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Abstract: The height of the F2 peak electron density (hmF2) is an essential parameter in studying
ionospheric electrodynamics and high-frequency wireless communication. Based on ionosphere ray
propagation theory, the physical relationship between M3000F2 and hmF2 is derived and visualized.
Furthermore, based on the above physical theory and the machine learning method, this paper
proposes a new model for determining hmF2 using propagation factor at a distance of 3000 km
from the ionospheric F2 layer, time, and season. This proposed model is easy to understand and
has the characteristics of clear principles, simple structure, and easy application. Furthermore, we
used six stations in east Asia to verify this model and compare it with the other three models of the
International Reference Ionosphere (IRI) model. The results show that the proposed model (PRO)
has minor error and higher accuracy. Specifically the RMSE of the BSE, AMTB, SHU, and the PRO
models were 20.35 km, 31.51 km, 13.59 km, and 5.68 km, respectively, and the RRMSE of the BSE,
AMTB, SHU, and PRO models were 8.17%, 11.88%, 4.96%, and 2.12%, respectively. In addition, the
experimental results show that the PRO model can better predict the trend of the hmF2 inflection
point. This method can be further extended to add data sources and provide new ideas for studying
the hmF2 over global regions.

Keywords: hmF2; M(3000)F2; machine learning; east Asia

1. Introduction

High-frequency (HF) communication is widely applied in various production and
daily life domains. For instance, the Global Navigation Satellite System has gained extensive
use worldwide through shortwave positioning and communication, particularly in military
applications [1]. Because HF communication has the advantages of flexible networking,
strong destruction resistance, and high mobility, which can effectively avoid high cost and
geographical environment restrictions [2], it is an important research direction [3]. The
ionosphere, a variable medium affecting HF communication [4], exhibits time-varying
dispersion characteristics. The ionosphere, which includes the thermosphere, part of the
mesosphere, and the exosphere, is the ionized part of the upper atmosphere surrounding
the earth, extending from 60 km to more than 1000 km [5]. The primary plasma sources are
the photoionization of neutral molecules in soft X-ray radiation and the photoionization of
neutral molecules in solar EVU [6].

Knowledge of the ionosphere is essential in several applications, such as high-frequency
communications, satellite positioning, and navigation systems [7]. The ionosphere consists
of the D-layer, E-layer, and F-layer (F1-layer and F2-layer). Among these, the F2 layer
exhibits the highest electron density, making it the most significant [8] and stable [9] region
in the ionosphere. The height of the peak electron density in the ionospheric F2 layer (hmF2)
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is one of the critical parameters for predicting the HF communication link [10,11], which
represents the distance from the point with the highest electron density in the ionosphere
to the ground [12]. The prediction of hmF2 is helpful for the design [13,14] and operation of
high-frequency propagation systems [15]. In addition, hmF2 is also helpful for calculating
the drift velocity of vertical plasma, studying ionospheric electrodynamics, and enhancing
the understanding of space weather environment [16].

Research in this area has been ongoing since the middle of the last century. Shi-
mazaki et al. [17] used Appleton–Beynon data in 1955 to propose an empirical model based
on the correlation between hmF2 and the propagation factor at a distance of 3000 km from
the F2 layer (identified as M(3000)F2). Later, Bradley and Dudeney [18] improved the
above model in 1973 and added correction items. However, this method is impractical in
certain cases. In order to solve this problem, Dudeney [19] proposed a new formula based
on inverted profiles of high-latitude ionospheric stations in 1975. In 1979, Bilitza et al. [20]
proposed a more complex model based on the previous work by using the peak height of
the F2 layer measured by incoherent scatter radar, which depended not only on the ratio of
foF2 to foE and the number of sunspots but also on the geomagnetic latitude. Finally, this
model was included by IRI and became one of the three hmF2 prediction models in IRI.
Judging from the above evolution process, the prediction expression of hmF2 has become
increasingly complex. However, the study of Adebesin et al. [21] shows that only a simple
formula is needed to obtain better prediction results. This model does not directly establish
the relationship expression between hmF2 and M(3000)F2, but it uses the solar activity
parameter F10.7 to replace M(3000)F2 to develop the relationship expression between hmF2
and F10.7 according to the strong correlation between F10.7 and M(3000)F2 in different
seasons and at different times.

Considering the balance of method simplification and precision, this paper proposes
a new model between hmF2 and M(3000)F2 according to the season and time (in hours)
based on analyzing the strong correlation between hmF2 and M(3000)F2. The structure of
this paper is arranged as follows: Section 2 introduces the methodology which includes
the physical principle for supporting later modeling, the modeling method, data used
for modeling, and the specific modeling process; Section 3 shows experimental results;
Section 4 compares the experimental results with the IRI model. In the end, a conclusion
is given.

2. Methodology
2.1. Physical Principle

As shown in Figure 1a, ionospheric vertical sounding means that the transmitting
position (T) and the receiving position (R) are located at the same position. In contrast, the
T and R are located at different positions during oblique ionospheric sounding. Figure 1b
shows the curve of virtual height against oblique sounding frequency, and Figure 1c shows
the curve of traveling time delay and vertical sounding frequency.

In the following analysis, we ignore the influence of the geomagnetic field and assume
that the electron density distribution is parabolic (Figure 1d). For ordinary waves, the
relationship between the vertical sounding frequency fv′ corresponding to the peak height
hmF2 and the critical frequency foF2 of the F2 layer is as follows [17]:

f ′v = 0.834 · foF2, (1)

According to the ray propagation theory [4], the oblique propagation frequency fo
corresponding to fv can be expressed as [17]:

fo = MUF − ∆ f = M · foF2 · (1 − δ), (2)

where MUF is the maximum usable frequency, M is the propagation factor, ∆f is the
deviation from MUF, and δ is the rate deviation from MUF.
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Figure 1. The relationship between vertical and oblique sounding in the ionospheric F2 layer: (a) 
Wave transmission path of vertical and oblique sounding; (b) Oblique propagation distance–fre-
quency curve of oblique sounding; (c) Virtual height–frequency curve of vertical sounding; (d) Par-
abolic distribution of the electron density. 
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Figure 1. The relationship between vertical and oblique sounding in the ionospheric F2 layer: (a) Wave
transmission path of vertical and oblique sounding; (b) Oblique propagation distance–frequency
curve of oblique sounding; (c) Virtual height–frequency curve of vertical sounding; (d) Parabolic
distribution of the electron density.

According to Figure 1a,d, the hmF2 can be represented as

hmF2 =− Re ·
[
1 − cos

(
D

2Re

)]
+

Re · sin
(

D
2Re

)
·
√

1.1·ymF2/(Re+hbF2)·(1+δ2)·M2+0.696
(1+δ)2·M2−0.676

, (3)

where Re is the radius of the Earth, and its value is 6370; D is the propagation distance
between T and R; ymF2 is the half thickness of the ionospheric F2 layer; and hbF2 is the
bottom height of the ionospheric F2 Layer. When D is 3000 km, then M is M(3000)F2, and
the following results can be obtained:

hmF2 = −176 + 1490 ·

√√√√ 1.1·ymF2
6370+hbF2 · (1 + δ2) · [M(3000)F2]2 + 0.696

(1 + δ)2 · [M(3000)F2]2 − 0.676
, (4)

where hbF2 = hmF2 − ymF2.
In conclusion, hmF2 is a function related to M(3000)F2, ymF2, and δ.
In actual observation, the above parameters vary within a specific range [17]. Suppose

that M(3000)F2 varies from 2.5 MHz to 4 MHz, ymF2 varies from 60 km to 120 km, and δ
varies from −0.07 to −0.04. The relationship between hmF2 and the above three variables
is shown as follows:

As shown in Figure 2, when ymF2 and δ are constant, hmF2 and 1/M(3000)F2 are
always approximately linear, so Equation (4) can be simplified as follows:

hmF2 =C0 + C1/M(3000)F2, (5)
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where C0 and C1 are variables related to ionospheric parameters; however, the ionosphere
varies with time, season, and latitude [22,23]. Shimazaki [17] pointed out in his experiment
in 1955 that the diurnal variation of hmF2 in the middle and high latitudes has seasonal
characteristics, and there are apparent semi-diurnal variations in the middle and low
latitudes. According to the above characteristics, this paper intends to train the hmF2
prediction model for different seasons and days, namely Equation (6).

hmF2 =C0(s, t) + C1(s, t)/M(3000)F2, (6)

where s is the factor related to the season, and t is the factor related to the daily variation
(i.e., the hour).
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Figure 2. Relationship between hmF2 and M(3000)F2, ymF2, and δ: the four planes from bottom to
top correspond with δ = −0.07, −0.06, −0.05, and −0.04, respectively. Since the differences in hmF2
between the four conditions were particularly small, in order to show them clearly, the hmF2 value
with δ = −0.06, −0.05, and −0.04 has been increased by 50, 100, and 150 km, respectively.

2.2. Modeling Method

In this paper, we used statistical machine learning (SML) methods to determine the
hyperparameters (C0(s,t) and C1(s,t)) in Equation (6). SML is a multidisciplinary specialty
including the knowledge of statistics, probability theory, and complex algorithms. SML
is a research hotspot and an important branch of artificial intelligence [24]. Traditional
statistics is more inclined toward pure mathematics or theory. However, SML is more
inclined toward the intersection of mathematics and computers, and statistical theories
often need to be transformed into practical algorithms through learning research. SML uses
data and statistical methods to improve system performance. Compared with black box
operations such as artificial neural networks, SML has more advantages, such as that its
model parameters are often more interpretable and easier to understand [2].

SML is a tool that simulates the human learning process and builds algorithm map-
pings between inputs and outputs to improve the performance of specific algorithms [20].
SML needs to address four questions [25]: What data need to be selected? How should we
select the model, determine the model, and evaluate the model? This corresponds to the
three elements of statistical machine learning [25]: model, algorithm, and strategy.
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(1) Data are the core of SML, which should have certain statistical regularity and be
similar data with some common properties.

(2) The model of SML can be understood as a function, that is, to find the relationship
between the input and output variables. Through previous analysis, it has been deter-
mined that the relationship between hmF2 and 1/M3000F2 is approximately linear
(Equation (6)). M(3000)F2 is the input variable, and hmF2 is the output variable. C0(s,t)
and C1(s,t) are the intercept and slope of the model, respectively, which are unknown
quantities in the model. It needs to be determined by selecting a suitable algorithm.

(3) SML primarily uses supervised learning to determine the model, and the task of
supervised learning is to obtain the mapping relationship between input and output
through learning. Specifically, the specific values of hyperparameters C0(s,t) and C1(s,t)
in Equation (6) need to be determined through supervised learning. Considering that
the model can be reduced to a linear function of one variable, the least squares (LS)
regression analysis method is chosen in this paper to find the best function matching
of the data by obtaining the sum of squares that minimizes the error.

(4) SML needs to set model evaluation criteria to evaluate the merits and demerits of
the trained model, in which root mean square error (RMSE) and relative root mean
square error (RRMSE) are selected. RMSE can evaluate performance changes and
characterize the impact caused by data perturbations, while RRMSE is used to assess
the percentage of relative performance changes [26].

As illustrated in Figure 3, we used the LS regression analysis to determine the model
based on the linear relationship between hmF2 and 1/M(3000)F2, and RMSE and RRMSE
were chosen as evaluation metrics to assess the performance of this model compared to the
IRI model.
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2.3. Data Collecting

We downloaded the ionospheric data (hmF2 and M(3000)F2) from https://giro.uml.
edu/didbase/scaled.php (accessed on 1 May 2023), which was obtained by the Ionosonde.
We selected six stations in east Asia, covering middle and low latitudes. Specifically, we
selected four stations in China (Mohe, Beijing, Wuhan, and Sanya) and two stations in South
Korea (Icheon and Jeju). In addition to the Sanya station located in the low-latitude area, all
other stations are located in the mid-latitude area. The geographic locations marked with
red hexagrams in Figure 4 are the locations of the six stations used in this paper. hmF2
and M(3000)F2 use the median value, which is the corresponding median value under
each hour of each month. Figure 5 shows the training data used in this paper, including
the station’s name used for modeling and the time information. The circle in the figure
represents the time from 2014 to 2017. The curve indicates that hmF2 and M(3000)F2 are
recorded simultaneously at the corresponding time. The station names corresponding to
the different colored line segments are in the upper right corner.

https://giro.uml.edu/didbase/scaled.php
https://giro.uml.edu/didbase/scaled.php
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Beijing, Icheon, Jeju, Wuhan, and Sanya.
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Table 1 shows the detailed information of the verification data used in this paper, and it
distinguishes solar activity periods according to Figure 6b. Figure 6a draws the measured data
of hmF2 and M(3000)F2 at the Mohe station from 2014 to 2017. The red line represents hmF2,
and the black line represents M(3000)F2. There is a negative correlation between the hmF2 and
M(3000)F2. In other words, there is a positive correlation between hmF2 and 1/M(3000)F2.
Figure 6b plots the twelve-month smoothed value of sunspots from 2012 to 2018, and these
values can be obtained from https://www.sidc.be/silso/datafiles (accessed 28 October 2022).
We know that, in the period from 2014 to 2017, there was a decline in solar activity. The years
2012 and 2013 were high solar activity years, and 2018 was a low solar activity year.

Table 1. Validation data information.

Season Station Year Month Solar Activity Year

Equinox
Beijing 2013 10 High
Mohe 2018 3 Low
Jeju 2013 3 High

https://www.sidc.be/silso/datafiles
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Table 1. Cont.

Season Station Year Month Solar Activity Year

Summer
Icheon 2013 5 High
Icheon 2013 8 High

Jeju 2012 5 High

Winter
Sanya 2013 12 High

Wuhan 2018 12 Low
Icheon 2018 1 Low
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2.4. Modeling Process

Previous analyses have shown that hmF2 is a linear function of 1/M(3000)F2 and is re-
lated to seasonal and diurnal variations. According to Lloyd’s season division method [27],
seasons are divided into equinox, summer, and winter. According to the different seasons
and hours, the corresponding model expression is preliminarily established as shown in
(7), where C0(s,t) is the intercept, C1(s,t) is the slope of hmF2 and 1/M(3000)F2, t is the
time-dependent factor, and s is the Lloyd season-dependent factor. The division of seasonal
factors originated from Lloyd’s harmonic analysis of monthly observations of diurnal
variations in the geomagnetic field in Dublin, where similar results were observed in the
autumn and spring months [28]. Lloyd’s season divides the 12 months into 3 seasons of
4 months each. In the northern hemisphere, the equinoxes are in March, April, September,
and October; summer is May to August, and winter is November to February.

In order to measure the close relationship between hmF2 and 1/M(3000)F2, we first
calculated the correlation between hmF2 and 1/M(3000)F2 according to season and universal
hour (UT). The calculated results are shown in Figure 7. The correlation between equinox and
winter is high, greater than or equal to 0.9, while the correlation between summer and autumn
is relatively low. However, except for the correlation between UT = 20 and UT = 21, which is
0.77 and less than 0.80, the correlation between the remaining times is more significant than
0.8, which also provides the possibility for predicting hmF2 by 1/M(3000)F2.

Therefore, the training is conducted through (6), where the coefficients C0(s,t) and
C1(s,t) are determined by the LS regression analysis method, that is, a group of C0(s,t) and
C1(s,t) are found to minimize the sum of squares of the deviation between the predicted
value of the model and the actual value, as shown in (7):

min
N

∑
n=0

[hmF2n − C0(s, t)− C1(s, t)/M(3000)F2n], (7)

where C0(s,t) + C1(s,t)/M(3000)F2n is the predicted value, and hmF2n is the measured
value.
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Then, the trained model is evaluated, and the evaluation index is RMSE and RRMSE
as follows:

RMSE =

√√√√∑N
n=1

(
ˆhmF2n − hmF2n

)2

N
, (8)

RRMSE =

√√√√∑N
n=1

(
ˆhmF2n−hmF2n

hmF2n

)2

N
, (9)

where ˆhmF2n is the predicted value, hmF2n is the measured value, N is the actual data
quantity, and n is an integer from 1 to N. If the subscript n differs, the corresponding
parameter values are also different.

3. Results

Observed data from 2014 to 2017 were trained according to season and UT, and the
corresponding C0(s,t) and C1(s,t) were obtained. Figure 8a shows the inversion value of C0
at different UTs in different seasons, which is similar to C1(s,t). When UT = 8 in summer,
C0(s,t) has the maximum value of 3.5524 × 102; when UT = 18 in summer, C0(s,t) has the
minimum value of 3.257. Figure 8b shows the value of C1(s,t) in different seasons and at
different UTs. When UT = 8 in summer, C1(s,t) has a maximum value of 1.9255 × 103; when
UT = 18 in summer, C1(s,t) has a minimum value of 9.742 × 102.
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In order to measure the fitting degree of the model to the observed value, the respec-
tive goodness of fit (defined as R2) is calculated according to season and universal time,
respectively. Namely,

R2 =
N

∑
n=1

(
hmF2n − ˆhmF2n

)2
/

N

∑
n=1

(
hmF2n − hmF2n

)2
, (10)
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where ˆhmF2n is the predicted value, hmF2n is the average of the measured value, N is
the actual data quantity, and n is an integer from 1 to N. If the subscript n differs, the
corresponding parameter values are also different.

The value of the goodness of fit R2 ranges from 0 to 1. The closer the value is to 1, the
better the degree of fit; the closer the value is to 0, the worse the degree of fit.

Figures 9–11 show the training results under different UTs and seasons, which are
equinox (corresponding to Figure 9), summer (corresponding to Figure 10), and winter
(corresponding to Figure 11), and the corresponding R2 is labeled in the upper left corner
of each subgraph.
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Figure 10. The training result of the summer.

Figure 12 shows the distribution of R2 of different seasons. The horizontal coordinate
represents the value of R2, and the vertical coordinate represents the number of events
corresponding to R2. From Figures 9–12, it can be seen that the goodness of fit in equinox
and winter is better than the goodness of fit in summer. Among them, the R2 in equinox is
between 0.8 and 1, the R2 in winter is between 0.85 and 1, and the R2 in summer is between
0.55 and 1. In summer, the R2 is 0.5951 when UT = 20 and 0.6002 when UT = 21. Except for
the above two times, the corresponding R2 at other times is more significant than 0.65. This
result shows that when M (3000) F2 is used to fit hmF2 according to season and UT, the
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fitting value is close to the measured value, which also proves the feasibility of this method.
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Figure 12. The histogram of R2: (a) Equinox; (b) Summer; (c) Winter; (d) Total.

4. Discussion

To test the generalization ability of the above-proposed model, we validate the trained
model using validation data, the details of which are shown in Table 1. The validation data
were substituted into the proposed model (identified as “PRO”) to obtain the predicted
value. We compared the predicted value of the PRO model and the other three hmF2 models
of IRI-2020 [12], which include Bilitza–Sheikh–Eyfrig (BSE) [18], Altadill–Magdaleno–Torta–
Blanch (AMTB) [29] and Shubin (SHU) [30].

Figure 13 shows the specific data of observed hmF2 (OBS), the predicted value of three
IRI models (BSE, AMTB, and SHU), and PRO. Each row represents a season, from top to
bottom: equinox, summer, and winter. The results show that the PRO and OBS are closer
than the IRI model. Moreover, PRO and OBS change trends are more consistent, as shown
in Figure 13c,d,g–i, which can be consistent with the trend at the inflection point of OBS.
Figure 13 also shows that there are differences in the forecasting performance of the same
model at different times. For example, the prediction of the AMTB model for summer is
significantly better than that of equinox and winter.

In order to show the advantages of the proposed model more precisely, RMSE and
RRMSE between the predicted and observed values of the model were calculated according
to (8) and (9), respectively, according to the season and the solar activity period.

Figure 14 shows the error graphs of RMSE and RRMSE calculated according to seasons.
The RMSEs of the PRO model in equinox, summer, and winter are 5.25 km, 6.61 km,
and 5.12 km, respectively, and the RRMSEs of the PRO model are 2.02%, 2.26%, and
2.09%, respectively. Compared with other models, the proposed model showed absolute
advantages in any season.

Figure 15 shows the error graph of RMSE and RRMSE calculated according to the
solar activity period. The RMSE and RRMSE of the PRO model are 5.82 km and 2.04%,
respectively, in high solar activity years. During low solar activity years, the RMSE is 5.39
km and the RRMSE is 2.28%. Compared with other models, the RMSE and RRMSE of PRO
are much smaller than the three models of IRI, whether in high or low solar activity years.
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Figure 13. Specific data of OBS, the predicted value of three IRI models (BSE, AMTB, and SHU),
and PRO: (a) Beijing (2013.10); (b) Mohe (2018.03); (c) Jeju (2013.03); (d) Icheon (2013.05); (e) Icheon
(2018.08); (f) Jeju (2012.05); (g) Sanya (2013.12); (h) Wuhan (2018.02); (i) Icheon (2018.01).
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Figure 14. The RMSE and RRMSE between the model’s predicted and observed values are calculated
seasonally: (a) RMSE; (b) RRMSE.
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Figure 16 shows the statistics of RMSE and RRMSE, respectively, according to the
model. The RMSE of BSE, AMTB, SHU, and PRO were 20.35 km, 31.51 km, 13.59 km, and
5.68 km, and the RRMSE of BSE, AMTB, SHU and PRO were 8.17%, 11.88%, 4.96%, and
2.12%, respectively. The above results showed that the PRO model was the most accurate
predictor of hmF2, followed by the SHU model, and the AMTB model was the worst.
Compared with the three IRI models, the RMSE of PRO decreased by 14.67 km, 25.83 km,
and 7.91 km, and RRMSE decreased by 6.05%, 9.76%, and 2.84%, respectively. The above
results show that, compared with the IRI model, the PRO model has a higher accuracy
in long-term hmF2 prediction in east Asia. These results also prove the validity of the
proposed model.
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5. Conclusions

In this paper, according to the strong physical correlation between hmF2 and M(3000)F2,
a new model to determine hmF2 is proposed: the model is trained according to season and
universal time, and the physical expression of hmF2 and 1/M(3000)F2 is obtained. The
feasibility of this method is proved by the calculation of correlation and goodness of fit.
The method was verified in east Asia. The results showed that, compared with the three
IRI models, the RMSE of the PRO model was reduced by 14.67 km, 25.83 km, and 7.91 km,
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and the RRMSE was reduced by 6.05%, 9.76%, and 2.84%, respectively. The PRO model
had more minor errors and higher accuracy. In addition, compared with the three models
of IRI, PRO is more accurate in predicting the turning point trend of hmF2.

The proposed model generally has the advantages of simple structure, convenient
calculation, and better prediction accuracy than the IRI model. This paper provides a
new idea to predict hmF2: improve the prediction accuracy of the ionospheric parameter
M(3000)F2 and then improve the prediction accuracy of hmF2 according to the correlation
between M(3000)F2 and hmF2. At the same time, the proposed method can obtain hmF2
at the corresponding time according to the measured M(3000)F2 and further expand the
hmF2 data source. It is beneficial for planning and designing ionospheric high-frequency
propagation systems, studying ionospheric mechanisms, and exploring space weather
coupling law in this region.

At the same time, there are still some aspects which are worth exploring: (1) The
data from 2012, 2013, and 2018 were selected for validation data, which were all near the
training data (2014–2017), and the applicability of the model for other times needs to be
studied; (2) This paper compares PRO with IRI model, and future work can be compared
with other models.
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