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Abstract: Autonomous Unmanned Aerial Vehicles (UAVs) have possible applications in wildlife
monitoring, disaster monitoring, and emergency Search and Rescue (SAR). Autonomous capabilities
such as waypoint flight modes and obstacle avoidance, as well as their ability to survey large areas,
make UAVs the prime choice for these critical applications. However, autonomous UAVs usually rely
on the Global Navigation Satellite System (GNSS) for navigation and normal visibility conditions to
obtain observations and data on their surrounding environment. These two parameters are often
lacking due to the challenging conditions in which these critical applications can take place, limiting
the range of utilisation of autonomous UAVs. This paper presents a framework enabling a UAV to
autonomously navigate and detect targets in GNSS-denied and visually degraded environments.
The navigation and target detection problem is formulated as an autonomous Sequential Decision
Problem (SDP) with uncertainty caused by the lack of the GNSS and low visibility. The SDP is
modelled as a Partially Observable Markov Decision Process (POMDP) and tested using the Adaptive
Belief Tree (ABT) algorithm. The framework is tested in simulations and real life using a navigation
task based on a classic SAR operation in a cluttered indoor environment with different visibility
conditions. The framework is composed of a small UAV with a weight of 5 kg, a thermal camera used
for target detection, and an onboard computer running all the computationally intensive tasks. The
results of this study show the robustness of the proposed framework to autonomously explore and
detect targets using thermal imagery under different visibility conditions. Devising UAVs that are
capable of navigating in challenging environments with degraded visibility can encourage authorities
and public institutions to consider the use of autonomous remote platforms to locate stranded people
in disaster scenarios.

Keywords: partially observable Markov decision process; unmanned aerial vehicles; search and
rescue; low visibility; embedded systems; remote sensing; motion planner

1. Introduction

Over 50 years, the number of natural disasters driven by climate change and more
extreme weather has increased by a factor of five [1]. Disaster events caused by natural
hazards affected approximately 100 million people and resulted in 15,082 deaths in 2020
alone [2]. Therefore, it is important to improve Search and Rescue technologies that could
assist the rescuers in locating victims, especially in challenging environments where human
interventions are often dangerous and unfeasible.

Autonomous UAVs can be utilised to remotely operate in challenging environments.
As an example, autonomous UAVs are used in critical applications such as surveillance [3],
SAR [4], and mining [5]. These critical applications increase in complexity in environments
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characterised by the absence of the GNSS and the presence of visual obstructions in the form
of low luminosity, smoke, and dust. These particular conditions are a great challenge to
UAV autonomous navigation, decision making, and target detection. Possible applications
for autonomous UAVs are SAR operations such as the UAV Challenge [6] and subterranean
operations like the DARPA SubT Challenge [7]. Australia also started using drones to detect
sharks to learn more about their behaviours and to notify lifeguards of their presence [8].

Autonomous perception and localisation in low-visibility conditions without the
GNSS require the use of multiple sensors, allowing the agent to perceive its surrounding
environment. A framework for UAV navigation under degraded visibility was developed
in [9–12]. The objective was to allow a small UAV to autonomously explore and navigate in
subterranean environments in the presence of visual obstructions. The final framework
combined the use of 3D (three-dimensional) LIDAR (Light Detection and Ranging), a
thermal camera, an RGB (red, green, blue) camera and an IMU to perform odometry and
Simultaneous Localisation and Mapping (SLAM). The LIDAR was used for the LIDAR
odometry and mapping (LOAM) method [13], and both cameras were used for odometry
only. The agent was able to explore cluttered, low-light environments in the presence of
smoke and dust, without a GNSS signal. The main limitation of these papers was the
restricted use of their framework in cluttered and indoor environments, where LIDAR
is extremely efficient. Another gap in the knowledge from these papers is the lack of
uncertainty modelling. Subterranean environments can cause uncertainty in observations,
states, and actions due to their challenging conditions. An analysis of the use of multiple
low-cost on-board sensors for ground robots or drones navigating in visually degraded
environments was proposed by Sizintsev et al. [14]. An IMU, stereo cameras with LED
lights, active infrared (IR) cameras, and 2D (two-dimensional) LIDAR were successfully
tested on a ground robot, but not on a UAV.

The use of thermal imagery for object detection is a possible solution for SAR mis-
sions operating in low-visibility conditions such as smoke, fog, or low luminosity (night).
Jiang et al. [15] proposed a UAV thermal infrared object detection framework using You
Only Look Once (YOLO) models. The FLIR Thermal Starter Dataset [16] was used to
train the model, which contains four classes: person, car, bicycle, and dog. Their research
consisted of car and person multi-object detection experiments using YOLOv3, YOLOv4,
and YOLOv5 models. The conclusion drawn from these experiments was that the YOLOv5
model can be used on board a UAV due to its small size, relative precision, and speed of
detection. Similarly, Dong et al. [17] and Lagman et al. [18] used YOLO models for human
detection using thermal imagery.

Decision making under uncertainty is the process of an agent receiving an incomplete
or noisy observation at a precise time and then choosing an action based on this observa-
tion [19]. In SAR missions taking place under challenging conditions, the robotic agent is
subjected to uncertainty due to the possible lack of the GNSS and by the presence of visual
obstructions. Uncertainty and partial observability are modelled in two mathematical
frameworks, the Markov Decision Process (MDP), and POMDPs. POMDPs were proven
to be viable in UAV frameworks for autonomous navigation under partial observability
and uncertainty [20–23]. Sandino et al. [24] proposed a framework for UAV autonomous
navigation under uncertainty and partial observability from imperfect sensor readings in
cluttered indoor scenarios. The navigation problem was modelled as a POMDP and was
solved in real time with the ABT solver. Only colour imagery was used to detect the target.
In later work, Sandino et al. [25] proposed a framework for UAV autonomous navigation in
outdoor environments. The navigation problem was modelled with uncertainty and using
a POMDP. Colour and thermal imagery were used to make the system more robust against
the environmental conditions. Multiple flight modes were tested: a classic motion planner
working with a list of position and velocity waypoints creating a survey zone, the POMDP
motion planner, and a fusion of the two flight modes. The developed framework was able
to find an adult mannequin by reducing the object detection uncertainty. Both research
papers used the ABT online POMDP solver [26]. A gap in the knowledge highlighted by
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both these works is the lack of testing in different visibility conditions, as the frameworks
were not tested under poor visibility conditions.

This paper presents a framework for autonomous UAV navigation, exploration and
target finding in low-visibility environments without the GNSS. The navigation problem is
mathematically formulated using a POMDP, which models action and state uncertainty
with probabilistic distributions. The navigation task is inspired by SAR in challenging
environments. A UAV with a weight of 5 kg is deployed in a cluttered indoor environment
to explore and locate a victim. Thermal imagery is used to detect the heat signature of
a person under low-visibility conditions. This work evaluates the performance of the
proposed framework via Software in the Loop (SITL) simulations, Hardware in the Loop
(HIL), and real-life testing (RLT).

2. Background

This section covers the theory and principles of POMDPs and the Adaptive Belief Tree,
which is the POMDP online solver used in this research.

2.1. POMDP

For this research problem, the navigation problem was modelled as a Sequential
Decision Problem. As the testing environment is characterised by a low luminosity and the
absence of the GNSS, modelling and accounting for uncertainty was a fundamental feature
required in this work. The POMDP, a mathematical framework that models decision making
under uncertainty in motion and action in a non-fully observable environment [27,28],
was selected.

A POMDP is modelled using these parameters: (S, A, O, T, Z, R, γ) [29]. S is the state
space, a finite set of states representing the possible conditions of the agent and of the
environment. A is a finite set of actions that the agent can execute to go from one state
to another. O is a finite set of observations that the UAV can perceive. T is the transition
function, modelling the transition of the agent from one state to the next after performing
an action a. Z is the distribution function, modelling the probability of observing o from
state s after executing an action a. R is a finite set of rewards, and γ is the discount factor
with γ ∈ [0, 1]. In a POMDP, the robot state is not represented by a single estimation,
but by a probability distribution called a belief state b, with B being the set of all possible
belief states.

The objective of a POMDP is to determine a sequence of actions given a current belief
state b that maximises the discounted accumulated reward. This sequence of actions is
called a policy and is represented by the symbol π. The discounted accumulated reward
is the sum of all the discounted rewards from each action executed during the mission.
The aim of the POMDP is to find an optimal policy π∗ : B→ A that maps belief states to
actions and that maximises the total expected discounted return. Equation (1) represents
the mathematical expression of the optimal policy.

π∗ : argmax
π

(
E

[
∞

∑
r=0

γtr R
(
Str , π(btr )

)
|bt0 , π

])
(1)

2.2. ABT

In this research, the ABT online POMDP solver [26] was selected. Online POMDP
solvers are characterised by their ability to update the model during the execution, while
only the known part of the environment and its dynamics are modelled. Most of the
current online POMDP solvers have one main limitation: they recompute policies at
every time step over again, thus wasting computational resources. This restriction heavily
impacts platforms constrained in size and power, such as small UAVs. The ABT solver was
selected for its ability to reuse and improve the previous policy when there are changes
in the POMDP model. Moreover, the states and actions can be modelled in a continuous
representation using a generative model.
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The ABT algorithm contains two processes: the preprocess, which generates the first
policy estimation offline, and the runtime process, which updates the previously computed
policies. To start with, the agent executes the first action computed by the offline policy.
Then, observations are collected using onboard sensors, and the ABT updates the online
policy. The next action is then executed based on the updated policy.

3. System Architecture

The system architecture highlighted in Figure 1 was designed to allow a UAV to
perform autonomous navigation in GNSS-denied and visually degraded environments.
Decision making under uncertainty is executed following the POMDP representation
shown in Section 2.1.

Figure 1. System architecture for autonomous UAV navigation in GNSS-denied and visually degraded
environments. It is composed of a detection module processing raw IR frames from a thermal camera,
a localisation module using LIDAR inertial odometry, a decision-making module sending an action
to the flight controller, and a motion module controlling the dynamics of the UAV.

Multiple modules are used to distribute the different functions implemented in this
framework. The detection module processes IR images from the thermal camera using
a YOLOv5 object detector trained to detect the thermal signature of a human being. The
localisation module uses 2D LIDAR and an IMU to perform odometry, allowing the agent
to compute a local pose estimation. In this paper, the localisation module is yet to be
implemented; however, the pose estimation uncertainty, representing the uncertainty
in localisation, was modelled from real-life experiments. This will be covered in more
depth in Section 4.6. The decision-making module is composed of the observations of the
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environment made by the detection and localisation modules, which are then used by the
POMDP solver. It then computes the optimal sequence of actions to accomplish the flight
mission. These actions are fed to the motion module, which will manage the speed of the
actuators to control the dynamics of the UAV.

4. Framework Implementation

This section presents the hardware and software used to implement the framework as
presented in Section 3. To begin with, the UAV frame and payload, as well as operating
systems and communication interface of the system, are highlighted. Then, the decision-
making module, consisting of the POMDP formulation, is presented. Finally, both the
computer vision and decision-making modules are explained.

4.1. UAV Hardware

The UAV frame used in this paper is a Holybro (Shenzhen City, China) X500 V2 multi-
rotor kit. The motors are Holybro 2216 KV920 motors, with 1045 propellers (10”/254 mm
length, 4.5”/114.3 mm pitch). The selected autopilot is the Pixhawk 6c autopilot from
Holybro, which is the same flight controller unit (FCU) interface used in simulation and in
real-life testing, and communication is performed with a Holybro 915 MHz telemetry radio.
The dimensions of the UAV are 500 × 215 × 1440 mm, with a payload capacity of 1 kg. The
UAV is powered using a four-cell 5000 mAh LiPo battery. This provides a flight autonomy
of approximately 8 min with a payload and 12 min without a payload.

The onboard computer processing the decision-making and detection module is an
NVIDIA (Santa Clara, CA, USA) Jetson Orin Nano developer kit. It is composed of an
NVIDIA Ampere architecture with 1024 NVIDIA® CUDA® cores and 32 Tensor cores, a
6-core Arm Cortex-A78AE v8.2 64-bit CPU, 8GB of LPDDR5 DRAM, four USB Type A
3.2 Gen2 ports, one USB Type C, one display port and a microSD card slot for main storage.

The sensors used in this framework are a FLIR (Wilsonville, OR, USA) TAU2 thermal
camera with a 13 mm lens and a Field of View (FOV) of 45° (horizontal) × 37° (verti-
cal), and an embedded IMU from Bosch® (Gerlingen, Germany) and InvenSense® (San
Jose, CA, USA) in the Pixhawk 6c. Ultimately, the framework will include RPI S1 two-
dimensional LIDAR from SLAMTEC (Shanghai, China) to perform LIDAR/inertial odome-
try to estimate the x and y coordinates of the UAV. The current pose estimation is performed
with the integrated IMU and the OptiTrack system [30]. In this framework, the thermal
camera is solely used for target detection. Figure 2 shows the fully integrated UAV platform.

(a) (b)
Figure 2. Fully implemented UAV frame used in this research. (a) Below view of the UAV highlighting
the frame (1); thermal camera FLIR TAU2 (2); and companion computer Jetson Orin Nano (3).
(b) Above view of the UAV highlighting the Optitrack tracker (4) and Holybro 915 MHz Telemetry
Radio (5).
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4.2. Operating Systems and Middleware

Ubuntu 20.04, which is a 64-bit Linux-based operating system (OS), was installed on
the companion computer. The robotic operating system (ROS) Noetic version [31] was used
to communicate between the sensors, decision-making module, and detection module. To
control the UAV, the open-source flight control software PX4 firmware version 1.13.2 [32]
was used. The PX4 architecture can be separated into two layers: the flight stack, which
is an estimation and flight control system, and the middleware, a general robotic layer.
The former contains altitude and position estimators, as well as the pipelines of flight
controllers. The latter can support a large variety of autonomous robots and contains the
communication interfaces and the simulation layer. MAVROS [33], a ROS wrapper of the
Micro Air Vehicle Link (MAVLink) protocol [34], was used for the communication between
the decision-making module, which is processed on the onboard computer, and the motion
module from the PX4. This communication is performed via a high-speed UART interface.
Finally, communication to the ground control station (GCS) is achieved via the 915 MHz
telemetry radio. The software used in the GCS is QGroundControl (version 4.0), which
allows the GCS to communicate with the PX4 autopilot.

4.3. Mission Objectives

The navigation task selected is a SAR mission in which the agent is required to explore
and find targets in an indoor environment composed of several obstacles, a restricted flying
area, no GNSS, and low visibility. Search and Rescue was selected for its challenges and the
large range of possible applications. A target, with a position unknown to the UAV, was
placed in the flying area. The principal objective of the UAV is to explore the environment
in search of the target. To create low-visibility conditions, the framework was tested in
two different settings. In simulations, the mission was executed in the presence of smoke,
while real-life testing was effectuated in a low-luminosity environment. The target used
in this research is a mannequin able to emit a heat signature similar to a human being.
The mission comprises two phases: take-off to the required altitude and the autonomous
navigation phase, which ends when the target is found. A successful mission is defined by
several parameters, including staying in the restricted flying area, avoiding obstacles, and
detecting the target.

4.4. Decision-Making Module

In this work, the decision-making module receives input from the environment called
observations and translates these observations into action commands resulting in a new
agent state. The decision-making module is modelled following the POMDP representation,
and more precisely implemented using the TAPIR software (commit e2c0da7) [35]. TAPIR
is a C++ implementation of the POMDP online solver ABT. Several parameters such as the
discount factor and the magnitude of displacement need to be selected and tuned in order
for the optimal policy to be estimated. Parameter tuning will be covered in Section 5.2.2.
This estimated optimal policy results in a successful mission, characterised by the agent’s
ability to explore its environment and find the target while avoiding obstacles and staying
in the region of interest (ROI). The following current assumptions are made in this paper:

• The flight controller unit (autopilot) is assumed to include the take-off, landing, and
return-home functions. The operator can regain control at all times if needed.

• LIDAR and inertial odometry for pose and motion estimation are assumed to be
incorporated in the UAV.

• Observations are from real-time streaming of processed thermal imagery.
• The autonomous mission (POMDP) starts when the UAV reaches an initial waypoint.
• The mission finishes if the target is detected or if the maximum flight time is reached.
• The target and obstacles are assumed static.
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The problem formulation, including the state space, set of actions, transition function,
rewards and reward function, observation space, and observation model, as well as the
belief states, will be covered below.

4.4.1. State Space

The state space in this research is composed of Sa, the state space of the agent, and St,
the state space of the target, and is represented by S = (Sa, St). The state space of the agent
Sa first includes its position pa = (xa, ya, za) and its rotation oa = ψa in the world Cartesian
frame. To simplify the dynamic representation of the UAV, rotation is only in terms of the
yaw angle ψa. The state space of the agent also includes two discrete states representing
if the agent has crashed and if it is outside the ROI, respectively, fc, fr. Similarly, the
target state comprises its position pt = (xt, yt, zt) and a discrete state ft representing if
the target has been found or not. The latter is marked true if and only if the frequency
of target detection is higher than a selected threshold. In this representation, fc, fr, ft are
terminal states.

4.4.2. Actions

Several actions were chosen for the UAV to interact with its environment as shown
in Table 1. The actions were restricted to pure translation (no rotations) to simplify the
UAV’s dynamic.

Table 1. Set of actions selected in this research problem. Each action will apply a displacement ∆
from time step t to t + 1, impacting the corresponding x, y or z coordinate of the agent.

Action xa(t + 1) ya(t + 1) za(t + 1)

Forward xa(t) + ∆x ya(t) za(t)
Backward xa(t)− ∆x ya(t) za(t)

Left xa(t) ya(t) + ∆y za(t)
Right xa(t) ya(t)− ∆y za(t)

Up xa(t) ya(t) za(t) + ∆z
Down xa(t) ya(t) za(t)− ∆z
Hover xa(t) ya(t) za(t)

4.4.3. Transition Function

A dynamic model of a UAV can be described using a rotation matrix Rr of a quad-
rotor [36]. Rr, as shown by Equation (2), was modified based on the actions as described in
the previous section. Thus, the angles θa and ϕa are assumed constant, and ψa = 0◦. The
POMDP is a mathematical framework used to model decision making under uncertainty;
thus, action uncertainty needs to be represented. An angle deviation φa is introduced
into the rotation matrix to represent action uncertainty in the Euler yaw angle. A normal
distribution is used to model this uncertainty, with mean µ = ψa = 0◦ and standard
deviation θ = 2.0◦. This standard deviation value was selected based on the compass
magnetometer heading accuracy used by the drone detailed in Section 4.1.

Rr =

cos(φa) −sin(φa) 0
sin(φa) cos(φa) 0

0 0 1

 (2)

To model changes in position at each time step, Equation (3) was used, and can be
expanded as shown in Equation (4). ∆prt represents the change in the agent’s location from
time step t to t + 1.

pat+1 = pat + Rrt ∆prt (3)xat+1

yat+1

zat+1

 =

xat

yat

zat

+

cos(φat) −sin(φat) 0
sin(φat) cos(φat) 0

0 0 1

∆xat

∆yat

∆zat

 (4)
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4.4.4. Reward Function

The reward function R(a, s) is used to calculate the reward r resulting from an action
a taken by the agent at state s. The reward function is a capital element of the POMDP
formulation, as it will dictate the behaviour of the agent by encouraging or punishing
certain actions. The reward variables are the following:

R = (rcrash, rout, r f , rexp, rnew, ralt) (5)

Table 2 highlights the selected values for each reward. Negative rewards are used
to avoid certain actions that will put the agent in an unwanted state. Both rcrash and rout
are negative rewards. The former is used when the UAV crashes into an obstacle, and the
latter when it is out of the ROI. r f is a positive reward when the agent finds the target. To
encourage the UAV to explore the environment, rexp is a negative accumulative reward,
punishing the agent if an action results in an already explored area, and rnew is a positive
reward, rewarding the UAV if an action results in an unexplored area. ralt is a reward
encouraging the UAV to increase its altitude to facilitate the target detection module. The
reward function is represented by Algorithm 1.

Table 2. Set of reward values used in the reward function R, defined in Algorithm 1.

Reward Value Description

rcrash −110 Crashing negative reward
rout −110 Leaving ROI negative reward
r f 200 Target found positive reward

rexp −5 Explored negative reward
rnew 20 Exploration reward
ralt −75 Altitude reward

Algorithm 1 Reward function algorithm.

1: r← 0
2: if crash then
3: r← r− rcrash
4: end if
5: if out then
6: r← r− rout
7: end if
8: if f ound then
9: r← r + r f

10: end if
11: if explored then
12: r← r− rexplored ∗ count
13: else
14: r← r + rnew
15: r← r− ralt ∗ (1− za−zmin

zmax−zmin
)

16: end if
17: return r

An important aspect of this research problem is to encourage the agent to explore
the environment as much as possible, as the target position is unknown. To assist the
agent in exploring its surroundings and avoid already explored areas, the environment is
represented by a two-dimensional grid map composed of 1 × 1 m cells. Cells are modelled
as a structure type that encapsulates data and parameters. Each cell is composed of top
right and bottom left corner coordinates, a Boolean flag marking the cell as explored or
unexplored, and an integer counting the number of times the UAV has explored the cell. For
a cell to be marked as “explored”, the Boolean flag is set to true if and only if the observed



Remote Sens. 2024, 16, 471 9 of 25

position of the UAV is inside the cell. Figure 3 illustrates how the grid map is initialised
and updated. The illustration represents the environment in which the system was tested
in simulation and in real life. Unexplored cells are white, explored cells are highlighted in
green, and obstacles are highlighted in red. Cells that can be explored also contain in their
centre the number of times they have been explored. A functionality allowing the agent
to keep exploring until the target was detected or until the maximum flight was reached
was also introduced by keeping track of the number of cells explored and selecting an
arbitrary percentage of exploration. If this percentage is attained, all the cells are marked as
unexplored, and their count is reset.

(a) Grid map at initialisation. (b) Grid map with updated cells.
Figure 3. Grid map representation of the testing environment at the start of the mission (a) and
during flight with updated cells (b). The unexplored cells are in white, the explored cells in green,
and each cell contains the number of times they have been explored. The obstacles are represented
in red.

4.4.5. Observation Space

The set of observations O is defined as:

O = opa , opt , ot f , ood (6)

where opa is the local pose estimation of the agent, opt is the local pose estimation of the
target, and ot f is a discrete observation defining if the target has been detected or not. opt is
received only when the target is detected. ood is a flag describing if the agent is close to
an obstacle. This observation is obtained using an occupancy map object and the agent’s
location within this map.
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4.4.6. Observation Model

The observation model is a distribution function modelling the probability of observing
an observation o from state s after performing action a. As the ABT solver is a generative
model; it is required to model an observation o that is the result of an action a and a new state
s′. The observation model includes the UAV-estimated position in the world coordinate
frame opa , as well as the location of the target opt when it is detected by the camera. The
detection of a victim using the camera’s FOV was based on Sandino et al. [24,25]. The
footprint area of the thermal camera is calculated using its sensor width, height, and focal
length. The target location point is predicted to be within the camera’s FOV if the calculated
sum between the pairs of points comprising the footprint area and the target belief position
is equal to 2π. In this research, it is assumed that there is no detection uncertainty, meaning
that detection is always assumed to be correct. Furthermore, this observation model is
designed for the detection of stationary objects and not for moving objects.

4.4.7. Belief States

Two sets of belief states are used in this work: the position of the UAV, represented by
its (x, y, z) coordinates, and the position of the victim, represented by their coordinates as
well. The position of the UAV is represented as a Gaussian distribution. Section 4.6 will
cover in more depth how the mean µ and standard deviation σ were defined. A Gaussian
distribution is used to represent the x and y coordinates and z is assumed to be known with
a negligible uncertainty. As previously stated in Section 4.3, the target position is unknown
to the UAV. Therefore, the belief state of the target is uniformly distributed in the restricted
flying area.

4.4.8. Obstacle Avoidance

Obstacle avoidance is implemented in this framework using occupancy maps. Occu-
pancy maps are a 3D representation of the environment using occupancy grids consisting
of cells. Each cell contains binary values representing whether the cell is occupied, free,
or unknown. In this work, the Octopmap library [37] was used. This library is used to
make occupancy maps using 3D point cloud data, making it a popular choice for robotic
applications requiring the computation of maps using sensors such as LIDAR and depth
cameras. For this research, occupancy maps were generated manually prior to the mission
and then used by the decision-making module.

4.5. Detection Module

The computer vision module is composed of a deep learning network structure that
processes object detection and classification from the FLIR TAU 2 thermal camera’s raw
frames. The deep learning model used was YOLOv5 [38], which is part of the You Only
Look Once (YOLO) family of computer vision models. YOLOv5 was selected following
Jiang et al.’s [15] research, which compared YOLOv3, YOLOv4, and YOLOv5 models for a
UAV thermal infrared object detection framework. YOLOv5 was also selected for its simple
integration with the ROS. The dataset used was developed by the Roboflow Universe
Project to detect persons in infrared frames [39]. The YOLOv5 model was then trained
using this dataset containing over 15,000 images. These images consist of a mix of thermal
images taken from a car using the FLIR Tau2 thermal camera (Teledyne FLIR Thermal
Dataset) [16] and thermal images taken by surveillance cameras. Figure 4 highlights the
evaluation indicator of the YOLOv5 model during the training used in this paper. A total
of 500 epochs were originally selected for training this model; however, the training was
stopped at 293 epochs as the results were not improving. The YOLOv5 model achieved
metric values of 89.1%, 81.9%, 89.8%, and 0.54% for precision, recall, mean average precision
with an intersection over union (IoU) of 50 % (mAP_0.5), and mean average precision with
an IoU interval of 50 % to 95% (mAP_0.95). Overall, the only metric with a low performance
was mAP_0.95, while the precision, recall, and mAP_0.5 metrics are satisfactory. The model
was tested in simulations and in real life to verify if improvements were needed before the
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full integration of the system. Even with a low mAP_0.95, the model was able to detect the
heated mannequin consistently with few false positives and false negatives in simulation
and real life.

Figure 5 shows the heated mannequin used in real-life experiments and the YOLOv5
detection when the UAV was flying above the target. More information about the man-
nequin will be given in Section 5.1.
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Figure 4. Visual analysis of YOLOv5 evaluation indicators during training.

(a) (b)
Figure 5. Target detection of the thermal mannequin using the FLIR TAU 2 thermal camera and
YOLOv5. (a) Thermal mannequin side view. (b) Target detected with an 81% confidence during flight
after processing the raw frame from the FLIR TAU 2 thermal camera.

4.6. Localisation Module

LIDAR/inertial odometry is yet to be integrated within the current system; however,
it was individually tested in low-luminosity conditions. The sensor used was the RPI S1
two-dimensional sensor, and the Hector SLAM package [40] was used to estimate the mo-
tion of the UAV. Two sets of data were processed: the ground truth and the pose estimation
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from LIDAR/inertial odometry. As the pose uncertainty in the POMDP representation is
modelled as a Gaussian distribution, the standard deviation of the error between these
two sets of data was calculated. This value was then used in the Gaussian distribution,
with the observed agent’s position as the mean, and the calculated value as the standard
deviation. Pose estimation was achieved using the PX4 SITL and HIL capabilities. In
simulations, PX4 relies on Gazebo plugins and simulated sensors such as the GNSS and
IMUs. In real life, it relies on the Optitrack system (please refer to Section 4.1 for more
information) and internal sensors.

5. Experiments

The framework presented in Section 4 was tested in a SAR mission in an indoor envi-
ronment with several obstacles in normal and low-visibility conditions. SITL simulations
and real flight tests were carried out. This section covers the environment setup, as well as
the parameters used in the POMDP problem formulation.

5.1. Environment Setup

The environment in which the UAV was operated is an indoor flying area of
9 m × 5 m × 3.7 m (length, width, height). Seven column-shaped obstacles were placed in
the search area. The target used was a mannequin able to simulate a human heat signa-
ture, and it was positioned opposite the UAV’s starting point. The target was lying down
in real-life testing and sitting down in SITL simulations. Both the target and obstacles
were static; only the lighting was modified to create low-visibility conditions. This setup
was selected to recreate realistic SAR operations, with an unknown target position, clut-
tered environment, lack of the GNSS, and low visibility, as much as possible. Simulations
tested the framework in the presence of smoke, while real-life experiments tested it under
low-luminosity conditions.

SITL experiments were carried out using the open-source flight controller software
PX4 [32], Gazebo, a derivation and upgrade from Gazebo Classic, and a ROS. Gazebo is an
open-source simulator for robotics, in which sensor models and high-fidelity physics are
made available for users. Gazebo was chosen over Gazebo Classic for its ability to model
visual obstructions in the form of particles, creating simulated smoke or fog. Simulations
were carried out on a desktop station featuring an 11th Gen Intel(R) (Santa Clara, CA, USA)
Core(TM) i7-11700K at 3.6GHz, 32GB DDR4 RAM, 1TB SSD, and a 24 GB NVIDIA GeForce
RTX 3090. The simulation environment in Gazebo (version 5.4.0.) is represented in Figure 6
with normal visibility conditions, and Figure 7 with smoke.

(a) (b)
Figure 6. Environment setup in SITL with normal visibility conditions. (a) Top view of the environ-
ment simulated in Gazebo. (b) Side view of the SITL environment.

Real-life experiments were conducted at the Queensland University of Technology
(QUT) Garden Point campus, in the O block flying area (O1304), 2 George St, Brisbane City,
QLD, 4000. For safety reasons, an adult mannequin with heat packs and heated clothes
was used to recreate the human heat signature as shown in Figure 5. The framework was
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tested under two different lighting conditions: normal lighting and obscurity, as shown in
Figure 8 and Figure 9 respectively. The position of the target and obstacles were static, and
no external disturbances (wind) were applied during the mission. In the current framework
implementation, LIDAR/inertial odometry is not integrated. The system is also currently
required to use a fixed occupancy map to know the obstacles’ position. For both real-life
and simulation experiments, the UAV path, target and pose estimation belief states, and
occupancy map were visualised on RViz [41].

(a) (b)
Figure 7. SITL environment setup with low-visibility conditions. (a) Top view of Gazebo with smoke
at the start of the mission. (b) Top view of Gazebo with smoke during flight with the detection output.

(a) (b)
Figure 8. Environment setup for real-life experiments at QUT O1304 with normal visibility conditions.
(a) Angled view of the flying area. (b) Flying area outside the net.
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Figure 9. Environment setup for real-life experiments at QUT O1304 with low-visibility conditions.

5.2. POMDP Problem Formulation

This subsection covers the uncertainty and initial belief of the POMDP formulation, as
well as the parameters used in the TAPIR workspace.

5.2.1. Uncertainty and Initial Belief

An important aspect of this research is to create difficult conditions for a SAR operation.
Therefore, the position of the target is unknown and represented by a uniform probability
distribution covering the entirety of the search area. The mannequin is always located at
the same position, the top left corner of the map, during simulations and real-life testing.
For the uncertainty in the pose estimation of the agent, the standard deviation used was
0.1 m. This value was selected after performing LIDAR/inertial odometry experiments, as
explained in Section 4.6. The maximum standard deviation found from these experiments
was 0.08 m.

5.2.2. TAPIR Parameters

The following table highlights the parameter values selected in the POMDP model.
The discount factor, responsible for how far the POMDP solver will try to plan the optimal
sequence of actions, has a value of 0.93. The altitude range of the UAV is between 1.3 m
and 3.5 m; actions in the x and y-axis result in a displacement of 1 m, and actions in the
z-axis result in a displacement of 0.3 m. The UAV has a maximum of 135 time-steps to find
the target, resulting in a maximum flight duration of approximately 5 min in simulations
and real flight. Table 3 summarizes the parameters used in the POMDP model.

Table 3. Parameters values used in the POMDP model.

Variable Value Description

γ 0.93 Discount factor
zmin 1.3 m Maximum altitude
zmax 3.5 m Minimum altitude
∆x 1 m x displacement
∆y 1 m y displacement
∆z 0.3 m z displacement
pa0 (−4.5;−2.5;2.0) Intial agent position
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Table 3. Cont.

Variable Value Description

tstepmax 135 Number of time steps
∆t 2 s Time step
v 0.5 m/s Velocity
µθ 1 rad Angle uncertainty

6. Results

Two different setups were tested in simulation (S) and in real-life testing. Each setup
was tested in normal (NV) and low-visibility (LV) conditions. The first testing configuration
(M1) consists of obstacles of different heights, from 1.65 m to 3.5 m (limit of altitude),
while the second setup (M2) only has obstacles of 3.5 m. The metrics used to evaluate the
success of each setup consist of Success (target found), Crash (if the UAV collides with an
obstacle), ROI Out (if the UAV leaves the ROI), and Timeout (target not found in the time
limit). In these tests, the target position was opposite the starting position of the UAV, with
coordinates of (4.5;1.5). Figure 10 shows the RViz environment of both maps, and Table 4
summarises the results:

Figure 10. RViz environment for both maps at the start of the mission.

Table 4. Performance metrics for SITL simulations and real flight tests.

Setup Iterations Success Rate Crash Rate ROI Out Timeout
Rate

M1 NV (S) 30 100% 0% 0% 0%
M1 NV
(RLT) 8 100% 0% 0% 0%

M1 LV (S) 30 100% 0% 0% 0%
M1 LV
(RLT) 8 100% 0 % 0% 0%

M2 NV (S) 30 100% 0% 0% 0%
M2 NV
(RLT) 8 87.5% 0% 12.5% 0%

M2 LV (S) 30 100% 0% 0% 0%
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Table 4. Cont.

Setup Iterations Success Rate Crash Rate ROI Out Timeout
Rate

M2 LV
(RLT) 8 100% 0% 0% 0%

S 120 100% 0% 0% 0%
RLT 32 96.87% 0% 3.13% 0%

From all the testing scenarios presented, the proposed framework performed perfectly
in simulations, with a 100% success rate (target found with no crashes), and a 96.87%
success rate in real-life testing. For the simulation, a total of 120 iterations through all the
setups (30 each) were performed, and 32 iterations for real-life testing (8 each). Overall, the
proposed system performed identically in simulations and in real life, with similar results.
The agent found the target in both maps and in different visibility conditions, highlighting
the ability of the decision-making module to explore different environments and the ability
of the thermal camera and object detection module to detect the target in normal and
low-visibility conditions. The differences between the heat signature of a human being and
the heated mannequin used in real-life testing did not impact the operation of the agent.
On the contrary, the mannequin was placed in a seated position in simulations to facilitate
detection, as the laying-down model was consistently miss-detected. These miss-detections
were caused by differences between the target used in simulation and the actual detection
model. The YOLOv5 model was trained using actual people and was not trained to detect
the simulated mannequin.

The most frequent trajectory for M1 is presented in Figure 11, and the most frequent
trajectory for M2 is shown in Figure 12. In all tested environments, the first series of actions
often resulted in the following steps: meeting the altitude requirement to avoid the negative
reward and going to the centre of the map. The former was part of the POMDP formulation,
with ralt encouraging the UAV to reach the required altitude. The latter, on the other hand,
was the result of the complete formulation and reward function. The POMDP always outputs
a policy in which the first actions result in the agent’s position being in the centre of the
map to maximise the number of unexplored cells around the UAV. When the centre is
reached, the agent will either keep going toward the top side of the map, as shown in
Figure 11 and Figure 12, or the actions will result in the agent exploring the bottom side of
the map.

Figure 11. Most frequent trajectory of the agent for Map 1 (M1) in normal and low-visibility conditions
with the target position belief as red particles. Top view and side view of the trajectory in RViz with
higher obstacles and walls in light green, and lower obstacles in medium spring green.
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Figure 12. Most frequent trajectory of the agent for Map 2 (M2) in normal and low-visibility conditions
with the target position belief as red particles. Top view and side view of the trajectory in RViz with
higher obstacles and walls in light green, and lower obstacles in medium spring green.

M1 was also used to highlight the ability of the agent to go above an obstacle, as
shown in Figure 13. The POMDP solver was able to recognise the lower obstacles as a
“non-threat” and output actions resulting in the agent’s position being above these smaller
obstacles, without causing any collisions and successfully avoiding the obstacle.

Figure 13. Agent can fly over the smaller obstacles in medium spring green with the target position
belief as red particles. Top view and side view of the trajectory going over the obstacle in RViz with
higher obstacles and walls in light green.

The “Out of ROI” state that occurred in M2 NV in real-life testing was caused by a
known issue of the framework, which put the agent in an area far from other unexplored
cells, causing it to repeat UP and DOWN actions, forcing the agent to go higher than the
altitude limit. This is represented in Figure 14. This issue was limited by the functionality
of keeping track of the number of cells explored and resetting the explored cells when a
percentage of exploration is attained, as explained in Section 4.4.4.
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Figure 14. Representation of the POMDP solver getting stuck in the bottom part of the map. As the
agent is too far from other unexplored cells, the POMDP is not able to compute practical actions and
repeats UP and DOWN commands. The obstacles and walls are in green; the target position belief
states are red particles. Top view and side view of the path on RViz.

The detection model was trained using images from an external dataset detecting
human beings. A mannequin was used in the experiments for safety purposes, hence
creating differences between the model and the target. Figure 15 highlights the differences
between the heat signature of the mannequin and a person. These differences caused a
few miss-detections, which are highlighted in Figure 16. These miss-detections forced the
agent to keep exploring the environment, often activating the functionality and resetting
the states of the cells. In the few times this miss-detection happened, the agent was always
able to explore a larger part of the map and come back to the target area for successful
detection. These miss-detections were also caused by a loss of heat in the heat-packs and
heated clothes after a long testing session, creating a noticeable difference between the
mannequin and an actual human being.

Figure 15. YOLOv5 detection output of thermal imagery with a heated mannequin and a human being.
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(a) (b) (c)
Figure 16. Representation of a miss-detection in Map 2 (M2), forcing the agent to explore the
environment and using the functionality to reset the states of the cells. Obstacles and walls are shown
in light green. The target position belief is shown as red particles. (a) Path of the agent flying over the
target without detecting it. (b) Final path of the agent with a top view on RViz after the detection.
(c) Final path of the agent with a side view on RViz without the occupancy map.

To assess the performance of the proposed framework, an analysis of the number of
time steps taken by the agent to detect the target was conducted. Box plots were used to
summarise the results of this analysis as shown in Figure 17.
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Figure 17. RLT vs SIM for Map 1 (M1) and Map 2 (M2) in normal (NV) and low-visibility (LV)
conditions. Blue boxes represent the interquartile range, red lines the median, black lines the
whiskers, and blue circles outliers.

The difference between the lengths of the whiskers of the simulation and real-life re-
sults was caused by how the UAV motion in Gazebo is modelled. The equations modelling
the motion in Gazebo approximate the behaviour of a generic quadcopter rather than the
exact frame used in real-life testing, which in this case, was the Holybro X500 V2.

The main variance between each map is the height of the obstacles. The first map,
with obstacles of 1.7 m and 3.5 m, offers the agent a larger range of choices to explore
the environment as it has the possibility to fly over some obstacles. On the other hand,
the second map, with obstacles of 3.5 m only, restricts the freedom of the agent. This is
highlighted in Figure 17, with the interquartile range of 90 steps for both M1 in NV M1 and
LV M1, compared to 65 and 66 steps for NV M2 and LV M2, respectively, in simulations.
The problem formulation did not include any change in behaviour between normal and
low-visibility conditions. This is represented in the median for each boxplot, with a median
of 76 for both NV M1 and LV M1 in simulations, and a median of 39 and 36.5 steps in
real-life testing (Figure 17a,b). For NV M2 and LV M2, a median of 81 steps and 82 steps,
respectively, in simulations, and 27 and 28 steps for real-life testing (Figure 17c,d) was
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determined. The mean altitude in M1 for simulations was 2.97 m and 2.91 m in real-life
testing. For M2, the mean altitude was 2.98 m in simulations and 2.87 m in real-life testing.

7. Discussion

The framework proposed in this research paper offers a viable and interesting solu-
tion for autonomous UAV navigation and decision making in GNSS-denied and visually
degraded environments. This work is a continuation of [42], which itself was an extension
of the contributions from Vanegas and Gonzalez [23] and Sandino et al. [24]. In [42], a ther-
mal camera was added to the framework to improve target detection under low-visibility
conditions, some modifications to the problem formulation and TAPIR parameters were
made to improve the performance (see below), and real-life experiments were performed
to verify the simulation results.

The first version of the framework was modelled with a velocity of 0.3 m/s and a
time step of 2 s, resulting in a displacement of 0.6m for the forward, backward, left, and
right actions. This displacement was calculated by the transition function, modelling the
transition from one state to another, which in this case, was the drone’s position state. This
transition function is represented by the following equations:

∆x = (v ∗ cos(θ + µθ)− v ∗ sin(θ + µθ)) ∗ ∆t ∗ 0.05 (7)

∆y = (v ∗ sin (θ + µθ) + v ∗ cos(θ + µθ)) ∗ ∆t ∗ 0.05 (8)

This displacement of 0.6 m was later found to cause issues in more crowded envi-
ronments, such as the map tested in the experiments. More precisely, a displacement
of 0.6 m was not fully compatible with the environment representation of a 1 m × 1 m
cell and 1 m × 1 m obstacles. For example, the cells located in the top left corner were
difficult for the UAV to access. The obstacle created a single possible path, forcing the
UAV along the wall and around the obstacle. However, a displacement of 0.6 m did not
allow the agent to follow this path, as shown in Figure 18. This misrepresentation of the
displacement magnitude and the environment highlights the proper functioning of the
POMDP. Exploration at the cost of collisions or exiting the ROI is not a possible output of
the solver. However, the lack of compatibility between these two components produced
unexplored areas, and often caused the UAV to be stuck in a series of opposite actions (UP,
DOWN, UP, DOWN). To fix this problem, the x and y displacement was increased to 1 m
per action. As the agent starting point is at the centre of a cell, each action would move the
UAV from the centre of one cell to another. The uncertainty in action, represented by an
uncertainty angle of one radian, would still result in an approximate position at the centre
of the cells. To attain this displacement, the velocity was selected to be 0.5 m/s, with a time
step of 2 s. These parameters allowed the UAV to explore most of the map while avoiding
obstacles and staying inside the ROI, as shown in Figure 18.

Overall, this study offers a flexible framework for autonomous UAV decision making
in low-visibility environments with no GNSS. The framework is scalable, flexible, and
portable depending on the selected sensors, mission goals, and algorithms used in the
object detection and decision-making modules. The POMDP formulation was designed
to work with other multi-rotor UAVs of larger or smaller sizes, thanks to the transition
function modelling the dynamics of a UAV. The transition function was built based on
a quadcopter dynamic model, but can easily be modified to model the dynamics of a
hexacopter, for example. The reward function, state space, and other parameters of the
problem formulation are not specific to the drone. Actions are modelled only for multi-rotor
UAVs, as they can hover and move to waypoints. Larger environments can also be used to
test this problem formulation, and will not impact the performance of the POMDP solvers
or other algorithms. Thermal cameras also offer a robust solution for human detection in
degraded visibility environments.
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Figure 18. Top view of the agent’s trajectory for Map 2 (M2) with the target position belief as
red particles. A 0.6 m displacement does not allow the agent to explore some areas, while a 1 m
displacement allows the agent to explore crowded areas.

In terms of limitations, the current framework is dependent on the occupancy map
provided before the mission and is not updated during the flight, therefore assuming a
static environment. The aspect of the environment that can be assumed to be stochastic is
the visibility conditions, as thermal cameras are efficient in both normal and low-visibility
conditions for heat signature detection. Not updating the map during the mission forces the
pose estimation system to be highly reliable, as a high uncertainty for position estimation
will have higher chances of causing collisions. Furthermore, the representation of the
environment as a 2D grid map with 1 × 1 m cells limits the obstacles to a “square” shape
or to “danger areas” with variable heights. Another limitation of this framework is the
restriction to translation motion, with no rotations. This was selected to facilitate the
dynamics and motion of the UAV, as well as to ease the integration between the possible
actions and the environment representation. It is however possible to include heading
actions in the problem formulation and to ignore the left, right, and backward commands.

A successful implementation of this framework for real-life applications in SAR opera-
tions requires the examination of several challenges, including but not limited to:

• The UAV flight autonomy, which will restrain the mission duration.
• The implementation of the localisation module using a sensor able to estimate the

pose estimation of the agent with a low uncertainty.
• A localisation module that is efficient enough to perform even in low-visibility condi-

tions, including smoke or low light.
• Hazards which might damage the UAV, including but not limited to chemical, electri-

cal, and poor weather conditions.
• Proper handling of LiPo batteries to avoid fire hazards from possible impacts and

sources of ignition.
• The size of the UAV which will be able to handle a heavy payload constituting

several sensors.

8. Conclusions and Future Work

This paper presented a problem formulation and a framework for autonomous UAV
navigation and target detection in GNSS-denied and visually degraded environments. The
problem formulation was developed as a Partially Observable Markov Decision Process,
and the system performed a mission modelled as a Search and Rescue operation. The mis-



Remote Sens. 2024, 16, 471 22 of 25

sion consisted of exploring an environment composed of obstacles and visual obstructions
to find a victim in an unknown position. The POMDP allows for the modelling of the target
and agent’s position uncertainty as belief states using probability distributions. Simulation
and real-life experiments were used to assess the performance of the framework. The
ABT solver used in this paper allowed the system to first compute an offline policy a few
seconds before the start of the mission, as well as improve the previously computed policy
during the flight to output the most optimal path. The system proposed in this research
allowed a small UAV to autonomously explore and navigate an environment composed
of obstacles under low-visibility conditions to successfully find and detect a human being
with an unknown position using target detection based on thermal imagery.

The primary contributions of this paper are:

1. A UAV framework for autonomous navigation and target detection in GNSS-denied
environments with low visibility and obstacles. The problem is formulated as a
POMDP and has possible applications in Search and Rescue operations.

2. The framework was implemented, integrated, and tested in real life to verify the simu-
lation results. The decision-making and object detection modules run on the on-board
computer and are considered as resource-limited hardware. The sensors, onboard
computer, and other hardware are safely mounted on a small UAV, considered as a
weight-constrained platform.

3. Integration of a deep learning detection model using a thermal camera with a POMDP
framework onboard a UAV.

This paper offers a novel POMDP formulation for SAR operations in GNSS-denied,
visually degraded, and cluttered environments. As highlighted in the literature review in
Section 1, efficient solutions to explore and navigate challenging environments using UAVs
already exist. However, these solutions either do not model decision making under uncer-
tainty or have not been tested in low-visibility environments. This research is innovative
by using a POMDP to allow a drone to autonomously explore a cluttered environment in
different visibility conditions without a GNSS with state and action uncertainty.

Future work includes the implementation of the localisation module using sensors
such as LIDAR or depth cameras to fully rely on the hardware present onboard the UAV
without the use of the GNSS. It also includes researching the use of unknown maps and/or
dynamic environments and modifying the problem formulation for this new challenge.
A study comparing the performance of the current framework using the ABT with that
of other POMDP solvers would also be highly beneficial. Moreover, training and testing
newer object detection systems like YOLOv8 could be advantageous, as the framework
allows for other tools to be implemented. Integrating the results of the objection model
in the observation model of the POMDP could enhance the robustness of the POMDP in
real scenarios.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-dimensional
3D Three-dimensional
ABT Augmented Belief Tree
FCU Flight Controller Unit
FOV Field of View
GNSS Global Navigation Satellite System
GPS Global Positioning System
HIL Hardware in the Loop
IoU Intersection over Union
IR Infrared
LIDAR Light Detection and Ranging
M1 LV Map One, Low Visibility
M1 NV Map One, Normal Visibility
M2 LV Map Two, Low Visibility
M2 NV Map Two, Normal Visibility
mAP Mean Average Precision
MDP Markov Decision Process
OS Operating System
POMDP Partially Observable Markov Decision Process
RGB Red, Green, Blue
RLT Real-Life Testing
ROI Region of Interest
ROS Robot Operating System
SAR Search and Rescue
SITL Software in the Loop
SLAM Simultaneous Localisation and Mapping
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