HSI

Noisy HSI
Tucker Decomposition-based Spectral Compression

Spectral-Spatial 
Deep Learning 

Model

Classification 
Metrics

Classification 
Report

Classification

Noise Tensor

Thermal  
Noise

Photon 
Noise

Predicted Pixel 
Ground Truth

Ground Truth

Target 
SNR

Figure 6. Proposed framework.

3.1. Problem Statement

Given X ∈ RI1×I2×I3 , which is a source HSI in a third-order tensor form, assuming
high-SNR, and Y ∈ NI1×I2 , and given the corresponding pixel ground truth matrix, a noise
tensor N must be generated with the same size of X, N ∈ RI1×I2×I3 . N is the sum of two
third-order tensors, the signal-dependent photon noise P, and the signal-independent
thermal noise T; hence, N = P+ T. N must be generated in such a way that the SNR
between X and N is at a desired target and the power of both noise tensors are at different
proportions. Thus, the new noisy HSI H is obtained from the sum of the original HSI X,
and the generated noise tensor N; therefore, H = X+N,H ∈ RI1×I2×I3 .

The purpose of H is to evaluate the classification performance of the Spectral–Spatial
DL models when the input HSI is noisy and no denoising method is applied, but the training
complexity of these models is too high compared with some classical classifiers. Hence,
there is a need to reduce the size of the input to decrease the computational complexity
of the DL model. This task could be performed using a Tucker Decomposition-based
Spectral Compression, setting a suitable compression ratio. Thus, it is necessary to find a
core tensor G ∈ RI1×I2×R3 , which will be a spectrally compressed version of H, such that
R3 ≤ rank3(H).

With the pair (G, Y), divide the ground truth available pixels in training and testing
sets, taking into account a possible imbalanced classification case. Train the DL Spectral–
Spatial Model and predict with it a Ŷ. Finally, evaluate the performance of the DL model
with multi-class classification metrics between Y and Ŷ.

3.2. Noise Generation and Quantization

For experiment purposes of this paper, under the assumption of high-SNR, each
available HSI obtained from space agencies is considered as the clean signal X from
Equation (16). From X, the noise variances σ2

u,i3
and σ2

t,i3
are calculated to generate samples

of the random processes ui1,i2,i3 and ti1,i2,i3 , which correspond to generate the noise tensors
NSD(X) and NSI at a specified SNR in dB [39]. If the variance of the signal is calculated
on homogeneous pixels, this is σ2

xi1,i2,i3
= 0 by definition [51]; assuming that x, u, and t are



Remote Sens. 2023, 15, 1399 10 of 28

independent, and both u and t are zero mean and stationary, the noise variance of each
element n(X) of the noise tensor N(X) can be written as [39]:

σ2
ni1,i2,i3

(X) = xi1,i2,i3 · σ
2
u,i3 + σ2

t,i3 ; (19)

“in practice, homogeneous pixels with σ2
xi1,i2,i3

= 0 may be extremely rare and theoretical
expectation are approximated with local averages” [51]. The mean variance of the noise
tensor N(X) is composed of the sum of the SD and SI noise variances:

σ2
N(X) = σ2

NSD(X) + σ2
NSI

. (20)

Besides, it can be expressed in terms of the mean power of the signal X and the SNR (dB):

σ2
N(X) = PX · 10−(

SNR
10 ), (21)

where PX = ‖X‖2

I1 I2 I3
. Assuming a parameter α, which controls the contribution of both noise

processes to the noise tensor N(X), such that:

α =
σ2
NSD(X)

σ2
NSI

. (22)

From Equations (20) and (22), the mean SI and SD noise variances are expressed in
terms of α as follows:

σ2
NSD(X) =

σ2
N(X) · α
α + 1

,

σ2
NSI

=
σ2
N(X)

α + 1
.

(23)

Furthermore, the noise variances to draw samples are:

σ2
u,i3 =

σ2
NSD(X)

µi3
,

σ2
t,i3 = σ2

NSI
.

(24)

Some mathematical details of the noise model can be consulted in Appendix A.1.
Once obtained, the noise variances are drawn as random samples from a normal

continuous random variable to obtain the tensor N. As seen in Equation (8), H is obtained
by the addition of X and N. The elements hi1,i2,i3 of such tensors are integers, in the range
0 ≤ hi1,i2,i3 ≤ L, where L is the number of quantization levels, provided by Equation (25),
which depends on Q, the number of bits of the sensor. Then,

L = 2Q − 1, (25)

and where a uniform quantization was performed according to the following rule:

hi1,i2,i3 =


0 if hi1,i2,i3 ≤ 0
L if hi1,i2,i3 ≥ L⌊

hi1,i2,i3
⌋

if
(
hi1,i2,i3 −

⌊
hi1,i2,i3

⌋)
< 1

2⌈
hi1,i2,i3

⌉
otherwise.

(26)

In Figure 7, the behavior of both different kinds of noise is observed, where a specific
case of Pavia University is displayed. The SD noise is clearly more present in the high-



Remote Sens. 2023, 15, 1399 11 of 28

reflectance pixels. On the other hand, the SI noise is uniformly distributed along the spatial
domain.

Figure 7. 30th band of Pavia University HSI. SNR = −15, α = 5.

3.3. Tucker Decomposition-Based Spectral Compression

For our particular case of HSI, we need to reduce the dimensionality in the spectral
domain only. If the factor matrices A and B are the identity matrices, which correspond to
the spatial components, then:

H = G×3 C = [[G; I, I, C]], (27)

H(3) = CG(3). (28)

Thus, the core tensor keeps the first two dimensions or spatial domain but reduces the
third dimension or spectral domain, causing G to be a spectrally compressed version of H.
To perform this computation, using the truncated Tucker Decomposition, set the n-ranks
to: R1 = rank1(H), R2 = rank2(H), and R3 < rank3(H), and reduce the spectral domain
from I3 spectral bands to R3 new tensor bands.

3.4. Deep Learning Model Architecture

In this paper, the experiments were performed using a 3DCNN model, given that,
generally, the spectral and spatial domains of HSIs are highly correlated. In Table 2, it is
shown that the architecture used is [2,10,40]. The fundamentals of the 3DCNN model were
explained in Section 2.3.

Table 2. Architecture of the 3DCNN model.

Main Layer Normalization Activation Function Downsampling

Linear input
(19× 19× nbands) - - -

CONV(32× 5× 5× 24) BN ReLU -
CONV(64× 5× 5× 16) BN ReLU POOL (2× 2× 1)

FC(300) BN ReLU -
FC(nclass) - Softmax -

4. Dataset Experiments and Results

The following section explains the setup and details for the experiments performed to
test the framework. The source code and log files with the obtained results are available
in the following GitHub repository [54]: github.com/EfrainPadilla, https://github.com/
EfrainPadilla/Noisy-Hyperspectral-Semantic-Segmentation-Framework-based-on-Tucker-
Decomposition-and-3D-CNN (accessed on 10 March 2022).

github.com/EfrainPadilla
https://github.com/EfrainPadilla/Noisy-Hyperspectral-Semantic-Segmentation-Framework-based-on-Tucker-Decomposition-and-3D-CNN
https://github.com/EfrainPadilla/Noisy-Hyperspectral-Semantic-Segmentation-Framework-based-on-Tucker-Decomposition-and-3D-CNN
https://github.com/EfrainPadilla/Noisy-Hyperspectral-Semantic-Segmentation-Framework-based-on-Tucker-Decomposition-and-3D-CNN


Remote Sens. 2023, 15, 1399 12 of 28

4.1. Hardware

The experiments were performed using SSH in a High-Performance Computing (HPC)
server installed at the Cinvestav Guadalajara Campus. The hardware is described in Table 3.
The implementation ran in Python 3.8.5 and the neural network was implemented in Keras-
Tensorflow 2.3.0 with CUDA 10.1. Google Collab was used for developing and testing.

Table 3. Hardware of HPC server for experiments.

Hardware Cinvestav Guadalajara HPC Server

CPU ×2 Intel Xeon 2.20 GHz 13.75 MB Cache L3
Cores per CPU 10

Threads 40

RAM 6×16 GB 96 GB DDR4 HPE Smart 2666 MHz
ECC

GPU ×1 NVIDIA Tesla V100 PCIe 3.0
GPU Memory 16 GB HBM2
CUDA cores 5120

4.2. Datasets Description
4.2.1. Indian Pines

The Indian Pines (IP) dataset was captured using the AVIRIS sensor [55] in 1992, an
agricultural area in NW Indiana, characterized by its crops of regular geometry and its
irregular forest regions. The spatial resolution is 20 m per pixel with dimensions 145× 145.
From 224 bands in a wavelength range of 0.4 to 2.5 µm, 24 were removed for being null or
water absorption bands (in particular 104–108, 150–163, and 220), considering the remaining
200 bands for the experiments [2]. The ground truth described in Table 4 has 10,249 labeled
samples divided into 16 classes and true color (RGB) is composed from bands 28, 16, and 9
as red, green, and blue, respectively.

Table 4. Indian Pines ground truth description and true RGB visualization, from [2].

Class Number-Name Samples Color Ground Truth True RGB

“0-Background 10,776
1-Alfalfa 46

2-Corn-notill 1428
3-Corn-mintill 830

4-Corn 237
5-Grass-pasture 483

6-Grass-trees 730
7-Grass-pasture-mowed 28

8-Hay-windrowed 478
9-Oats 20

10-Soybean-notill 972
11-Soybean-mintill 2455
12-Soybean-clean 593

13-Wheat 205
14-Woods 1265

15-Buildings-Grass-Trees-Drives 386
16-Stone-Steel-Towers” 93

4.2.2. University of Pavia

The campus of the University of Pavia (UP) was captured using the ROSIS sensor [56]
in 2002, an urban environment in the North of Italy with multiple solid structures, natural
objects, and shadows. The spatial resolution is 1.3 m per pixel with dimensions 610× 340
and 103 bands in a wavelength range of from 0.43 to 8.6 µm. The ground truth described



Remote Sens. 2023, 15, 1399 13 of 28

in Table 5 has 42,776 labeled samples divided into nine classes and true color (RGB) is
composed from bands 48, 24, and 9 as red, green, and blue, respectively.

Table 5. University of Pavia ground truth description and true RGB visualization, from [2].

Class Number-Name Samples Color Ground Truth True RGB

“0-Background 164,624
1-Asphalt 6631

2-Meadows 18,649
3-Gravel 2099
4-Trees 3064

5-Painted metal sheets 1345
6-Bare Soil 5029
7-Bitumen 1330

8-Self-Blocking Bricks 3682
9-Shadows” 947

4.2.3. Salinas

The Salinas (SAL) HSI was captured using the AVIRIS sensor [55] in 2001 over several
agricultural fields in the Salinas Valley, CA, USA. The spatial resolution is 3.7 m per pixel
with dimensions 512× 217. As in the case of IP, from 224 bands in a wavelength range of
from 0.43 to 8.6 µm, 20 were discarded due to water absorption and noise [2]. The ground
truth described in Table 6 has 54,129 labeled samples divided into 16 classes and true color
(RGB) is composed from bands 28, 16, and 9 as red, green, and blue, respectively.

Table 6. Salinas ground truth description and true RGB visualization, from [2].

Class number-name Samples Color Ground Truth True RGB

“0-Background 56,975
1-Brocoli-green-weeds-1 2009
2-Brocoli-green-weeds-2 3726

3-Fallow 1976
4-Fallow-rough-plow 1394

5-Fallow-smooth 2678
6-Stubble 3959
7-Celery 3579

8-Grapes-untrained 11,271
9-Soil-vinyard-develop 6203

10-Corn-senesced-green-weeds 3278
11-Lettuce-romaine-4wk 1068
12-Lettuce-romaine-5wk 1927
13-Lettuce-romaine-6wk 916
14-Lettuce-romaine-7wk 1070

15-Vinyard-untrained 7268
16-Vinyard-vertical-trellis” 1807



Remote Sens. 2023, 15, 1399 14 of 28

4.3. Data Pre-Processing for Reduction of Number of Bands

The noise generation is implemented using the random.normal package of Numpy [57],
where we draw samples with the computed variances, seen in Section 3.2. Tucker Decom-
position is implemented using Tensorly [58], but the code was modified to set the spatial
projection matrices to be the identity matrix, as seen in Equation (27). To select the spectral
compression ratio, the reconstruction error of the original H using TKD for different num-
ber of tensor bands R3 = 1, 2, ..., I3 was calculated. The relative reconstruction error ξ is
obtained using Equation (29).

ξ =
‖H− ĤR3‖2

‖H‖2 . (29)

In Figure 8, the relative reconstruction error is shown for each compression case of IP, UP,
and SAL. We have selected R3 = 40 for all the experiments of this paper, given its low relative
reconstruction error (below 1%) for the three images. Table 7 shows the reconstruction error ξ
and the running time of TKD with R3 = 40, for each HSI used in this paper.

Table 7. Reconstruction error and running time of TKD compressing to 40 tensorial bands.

HSI ξ TKD Running Time (s)

IP 0.994 % 2.89
UP 0.019 % 16.83

SAL 0.027 % 12.41

5 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

R3

ξ

IP
UP

SAL

Figure 8. Relative error between original data and the reconstruction from core tensor.

TKD Behavior for Low-SNR HSI Analysis

The aim of the TKD is to find a vector space of a smaller dimension to represent
the same information of the original space, taking advantage of the spatial and spectral
correlation of pixels. As explained in Section 2, the core tensor G defines the contribution by
the weights on the ith frontal slice G::i. A simple way to visualize the contribution of each

tensorial band is to compute the power per pixel pi of the ith frontal slice using pi =
‖G::i‖2

I1 I2
.

In Figure 9, the behaviors of the contribution for the first tensorial bands from 60 dB to
−20 dB are shown for the three datasets used in this paper. The last bands show very low
power compared to the first ones; for this reason, they are not included in Figure 9. It is
clear that the main contribution is on the first two tensorial bands of G for the three datasets,
but the contribution becomes smaller for low-SNR scenarios. This is explained because the
data becomes uncorrelated by the random noise processes with higher variances, causing
it to be harder to find a projection matrix that defines the direction of the data. For IP in
Figure 9a, the power per pixel of the first tensorial bands start to decay approximately at
20 dB, for UP in Figure 9b at 0 dB, and SAL in Figure 9c at 10 dB; note that SAL decays less
than IP and UP. The higher power per pixel values corresponds to high spatial correlated
scenes, such as IP and SAL, which are composed of agricultural crops, different to UP,
which is an urban scenario. This could explain the power value differences.



Remote Sens. 2023, 15, 1399 15 of 28

−200204060
0

50

100

SNR(dB)

Po
w

er

Band 1
Band 2
Band 3
Band 4
Band 5

(a) IP

−200204060
0

50

100

SNR(dB)
Po

w
er

Band 1
Band 2
Band 3
Band 4
Band 5

(b) UP

−200204060
0

50

100

SNR(dB)

Po
w

er

Band 1
Band 2
Band 3
Band 4
Band 5

(c) SAL

Figure 9. First five tensorial bands power from G, after performing TKD from 60 dB to −20 dB, α = 1.

To take advantage of the spatial correlation feature extraction of the 3DCNN model, it
is necessary to generate a patch with the pixel of interest and its neighbors to train and test
the DL model. Each patch P is composed of 361 pixels (P ∈ R19×19×bands), with the pixel of
interest in the center (p9,9,i3 ); if this pixel is associated with a background label, the patch is
discarded. The patch is padded with zeros if the pixel is at the edge of the image. Note
that the labeled patches contain unlabeled pixels. In Table 8, the running time for patch
generation is shown.

Table 8. Running time for patch generation.

Compressed HSI (40 Bands) Patches Generation Running Time (s)

IP 0.71
UP 18.51

SAL 10.53

We have used scikit-learn [59] for the split of patches in the training and testing sets.
The samples are randomly chosen in each experiment with a stratification strategy based
on k-folds, which returns the stratified folds, where we ensure that the train and test sets
have approximately the same percentage of samples of each class available in the ground
truth Y. In this paper, the size for the training dataset is called the Train Size (TS), and
is represented in a percentage from the total labeled samples available. The size for the
testing data will be the remaining labels. In Table 9, the number of samples for each case
are shown. For the IP case, a smaller set than 5% for the training implies selecting less
than one sample for the “Oats” class; for this reason, we do not perform experiments with
smaller TS for IP. On the other hand, a bigger TS than 20% for IP or 15% for UP and SAL
obtain redundant results and are not aggregated for easy-reading reasons.

Table 9. Number of samples for training and testing sets.

HSI Set 20% 15% 10% 5% 3% 1%

IP Training 2049 1537 1024 512 - -
Testing 8200 8712 9225 9737 - -

UP Training - 6416 4277 2138 1283 427
Testing - 36,360 38,499 40,638 41,493 42,349

SAL Training - 8118 5412 2706 1623 541
Testing - 46,011 48,717 51,423 52,506 53,588



Remote Sens. 2023, 15, 1399 16 of 28

4.4. 3DCNN Prediction of Data with Variable SNR from 60 to −20 dB

To test the 3DCNN DL model robustness against noise, this experiment considers the
model trained with the original data “clean signal”, but the prediction is performed for
noisy data with different SNR levels and α values. The model was trained for IP, UP, and
SAL with a TS of 15%; the results are shown in Figure 10.

−20−100102030405060
0

0.2

0.4

0.6

0.8

1

SNR(dB)

C
oh

en
’s

K
ap

pa
co

ef
fic

ie
nt

IP, α = 0.1 UP, α = 0.1 SAL, α = 0.1
IP, α = 0.5 UP, α = 0.5 SAL, α = 0.5
IP, α = 1.0 UP, α = 1.0 SAL, α = 1.0
IP, α = 2.0 UP, α = 2.0 SAL, α = 2.0
IP, α = 10.0 UP, α = 10.0 SAL, α = 10.0

Figure 10. Cohen’s Kappa coefficient obtained by the prediction of the 3DCNN DL model over raw
noisy data, trained with 15% of the noise-free data of IP, UP, and SAL, without TKD. UP shows the
highest Cohen’s Kappa coefficient values until −20 dB; after that SAL and IP are the lowest.

This experiment shows that the prediction made by 3DCNN does not change signif-
icantly when the signal power is greater than the noise power. For IP, noise affects the
prediction for SNR ≤ 15 dB. For UP and SAL, noise affects the classifier when the SNR is
below 0 dB. The different tested α values do not seem to affect the prediction performance
in any particular way.

4.5. Comparison between 3DCNN and Other Classical Algorithms

In this section, Figure 11–13 show a comparison of the performance robustness to
high-level noisy data scenarios of spectral (1DCNN), spatial (2DCNN), and spatial–spectral
(3DCNN) DL models; additionally, Random Forest (RF) and Support Vector Machine
(SVM), which are widely used classifiers, are tested in the same scenario. The training and
testing were individually performed for each SNR level with α = 1. The results are the
average of 10 runs, showing very low variability. Table A1 in Appendix A.2 shows the
average Kappa Coefficient with the standard deviation for each experiment.

−20−100102030405060
0

0.2

0.4

0.6

0.8

1

SNR(dB)

C
oh

en
’s

K
ap

pa
co

ef
fic

ie
nt

3DCNN
2DCNN
1DCNN

RF
SVM

Figure 11. Indian Pines. Cohen’s Kappa coefficient obtained by different classifiers for IP HSI
compressed with TKD to 40 tensorial bands training with 10% of TS. The best performance is
achieved by 3DCNN and 2DCNN, then RF, 1DCNN, and SVM in descending order.



Remote Sens. 2023, 15, 1399 17 of 28

−20−100102030405060
0

0.2

0.4

0.6

0.8

1

SNR(dB)

C
oh

en
’s

K
ap

pa
co

ef
fic

ie
nt

3DCNN
2DCNN
1DCNN

RF
SVM

Figure 12. University of Pavia. Cohen’s Kappa coefficient obtained by different classifiers for UP
HSI compressed with TKD to 40 tensorial bands training with 10% of TS. The best performance is
achieved by 3DCNN and 2DCNN, then 1DCNN, RF, and SVM in descending order.

−20−100102030405060
0

0.2

0.4

0.6

0.8

1

SNR(dB)

C
oh

en
’s

K
ap

pa
co

ef
fic

ie
nt

3DCNN
2DCNN
1DCNN

RF
SVM

Figure 13. Salinas. Cohen’s Kappa coefficient obtained by different classifiers for SAL HSI compressed
with TKD to 40 tensorial bands training with 10% of TS. The best performance is achieved by 3DCNN
and 2DCNN, then 1DCNN, RF, and SVM show aproximately the same performance above 10 dB, but,
below that, SVM was shown to be the worst.

Given the high spatial correlation of the agricultural crops present in IP, the classifiers
based on spatial feature extraction achieved better results in all the noise level scenarios.
Besides, 3DCNN performs slightly better than 2DCNN at low-level noisy data scenarios;
on the other hand, at highly noisy scenarios, 2DCNN performs better. The performance
of the spectral-based feature extraction classifiers, 1DCNN, RF, and SVM, is considerably
lower than 2DCNN and 3DCNN in all cases, and they are severely affected for SNR ≤ 0 dB.

4.6. Performance, Computational Complexity, and Training Time Comparison between Original
and Compressed Data Using TKD for 3DCNN Model

The purpose of this section is to show how TKD improves the performance and
reduces computational complexity. We have tested the 3DCNN DL model for different
noise levels with an equivalent presence of SD and SI noise (α = 1). The compression is
performed reducing from 200 (IP), 103 (UP), and 204 (SAL) bands, to 40 new tensor bands
in the three cases and for a relative reconstruction error less than 1%. The DL model is
trained for 40 epochs.

For the Indian Pines HSI with 10249 labeled samples available, we show three training
scenarios with 15%, 10%, and 5% for the TS of them in Figure 14.



Remote Sens. 2023, 15, 1399 18 of 28

−20−100102030405060

0.6

0.8

1

SNR(dB)

C
oh

en
’s

K
ap

pa
co

ef
fic

ie
nt

IP-Original-15%TS
IP-Tucker40b-15%TS
IP-Original-10%TS

IP-Tucker40b-10%TS
IP-Original-5%TS

IP-Tucker40b-5%TS

Figure 14. Indian Pines. Cohen’s Kappa coefficient obtained using 3DCNN DL model trained for
40 epochs from the original IP HSI and compressed with TKD to 40 tensorial bands. From 60 to
−5 dB, Tucker improved the performance for Cohen’s Kappa coefficient.

It can be seen that the achieved performance of the DL model training with 15%
and 10% of the available labels is always high, even in the high-level noisy scenarios.
The Tucker Decomposition improves the classification performance in low- and mid-level
noisy scenarios in all the cases. For from 5% to 15% of TS, and from SNR 60 to 0 dB,
TKD improves the prediction and is more significant for a TS of 5% than 10% or 15%.
The performance achieved, fpr the training with 5% of the labels, is significantly lower than
the other two cases, but the TKD remarkably improves the classification performance for
low- and mid-level noisy scenarios, while reducing the training time.

For the University of Pavia, HSI with 42,773 labeled samples were available; we show
two training scenarios with 5% of TS and 1% in Figure 15.

−20−100102030405060
0.8

0.85

0.9

0.95

1

SNR(dB)

C
oh

en
’s

K
ap

pa
co

ef
fic

ie
nt

UP-Original-5%TS
UP-Tucker40b-5%TS
UP-Original-1%TS

UP-Tucker40b-1%TS

Figure 15. University of Pavia. Cohen’s Kappa coefficient obtained using 3DCNN DL model trained
for 40 epochs from the original UP HSI and compressed with TKD to 40 tensorial bands. From 60 to
−5 dB, Tucker improved the performance for Cohen’s Kappa coefficient.

In this case, a consistent improvement of the training is observed with the data
compressed by TKD. The improvement increases as the number of available samples for
training decreases.

For the Salinas HSI with 54,129 labeled samples available, we show two training
scenarios with 5% and 1% of TS in Figure 16.



Remote Sens. 2023, 15, 1399 19 of 28

−20−100102030405060
0.7

0.8

0.9

1

SNR(dB)

C
oh

en
’s

K
ap

pa
co

ef
fic

ie
nt

SAL-Original-5%TS
SAL-Tucker40b-5%TS
SAL-Original-1%TS

SAL-Tucker40b-1%TS

Figure 16. Salinas. Cohen’s Kappa coefficient obtained using the 3DCNN DL model trained for
40 epochs from the original SAL HSI and compressed with TKD to 40 tensorial bands. From 60 to
−20 dB, Tucker improved the performance for Cohen’s Kappa coefficient.

The same behavior is observed in the SAL case, where TKD remarkably improves the
performance in all noisy scenarios. Furthermore, the improvement is more notorious with
a lower quantity of samples for training.

From Figures 14–16, for 5% of TS until 0 dB of SNR, the lowest score is achieved
by IP and the highest by SAL, while UP is in between these two. In these three cases,
TKD improves the classification performance in terms of the Cohen’s Kappa coefficient.
The classification performance of the DL model trained with the compressed HSI by TKD
achieves slightly better results at high-SNR levels compared with the original HSI, while,
at low-SNR values (close to 0 dB), the performance decreases as the noise power increases.
It is important to note that the classification results for the input data compressed by
TKD follows the trends in Figure 9, where, for low-SNR, the weight of the contribution
of the first tensorial bands of SAL is greater than that corresponding to IP and UP. For IP,
the improvement of TKD decreased from SNR ≤ −5 dB; for UP, when SNR ≤ −10 dB, and
for SAL, it is always superior. Generally, the aim of compression methods is to reduce
the input data size for decreased computational complexity of post-processing algorithms.
In this case, TKD not only reduces that complexity but it also improves the classification
performance in some cases. The training times of the above experiments are shown in
Table 10. Some of them are not displayed in the graphics because of easy-reading reasons
(all the log files are available at the public repository for this paper [54]), but all cases follow
the same behavior. TKD reduces the original number of bands of each HSI to 40 tensor
bands in all the experiments, with a low relative reconstruction error (ξ ≤ 1%). The times
shown in Table 10 are approximately the average of the experiments presented above,
the variation of the training time is insignificant in all the experiments with the same TS.

Table 10. Training time comparison for IP, UP, and SAL datasets.

15% TS 10% TS 5% TS 1% TS

Indian
Pines

Original-200 bands (s) 1889.73 1702.36 1469.47 1284.38
TKD-40 bands (s) 67.56 63.54 58.43 55.32

Time reduction ratio 27.97 26.79 25.49 22.56

University
of

Pavia

Original-103 bands (s) 2987.26 2660.66 2321.35 2041.95
TKD-40 bands (s) 255.90 239.80 228.65 208.53

Time reduction ratio 11.67 11.09 10.15 9.79

Salinas
Original-204 bands (s) 9762.00 8783.62 7714.61 6692.29

TKD-40 bands (s) 328.07 302.23 279.74 266.59

Time reduction ratio 29.75 29.06 25.57 25.10



Remote Sens. 2023, 15, 1399 20 of 28

4.7. Framework Testing with Datasets for Different α-Values and TS Percentage

The aim of the experiments of this subsection is to show the 3DCNN model perfor-
mance for different levels and kinds of noise, simulating an extensive set of scenarios for
the framework testing. The parameter α controls the dominance of signal-dependent over
signal-independent noise (see Equation (22)). The following experiments in Figures 17–19
were performed compressing the HSIs to 40 tensor bands and training the 3DCNN DL
model for 40 epochs.

−20−100102030405060

0.6

0.8

1

SNR(dB)

C
oh

en
’s

K
ap

pa
co

ef
fic

ie
nt

20%TS, α = 0.1 15%TS, α = 0.1 10%TS, α = 0.1 5%TS, α = 0.1
20%TS, α = 0.5 15%TS, α = 0.5 10%TS, α = 0.5 5%TS, α = 0.5
20%TS, α = 1.0 15%TS, α = 1.0 10%TS, α = 1.0 5%TS, α = 1.0
20%TS, α = 2.0 15%TS, α = 2.0 10%TS, α = 2.0 5%TS, α = 2.0
20%TS, α = 10.0 15%TS, α = 10.0 10%TS, α = 10.0 5%TS, α = 10.0

Figure 17. Indian Pines. Cohen’s Kappa coefficient obtained using 3DCNN DL model trained with
20%, 15%, 10%, and 5% of the samples of compressed IP HSI for different α values. α-values do not
seem to influence Cohen’s Kappa coefficient.

−20−100102030405060

0.6

0.7

0.8

0.9

1

SNR(dB)

C
oh

en
’s

K
ap

pa
co

ef
fic

ie
nt

15%TS, α = 0.1 10%TS, α = 0.1 5%TS, α = 0.1 3%TS, α = 0.1 1%TS, α = 0.1
15%TS, α = 0.5 10%TS, α = 0.5 5%TS, α = 0.5 3%TS, α = 0.5 1%TS, α = 0.5
15%TS, α = 1.0 10%TS, α = 1.0 5%TS, α = 1.0 3%TS, α = 1.0 1%TS, α = 1.0
15%TS, α = 2.0 10%TS, α = 2.0 5%TS, α = 2.0 3%TS, α = 2.0 1%TS, α = 2.0

15%TS, α = 10.0 10%TS, α = 10.0 5%TS, α = 10.0 3%TS, α = 10.0 1%TS, α = 10.0

Figure 18. University of Pavia. Cohen’s Kappa coefficient obtained using 3DCNN DL model trained
with 15%, 10%, 5%, 3%, and 1% of the samples of compressed UP HSI for different α values. α-values
do not seem to influence on Cohen’s Kappa coefficient.

These experiments show the capabilities of the DL model to extract representative
features for all datasets employed in this work. These results have shown that a repre-
sentative number of samples of each class for training is key for the consistent perfor-
mance for SNR ≥ 0 dB. In terms of TS, for IP TS ≥ 10%, UP TS ≥ 3%, and SAL TS≥ 3%.
The changes in the α values tested, from 0.1 to 10, do not seem to influence the
classification performance.



Remote Sens. 2023, 15, 1399 21 of 28

−20−100102030405060

0.8

0.9

1

SNR(dB)

C
oh

en
’s

K
ap

pa
co

ef
fic

ie
nt

10%TS, α = 0.1 5%TS, α = 0.1 3%TS, α = 0.1 1%TS, α = 0.1
10%TS, α = 0.5 5%TS, α = 0.5 3%TS, α = 0.5 1%TS, α = 0.5
10%TS, α = 1.0 5%TS, α = 1.0 3%TS, α = 1.0 1%TS, α = 1.0
10%TS, α = 2.0 5%TS, α = 2.0 3%TS, α = 2.0 1%TS, α = 2.0

10%TS, α = 10.0 5%TS, α = 10.0 3%TS, α = 10.0 1%TS, α = 10.0

Figure 19. Salinas. Cohen’s Kappa coefficient obtained using 3DCNN DL model trained with 10%,
5%, 3%, and 1% of the samples of compressed SAL HSI for different α values. α-values do not seem
to influence Cohen’s Kappa coefficient.

5. Discussion

In this paper, we provide a classification framework for remote sensing hyperspectral
imagery, which allows for adding simulated signal-dependent and signal-independent noise to
test their robustness for different SNR values. This kind of framework allows for performing
semantic segmentation for noisy hyperspectral images with different SNR values.

The framework is based on a 3DCNN, which is a spectral–spatial deep learning feature
extraction model. This method proved to be robust against the training for low-signal-
to-noise ratio cases (even when the noise power is greater than the signal power), see
Figures 11–13. It is also possible when predicting noisy data from training with noise-free
data, such that prediction is affected until the noise power is of the same magnitude as the
signal power (SNR close to 0 dB), see Figure 10. However, the computational complexity
and resource requirements are higher, compared to other classification algorithms. For that
reason, we have implemented spectral compression based on Tucker tensor decomposition,
resulting in shorter training times and less hardware resources for implementation.

Tucker Decomposition performs compression correctly until the noise power is of
the same magnitude as the signal power, which is a borderline noise case. In most cases,
compression, based on TKD, improves the performance of the classifier, see Figures 14–16.
This improvement is most noticeable when the model is trained with a set of samples in
the order from 5% to 3%.

Since remote sensing images present in nature an unbalanced classification problem,
all the results were analyzed primarily using the multi-class unbalanced classification
metric, the Cohen’s Kappa coefficient, which provides us with a summary of the confusion
matrix between the predicted labels and the ground truth of the original image. Three
unbalanced hyperspectral images widely studied in the state of the art (described in
Tables 4–6) were used to generate the noise and to test the framework: University of Pavia,
Salinas, and Indian Pines.

In this way, the presented framework can effectively classify images directly from raw
data, with high- and low-signal-to-noise ratios. In the state-of-the-art context, this article
includes a detailed analysis for different noisy cases and training with low availability
of labeled samples. Our current experiments have demonstrated outstanding results.
Although, some related papers use the same datasets, a direct comparison is not fair
because a different noise model or SNR are used, with a different number of samples for
the classifier training as well as different objectives. The work closest to us is [25], but it is
only comparable with the original datasets or high-SNR cases of Figures 14–16, where our
approach obtains slightly higher results in terms of the Kappa coefficient for UP (from 0.954
to 0.958) and SAL (from 0.965 to 0.988), but slightly lower results for IP, (from 0.94 to 0.91).
For the same original datasets, our approach is competitive with other approaches such



Remote Sens. 2023, 15, 1399 22 of 28

as [26–30]. As some of the references present their classification results with the overall
accuracy metric only, we prefer to present the results in terms of the Kappa coefficient,
because this metric does not hide the imbalanced classification problem.

6. Conclusions

All the results and behaviors can be summarized in the following four conclusions:

• This framework, based on a 3DCNN spectral–spatial deep learning feature extraction
model and Tucker Decomposition, proved to be robust in most cases for different
combinations and levels of simulated signal-dependent and signal-independent noises,
even when the SNR is close to 0 dB.

• Tucker Decomposition reduces from 103 to 224 bands to 40 new tensor bands with ξ < 1%,
reducing the computational complexity for the classifier. Different to other compression
algorithms, Tucker Decomposition does not affect the performance of the deep learning
model; conversely, it improves the classification performance of the 3DCNN deep learning
model in the three studied datasets. This improvement is more noticeable for the training
set size in the order of from 5% to 3% for the three datasets tested.

• Tucker Decomposition performs well until SNR is close to 0 dB; for SNR ≤ 0 dB, TKD
cannot represent the useful information in the core tensor, resulting in an obvious loss
of performance.

• With a representative number of labeled samples of each class (depending on the
hyperspectral image and accuracy we want), for an SNR ≥ of 0 dB, our proposal is
not affected by different α-values; in other words, different noisy scenarios of signal-
dependent and signal-independent noise.

Open Issues

• To test the spatial–spectral feature extraction of 3DCNN in other types of applications
for hyperspectral imagery.

• An algorithm is needed to find the minimum n-rank that fully represents the data into
the core tensor, reducing the computational and spatial complexity for posterior stages
in the framework.

• To test the framework with a larger number of hyperspectral images, considering
distributions of ground truth with less spatial correlation, and for RGB and multi-
spectral imagery.

• Mathematical and statistical analysis of Tucker Decomposition for noisy data.

Author Contributions: Conceptualization, D.T.-R.; methodology, E.P.-Z., D.T.-R. and A.M.-V.; soft-
ware, E.P.-Z.; validation, E.P.-Z., D.T.-R. and A.M.-V.; formal analysis, E.P.-Z.; investigation, E.P.-Z.;
resources, D.T.-R. and A.M.-V.; writing—original draft preparation, E.P.-Z.; writing—review and
editing, D.T.-R. and A.M.-V.; visualization, E.P.-Z.; supervision, D.T.-R. and A.M.-V.; project adminis-
tration, E.P.-Z., D.T.-R. and A.M.-V.; funding acquisition, D.T.-R. and A.M.-V. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Consejo Nacional de Ciencia y Tecnología grant numbers
717754 and 789304.

Data Availability Statement: Restrictions apply to the availability of these data. Data was ob-
tained from [2] and are available in github.com/mhaut, https://github.com/mhaut/hyperspectral_
deeplearning_review(accessed on 10 March 2022).

Acknowledgments: We thank Cinvestav-Guadalajara, Mexico, for the master’s studies of E. Padilla,
first author of this work, and personally thank J. López for the help provided for the implementation
of TKD for this work.

Conflicts of Interest: The authors declare no conflict of interest.

github.com/mhaut
https://github.com/mhaut/hyperspectral_deeplearning_review
https://github.com/mhaut/hyperspectral_deeplearning_review


Remote Sens. 2023, 15, 1399 23 of 28

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network.
DL Deep Learning.
GT Ground Truth.
HPC High Performance Computing.
HSI Hyperspectral Image.
IP Indian Pines.
PCA Principal Component Analysis.
SAL Salinas.
SD Signal Dependent.
SI Signal Independent.
SNR Signal-to-Noise Ratio.
TKD Tucker Decomposition.
TS Train Size.
UP University of Pavia.

Appendix A

Appendix A.1

In this appendix, the variance calculations for noise generation used in this paper are
explained, which was formulated on [4,39]. First of all, to obtain the noise variances of
the random processes σ2

u,i3
and σ2

t,i3
, the mean variance of the noise tensors NSD(X) and

NSI [39] are required. For a signal-dependent mean noise variance tensor:

σ2
NSD(X) =

1
I1 I2 I3

I1

∑
i1=1

I2

∑
i2=1

I3

∑
i3=1

σ2
u,i3 · xi1,i2,i3 . (A1)

Let µi3 be the mean of the clean signal at band i3:

µi3 =
1

I1 I2

I1

∑
i1=1

I2

∑
i2=1

xi1,i2,i3 , (A2)

from (A2), Equation (A1) can be rewritten as:

σ2
NSD(X) =

1
I3

I3

∑
i3=1

σ2
u,i3 · µi3 ; (A3)

additionally, the signal-independent noise has constant variance σ2
NSI

in all bands.
The signal-independent mean variance noise tensor is:

σ2
NSI

=
1

I1 I2 I3

I3

∑
i3=1

σ2
t,i3 ; (A4)

thus, using Equation (19), the mean variance of the noise tensor N(X) is:

σ2
N(X) = σ2

NSD(X) + σ2
NSI

, (A5)

σ2
N(X) =

1
I1 I2 I3

I1

∑
i1=1

I2

∑
i2=1

I3

∑
i3=1

(
σ2

u,i3 · xi1,i2,i3 + σ2
t,i3

)
. (A6)

From the SNR (dB) formula:

SNR = 10 · log10
‖X‖2

‖N(X)‖2 , (A7)



Remote Sens. 2023, 15, 1399 24 of 28

‖N(X)‖2 in terms of X and a specified SNR is expressed as:

‖N(X)‖2 = ‖X‖2 · 10−(
SNR

10 ). (A8)

If Equation (A8) is divided by the total number of pixels I1 I2 I3, note that

σ2
N(X) =

‖N(X)‖2

I1 I2 I3
(see Equation (A6)). If PX = ‖X‖2

I1 I2 I3
is the mean power of tensor X, then:

σ2
N(X) = PX · 10−(

SNR
10 ). (A9)

Assuming a parameter α, which controls the dominance of the signal-dependent noise
variance over the signal-independent noise variance, such that:

α =
σ2
NSD(X)

σ2
NSI

, (A10)

Then, from Equations (A10) and (A5), follows:

σ2
NSD(X) =

σ2
N(X) · α
α + 1

, (A11)

and:

σ2
NSI

=
σ2
N(X)

α + 1
. (A12)

Note that both results depend only on α and σ2
N(X), which are already available in

Equations (A9) and (A10). Finally, solving for the noise variance of the random process
σ2

u,i3
from Equation (A1):

σ2
u,i3 =

σ2
NSD(X)

µi3
; (A13)

as well, the noise variance of the random process σ2
t,i3

, from Equation (A3):

σ2
t,i3 = σ2

NSI
. (A14)



Remote Sens. 2023, 15, 1399 25 of 28

Appendix A.2

Table A1. Average Cohen’s Kappa coefficient of 10 runs obtained using different classifiers for IP, UP,
and SAL compressed with TKD to 40 tensorial bands training with 10% of TS. Standard deviation
shows very low variability for high-SNR cases, growing as the noise variance increases.

SNR SVM RF 1DCNN 2DCNN 3DCNN

Indian
Pines

60 dB 0.6244 ± 0.0068 0.6664 ± 0.0111 0.6231 ± 0.0113 0.9654 ± 0.0059 0.9802 ± 0.0029
55 dB 0.6241 ± 0.0087 0.6682 ± 0.0068 0.6250 ± 0.0099 0.9683 ± 0.0024 0.9803 ± 0.0024
50 dB 0.6303 ± 0.0066 0.6716 ± 0.0105 0.6186 ± 0.0104 0.9690 ± 0.0078 0.9817 ± 0.0040
45 dB 0.6289 ± 0.0090 0.6697 ± 0.0068 0.6193 ± 0.0086 0.9641 ± 0.0059 0.9793 ± 0.0056
40 dB 0.6223 ± 0.0029 0.6780 ± 0.0112 0.6203 ± 0.0139 0.9720 ± 0.0045 0.9799 ± 0.0050
35 dB 0.6148 ± 0.0103 0.6795 ± 0.0075 0.6133 ± 0.0103 0.9712 ± 0.0045 0.9781 ± 0.0029
30 dB 0.5985 ± 0.0105 0.6660 ± 0.0111 0.6008 ± 0.0061 0.9692 ± 0.0052 0.9793 ± 0.0035
25 dB 0.5501 ± 0.0100 0.6553 ± 0.0107 0.5803 ± 0.0093 0.9665 ± 0.0043 0.9773 ± 0.0033
20 dB 0.4354 ± 0.0066 0.6346 ± 0.0092 0.5303 ± 0.0126 0.9660 ± 0.0049 0.9737 ± 0.0059
15 dB 0.1919 ± 0.0093 0.6054 ± 0.0094 0.4856 ± 0.0108 0.9574 ± 0.0060 0.9673 ± 0.0043
10 dB 0.0248 ± 0.0037 0.5808 ± 0.0063 0.4419 ± 0.0131 0.9573 ± 0.0068 0.9628 ± 0.0035
5 dB 0.0006 ± 0.0003 0.5424 ± 0.0069 0.4106 ± 0.0063 0.9493 ± 0.0060 0.9522 ± 0.0061
0 dB 0.0000 ± 0.0001 0.5086 ± 0.0069 0.3831 ± 0.0128 0.9406 ± 0.0065 0.9425 ± 0.0081
−5 dB 0.0000 ± 0.0000 0.4664 ± 0.0083 0.3433 ± 0.0120 0.9443 ± 0.0092 0.9404 ± 0.0068
−10 dB 0.0000 ± 0.0000 0.4191 ± 0.0039 0.2826 ± 0.0130 0.9318 ± 0.0096 0.9299 ± 0.0042
−15 dB 0.0000 ± 0.0000 0.3700 ± 0.0081 0.2246 ± 0.0085 0.9143 ± 0.0099 0.9083 ± 0.0079
−20 dB 0.0000 ± 0.0000 0.2938 ± 0.0069 0.1534 ± 0.0099 0.9091 ± 0.0164 0.9002 ± 0.0079

University
of

Pavia

60 dB 0.5909 ± 0.0048 0.8461 ± 0.0036 0.8946 ± 0.0045 0.9973 ± 0.0009 0.9994 ± 0.0003
55 dB 0.5900 ± 0.0043 0.8484 ± 0.0037 0.8935 ± 0.0044 0.9972 ± 0.0004 0.9994 ± 0.0003
50 dB 0.5904 ± 0.0041 0.8444 ± 0.0076 0.8920 ± 0.0061 0.9977 ± 0.0009 0.9995 ± 0.0005
45 dB 0.5911 ± 0.0033 0.8502 ± 0.0050 0.8948 ± 0.0052 0.9977 ± 0.0004 0.9995 ± 0.0004
40 dB 0.5906 ± 0.0040 0.8475 ± 0.0089 0.8924 ± 0.0042 0.9978 ± 0.0006 0.9994 ± 0.0003
35 dB 0.5890 ± 0.0050 0.8489 ± 0.0041 0.8947 ± 0.0069 0.9976 ± 0.0008 0.9996 ± 0.0002
30 dB 0.5880 ± 0.0034 0.8431 ± 0.0061 0.8931 ± 0.0050 0.9977 ± 0.0005 0.9994 ± 0.0002
25 dB 0.5841 ± 0.0028 0.8415 ± 0.0040 0.8897 ± 0.0048 0.9967 ± 0.0011 0.9992 ± 0.0004
20 dB 0.5692 ± 0.0041 0.8380 ± 0.0051 0.8840 ± 0.0083 0.9972 ± 0.0013 0.9995 ± 0.0003
15 dB 0.5281 ± 0.0016 0.8350 ± 0.0037 0.8713 ± 0.0035 0.9972 ± 0.0008 0.9996 ± 0.0002
10 dB 0.3853 ± 0.0049 0.8224 ± 0.0032 0.8438 ± 0.0049 0.9977 ± 0.0008 0.9993 ± 0.0003
5 dB 0.0492 ± 0.0021 0.7800 ± 0.0036 0.7870 ± 0.0045 0.9973 ± 0.0004 0.9993 ± 0.0003
0 dB 0.0000 ± 0.0000 0.7421 ± 0.0035 0.7274 ± 0.0056 0.9961 ± 0.0011 0.9989 ± 0.0005
−5 dB 0.0000 ± 0.0000 0.7077 ± 0.0028 0.6873 ± 0.0030 0.9954 ± 0.0011 0.9977 ± 0.0012
−10 dB 0.0000 ± 0.0000 0.6716 ± 0.0032 0.6478 ± 0.0039 0.9934 ± 0.0018 0.9966 ± 0.0009
−15 dB 0.0000 ± 0.0000 0.6241 ± 0.0030 0.5806 ± 0.0069 0.9894 ± 0.0013 0.9930 ± 0.0012
−20 dB 0.0000 ± 0.0000 0.5463 ± 0.0026 0.4703 ± 0.0084 0.9853 ± 0.0028 0.9874 ± 0.0017

Salinas

60 dB 0.9010 ± 0.0021 0.8971 ± 0.0023 0.9131 ± 0.0036 0.9996 ± 0.0004 0.9999 ± 0.0001
55 dB 0.9017 ± 0.0018 0.8954 ± 0.0026 0.9125 ± 0.0030 0.9995 ± 0.0002 0.9999 ± 0.0001
50 dB 0.9016 ± 0.0025 0.8977 ± 0.0040 0.9126 ± 0.0025 0.9994 ± 0.0004 0.9999 ± 0.0001
45 dB 0.9029 ± 0.0021 0.8967 ± 0.0019 0.9114 ± 0.0031 0.9995 ± 0.0002 0.9999 ± 0.0001
40 dB 0.9006 ± 0.0019 0.8975 ± 0.0020 0.9129 ± 0.0025 0.9995 ± 0.0002 0.9998 ± 0.0001
35 dB 0.9020 ± 0.0017 0.8968 ± 0.0021 0.9106 ± 0.0041 0.9995 ± 0.0003 0.9999 ± 0.0001
30 dB 0.8993 ± 0.0019 0.8944 ± 0.0019 0.9122 ± 0.0023 0.9995 ± 0.0003 0.9999 ± 0.0001
25 dB 0.9003 ± 0.0019 0.8940 ± 0.0028 0.9076 ± 0.0038 0.9995 ± 0.0001 0.9999 ± 0.0001
20 dB 0.8961 ± 0.0016 0.8892 ± 0.0017 0.9039 ± 0.0026 0.9995 ± 0.0003 0.9999 ± 0.0001
15 dB 0.8881 ± 0.0012 0.8828 ± 0.0026 0.8947 ± 0.0029 0.9994 ± 0.0003 0.9998 ± 0.0001
10 dB 0.8699 ± 0.0015 0.8777 ± 0.0015 0.8815 ± 0.0034 0.9996 ± 0.0002 0.9998 ± 0.0001
5 dB 0.8234 ± 0.0025 0.8677 ± 0.0022 0.8634 ± 0.0041 0.9993 ± 0.0003 0.9998 ± 0.0001
0 dB 0.6413 ± 0.0035 0.8589 ± 0.0020 0.8468 ± 0.0025 0.9994 ± 0.0003 0.9997 ± 0.0001
−5 dB 0.2741 ± 0.0100 0.8474 ± 0.0025 0.8324 ± 0.0031 0.9992 ± 0.0003 0.9998 ± 0.0001
−10 dB 0.1056 ± 0.0013 0.8344 ± 0.0020 0.8114 ± 0.0029 0.9993 ± 0.0003 0.9995 ± 0.0003
−15 dB 0.0377 ± 0.0005 0.8121 ± 0.0015 0.7837 ± 0.0039 0.9994 ± 0.0003 0.9997 ± 0.0001
−20 dB 0.0079 ± 0.0005 0.7743 ± 0.0027 0.7478 ± 0.0046 0.9989 ± 0.0004 0.9996 ± 0.0002



Remote Sens. 2023, 15, 1399 26 of 28

References
1. Borengasser, M.; Hungate, W.S.; Watkins, R.L. Hyperspectral Remote Sensing: Principles and Applications; CRC Press: Boca Raton, FL,

USA, 2008; p. 119.
2. Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm.

Remote Sens. 2019, 158, 279–317. [CrossRef]
3. Rasti, B.; Scheunders, P.; Ghamisi, P.; Licciardi, G.; Chanussot, J. Noise Reduction in Hyperspectral Imagery: Overview and

Application. Remote Sens. 2018, 10, 482. [CrossRef]
4. Bourennane, S.; Fossati, C.; Lin, T. Noise Removal Based on Tensor Modelling for Hyperspectral Image Classification. Remote

Sens. 2018, 10, 1330. [CrossRef]
5. Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image denoising. In Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
IEEE Computer Society: Washington, DC, USA, 2014; pp. 2862–2869. [CrossRef]

6. Karami, A.; Yazdi, M.; Zolghadre Asli, A. Noise reduction of hyperspectral images using kernel non-negative tucker decomposi-
tion. IEEE J. Sel. Top. Signal Process. 2011, 5, 487–493. [CrossRef]

7. Yuan, Q.; Zhang, Q.; Li, J.; Shen, H.; Zhang, L. Hyperspectral image denoising employing a spatial-spectral deep residual
convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1205–1218. [CrossRef]

8. Fan, H.; Li, C.; Guo, Y.; Kuang, G.; Ma, J. Spatial-Spectral Total Variation Regularized Low-Rank Tensor Decomposition for
Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6196–6213. [CrossRef]

9. Huang, Z.; Li, S.; Fang, L.; Li, H.; Benediktsson, J.A. Hyperspectral Image Denoising with Group Sparse and Low-Rank Tensor
Decomposition. IEEE Access 2017, 6, 1380–1390. [CrossRef]

10. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on
Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [CrossRef]

11. Hu, J.; Li, L.; Lin, Y.; Wu, F.; Zhao, J. A Comparison and Strategy of Semantic Segmentation on Remote Sensing Images. Adv.
Intell. Syst. Comput. 2019, 1074, 21–29. [CrossRef]

12. Niu, Z.; Liu, W.; Zhao, J.; Jiang, G. DeepLab-Based Spatial Feature Extraction for Hyperspectral Image Classification. IEEE Geosci.
Remote Sens. Lett. 2019, 16, 251–255. [CrossRef]

13. Zhong, Z.; Li, J.; Ma, L.; Jiang, H.; Zhao, H. Deep residual networks for hyperspectral image classification. In Proceedings of the
International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; Institute of Electrical
and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 1824–1827. [CrossRef]

14. Feng, J.; Yu, H.; Wang, L.; Cao, X.; Zhang, X.; Jiao, L. Classification of Hyperspectral Images Based on Multiclass Spatial-Spectral
Generative Adversarial Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5329–5343. [CrossRef]

15. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens.
2015, 2015, 258619. [CrossRef]

16. Xiao, H.; Wei, Y.; Liu, Y.; Zhang, M.; Feng, J. Transferable Semi-Supervised Semantic Segmentation. Proc. AAAI Conf. Artif. Intell.
2018, 32, 7420–7427. [CrossRef]

17. Sun, R.; Zhu, X.; Wu, C.; Huang, C.; Shi, J.; Ma, L. Not all areas are equal: Transfer learning for semantic segmentation
via hierarchical region selection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 15–19 June 2019; pp. 4355–4364. [CrossRef]

18. Stan, S.; Rostami, M. Unsupervised Model Adaptation for Continual Semantic Segmentation. Proc. AAAI Conf. Artif. Intell. 2021,
35, 2593–2601. [CrossRef]

19. Sun, J.; Wei, D.; Ma, K.; Wang, L.; Zheng, Y. Boost Supervised Pretraining for Visual Transfer Learning: Implications of
Self-Supervised Contrastive Representation Learning. Proc. AAAI Conf. Artif. Intell. 2022, 36, 2307–2315. [CrossRef]

20. Cui, B.; Chen, X.; Lu, Y. Semantic Segmentation of Remote Sensing Images Using Transfer Learning and Deep Convolutional
Neural Network with Dense Connection. IEEE Access 2020, 8, 116744–116755. [CrossRef]

21. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015; Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241.
[CrossRef]

22. Pasquali, G.; Iannelli, G.C.; Dell’Acqua, F. Building Footprint Extraction from Multispectral, Spaceborne Earth Observation
Datasets Using a Structurally Optimized U-Net Convolutional Neural Network. Remote Sens. 2019, 11, 2803. [CrossRef]

23. Wieland, M.; Li, Y.; Martinis, S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network. Remote
Sens. Environ. 2019, 230, 111203. [CrossRef]

24. Giang, T.L.; Dang, K.B.; Le, Q.T.; Nguyen, V.G.; Tong, S.S.; Pham, V.M. U-net convolutional networks for mining land cover
classification based on high-resolution UAV imagery. IEEE Access 2020, 8, 186257–186273. [CrossRef]

25. Fu, H.; Zhang, A.; Sun, G.; Ren, J.; Jia, X.; Pan, Z.; Ma, H. A Novel Band Selection and Spatial Noise Reduction Method for
Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

26. Prasad, S.; Li, W.; Fowler, J.E.; Bruce, L.M. Information fusion in the redundant-wavelet-transform domain for noise-robust
hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3474–3486. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2019.09.006
http://dx.doi.org/10.3390/rs10030482
http://dx.doi.org/10.3390/rs10091330
http://dx.doi.org/10.1109/CVPR.2014.366
http://dx.doi.org/10.1109/JSTSP.2011.2132692
http://dx.doi.org/10.1109/TGRS.2018.2865197
http://dx.doi.org/10.1109/TGRS.2018.2833473
http://dx.doi.org/10.1109/ACCESS.2017.2778947
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1007/978-3-030-32456-8_3
http://dx.doi.org/10.1109/LGRS.2018.2871507
http://dx.doi.org/10.1109/IGARSS.2017.8127330
http://dx.doi.org/10.1109/TGRS.2019.2899057
http://dx.doi.org/10.1155/2015/258619
http://dx.doi.org/10.1609/aaai.v32i1.12250
http://dx.doi.org/10.1109/CVPR.2019.00449
http://dx.doi.org/10.1609/aaai.v35i3.16362
http://dx.doi.org/10.1609/aaai.v36i2.20129
http://dx.doi.org/10.1109/ACCESS.2020.3003914
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.3390/rs11232803
http://dx.doi.org/10.1016/j.rse.2019.05.022
http://dx.doi.org/10.1109/ACCESS.2020.3030112
http://dx.doi.org/10.1109/TGRS.2022.3189015
http://dx.doi.org/10.1109/TGRS.2012.2185053


Remote Sens. 2023, 15, 1399 27 of 28

27. Duan, P.; Kang, X.; Li, S.; Ghamisi, P. Noise-robust hyperspectral image classification via multi-scale total variation. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1948–1962. [CrossRef]

28. Gong, Z.; Zhong, P.; Yao, W.; Zhou, W.; Qi, J.; Hu, P. A CNN with noise inclined module and denoise framework for hyperspectral
image classification. IET Image Process. 2022. [CrossRef]

29. Chen, C.; Li, W.; Tramel, E.W.; Cui, M.; Prasad, S.; Fowler, J.E. Spectral–Spatial Preprocessing Using Multihypothesis Prediction
for Noise-Robust Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1047–1059. [CrossRef]

30. Gao, L.; Zhao, B.; Jia, X.; Liao, W.; Zhang, B.; Wang, Q.; Younan, N.H.; López-Martínez, C.; Thenkabail, P.S. Optimized Kernel
Minimum Noise Fraction Transformation for Hyperspectral Image Classification. Remote Sens. 2017, 9, 548. [CrossRef]

31. Fu, P.; Sun, X.; Sun, Q. Hyperspectral Image Segmentation via Frequency-Based Similarity for Mixed Noise Estimation. Remote
Sens. 2017, 9, 1237. [CrossRef]

32. de Los Reyes, R.; Langheinrich, M.; Schwind, P.; Richter, R.; Pflug, B.; Bachmann, M.; Müller, R.; Carmona, E.; Zekoll, V.; Reinartz,
P. PACO: Python-Based Atmospheric COrrection. Sensors 2020, 20, 1428. [CrossRef]

33. Zekoll, V.; Main-Knorn, M.; Alonso, K.; Louis, J.; Frantz, D.; Richter, R.; Pflug, B. Comparison of Masking Algorithms for
Sentinel-2 Imagery. Remote Sens. 2021, 13, 137. [CrossRef]

34. Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al.
The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [CrossRef]

35. Alonso, K.; Bachmann, M.; Burch, K.; Carmona, E.; Cerra, D.; de los Reyes, R.; Dietrich, D.; Heiden, U.; Hölderlin, A.;
Ickes, J.; et al. Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS). Sensors 2019,
19, 4471. [CrossRef]

36. López, J.; Torres, D.; Santos, S.; Atzberger, C. Spectral Imagery Tensor Decomposition for Semantic Segmentation of Remote
Sensing Data through Fully Convolutional Networks. Remote Sens. 2020, 12, 517. [CrossRef]

37. Padilla-Zepeda, E.; Torres-Roman, D.; Mendez-Vazquez, A. Noise analysis using Tucker decomposition and PCA on spectral
images. ECORFAN J.-Boliv. 2020, 7, 10–16. [CrossRef]

38. Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [CrossRef]
39. Liu, X.; Bourennane, S.; Fossati, C. Reduction of signal-dependent noise from hyperspectral images for target detection. IEEE

Trans. Geosci. Remote Sens. 2014, 52, 5396–5411. [CrossRef]
40. Li, Y.; Zhang, H.; Shen, Q. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network.

Remote Sens. 2017, 9, 67. [CrossRef]
41. Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: an Overview. arXiv 2020, arXiv:2008.05756.
42. Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on

the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [CrossRef]
43. Gonzalez-Ramirez, A.; Lopez, J.; Torres-Roman, D.; Yañez-Vargas, I. Analysis of multi-class classification performance metrics for

remote sensing imagery imbalanced datasets. ECORFAN J. Quant. Stat. Anal. 2021, 8, 11–17. [CrossRef]
44. Makantasis, K.; Doulamis, A.D.; Doulamis, N.D.; Nikitakis, A. Tensor-based classification models for hyperspectral data analysis.

IEEE Trans. Geosci. Remote Sens. 2018, 56, 6884–6898. [CrossRef]
45. Sidiropoulos, N.D.; De Lathauwer, L.; Fu, X.; Huang, K.; Papalexakis, E.E.; Faloutsos, C. Tensor Decomposition for Signal

Processing and Machine Learning. IEEE Trans. Signal Process. 2017, 65, 3551–3582. [CrossRef]
46. An, J.; Lei, J.; Song, Y.; Zhang, X.; Guo, J. Tensor Based Multiscale Low Rank Decomposition for Hyperspectral Images

Dimensionality Reduction. Remote Sens. 2019, 11, 1485. [CrossRef]
47. Kong, X.; Zhao, Y.; Xue, J.; Chan, J.C.W. Hyperspectral Image Denoising Using Global Weighted Tensor Norm Minimum and

Nonlocal Low-Rank Approximation. Remote Sens. 2019, 11, 2281. [CrossRef]
48. Lu, H.; Plataniotis, K.N.; Venetsanopoulos, A.N. MPCA: Multilinear principal component analysis of tensor objects. IEEE Trans.

Neural Netw. 2008, 19, 18–39. [CrossRef] [PubMed]
49. AVIRIS—eoPortal Directory—Airborne Sensors. Available online: https://aviris.jpl.nasa.gov/ (accessed on 15 June 2020).
50. Tucker, L.R. Some mathematical notes on three-mode factor analysis. Psychometrika 1966, 31, 279–311. [CrossRef] [PubMed]
51. Alparone, L.; Selva, M.; Aiazzi, B.; Baronti, S.; Butera, F.; Chiarantini, L. Signal-dependent noise modelling and estimation of

new-generation imaging spectrometers. In Proceedings of the WHISPERS ’09—1st Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing, Grenoble, France, 26–28 August 2009. [CrossRef]

52. Faraji, H.; MacLean, W.J. CCD noise removal in digital images. IEEE Trans. Image Process. 2006, 15, 2676–2685. [CrossRef]
53. Jain, A.K. Fundamentals of Digital Image Processing; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1989.
54. Padilla-Zepeda, E. Noisy-Hyperspectral-Semantic-Segmentation-Framework-Based-on-Tucker-Decomposition-and-3D-CNN.

2022. Available online: https://github.com/EfrainPadilla/Noisy-Hyperspectral-Semantic-Segmentation-Framework-based-
on-Tucker-Decomposition-and-3D-CNN (accessed on 10 March 2022).

55. Green, R.O.; Eastwood, M.L.; Sarture, C.M.; Chrien, T.G.; Aronsson, M.; Chippendale, B.J.; Faust, J.A.; Pavri, B.E.; Chovit, C.J.;
Solis, M.; et al. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ.
1998, 65, 227–248. [CrossRef]

56. Kunkel, B.; Blechinger, F.; Lutz, R.; Doerffer, R.; van der Piepen, H.; Schroder, M. ROSIS (Reflective Optics System Imaging
Spectrometer) - A Candidate Instrument For Polar Platform Missions. Optoelectron. Technol. Remote Sens. Space SPIE 1988, 868, 134.
[CrossRef]

http://dx.doi.org/10.1109/JSTARS.2019.2915272
http://dx.doi.org/10.1049/ipr2.12733
http://dx.doi.org/10.1109/JSTARS.2013.2295610
http://dx.doi.org/10.3390/rs9060548
http://dx.doi.org/10.3390/rs9121237
http://dx.doi.org/10.3390/s20051428
http://dx.doi.org/10.3390/rs13010137
http://dx.doi.org/10.3390/rs70708830
http://dx.doi.org/10.3390/s19204471
http://dx.doi.org/10.3390/rs12030517
http://dx.doi.org/10.35429/EJB.2020.12.7.10.16
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1109/TGRS.2013.2288525
http://dx.doi.org/10.3390/rs9010067
http://dx.doi.org/10.1016/j.patcog.2019.02.023
http://dx.doi.org/10.35429/JQSA.2021.22.8.11.17
http://dx.doi.org/10.1109/TGRS.2018.2845450
http://dx.doi.org/10.1109/TSP.2017.2690524
http://dx.doi.org/10.3390/rs11121485
http://dx.doi.org/10.3390/rs11192281
http://dx.doi.org/10.1109/TNN.2007.901277
http://www.ncbi.nlm.nih.gov/pubmed/18269936
https://aviris.jpl.nasa.gov/
http://dx.doi.org/10.1007/BF02289464
http://www.ncbi.nlm.nih.gov/pubmed/5221127
http://dx.doi.org/10.1109/WHISPERS.2009.5289080
http://dx.doi.org/10.1109/TIP.2006.877363
https://github.com/EfrainPadilla/Noisy-Hyperspectral-Semantic-Segmentation-Framework-based-on-Tucker-Decomposition-and-3D-CNN
https://github.com/EfrainPadilla/Noisy-Hyperspectral-Semantic-Segmentation-Framework-based-on-Tucker-Decomposition-and-3D-CNN
http://dx.doi.org/10.1016/S0034-4257(98)00064-9
http://dx.doi.org/10.1117/12.943611


Remote Sens. 2023, 15, 1399 28 of 28

57. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef]

58. Kossaifi, J.; Panagakis, Y.; Anandkumar, A.; Pantic, M. TensorLy: Tensor Learning in Python. J. Mach. Learn. Res. 2019, 20, 1–6.
59. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/s41586-020-2649-2

	Introduction
	Related Work
	Contributions

	Mathematical Background
	Tensor Algebra
	Noise Model
	Spectral–Spatial Deep Learning Models
	Unbalanced Classification Performance Metrics

	Proposed Framework
	Problem Statement
	Noise Generation and Quantization
	Tucker Decomposition-Based Spectral Compression
	Deep Learning Model Architecture

	Dataset Experiments and Results
	Hardware
	Datasets Description
	Indian Pines
	University of Pavia
	Salinas

	Data Pre-Processing for Reduction of Number of Bands
	3DCNN Prediction of Data with Variable SNR from 60 to -20 dB
	Comparison between 3DCNN and Other Classical Algorithms
	Performance, Computational Complexity, and Training Time Comparison between Original and Compressed Data Using TKD for 3DCNN Model
	Framework Testing with Datasets for Different -Values and TS Percentage

	Discussion
	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

