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Abstract: In this paper, we explore the problem of direction-of-arrival (DOA) estimation for a non-
uniform linear array (NULA) under strong noise. The compressed sensing (CS)-based methods are
widely used in NULA DOA estimations. However, these methods commonly rely on the tuning of
parameters, which are hard to fine-tune. Additionally, these methods lack robustness under strong
noise. To address these issues, this paper proposes a novel DOA estimation approach using a deep
neural network (DNN) for a NULA in a low SNR. The proposed network is designed based on the
denoising convolutional neural network (DnCNN) and the alternating direction method of multipliers
(ADMM), which is dubbed as LDnADMM-Net. First, we construct an unfolded DNN architecture
that mimics the behavior of the iterative processing of an ADMM. In this way, the parameters of an
ADMM can be transformed into the network weights, and thus we can adaptively optimize these
parameters through network training. Then, we employ the DnCNN to develop a denoising module
(DnM) and integrate it into the unfolded DNN. Using this DnM, we can enhance the anti-noise
ability of the proposed network and obtain a robust DOA estimation in a low SNR. The simulation
and experimental results show that the proposed LDnADMM-Net can obtain high-accuracy and
super-resolution DOA estimations for a NULA with strong robustness in a low signal-to-noise ratio
(SNR).

Keywords: direction-of-arrival (DOA) estimation; non-uniform linear array (NULA); deep neural
network (DNN); signal denoising

1. Introduction

Direction-of-arrive (DOA) estimation is a fundamental problem in array signal pro-
cessing and is widely applied in radar, sonar, wireless communications, etc. [1–6]. DOA
estimation can be obtained in a specified array configuration, e.g., linear, rectangular, and
circular ones. There are two typical linear array configurations as follows: a uniform
linear array (ULA) and a non-uniform linear array (NULA) [7]. Many DOA estimation
methods have been investigated over the years focusing on ULA configurations. Compared
with ULA configurations, NULA ones can be employed to extend the array aperture and
consequently improve the DOA resolution [8,9]. Hence, the DOA estimation in NULA
configurations has become a research hotspot.

The DOA estimation problem can be formulated as an optimization of the cost function
over the feasible DOA region. In general, the process requires evaluating the cost function
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for the whole DOA region and searching for that function’s optimum [10–13]. From this
point, subspace methods such as multiple signal classification (MUSIC) can be used for
DOA estimation in NULA configurations, which is achieved by approximating the NULA
manifold through a Fourier series. These methods rely on the estimation of the received
signal covariance matrix and attempt to separate the signal and noise subspaces. However,
these methods usually require large snapshots, particularly in a low SNR. Moreover, the
search process in this method can increase computational complexity, especially when high
spatial resolution is desired.

Another method for DOA estimation in NULA configurations is the use of the com-
pressed sensing (CS) technique [14–16]. CS-based methods exploit the sparse charac-
teristics of the target signal in the spatial domain. They treat the DOA estimation as a
sparse signal recovery problem and resolve this problem by introducing certain sparse
regularizations. Various CS-based methods have been proposed for DOA estimations in
NULA configurations, e.g., those of the orthogonal matching pursuit (OMP) [17], iterative
shrinkage-thresholding algorithm (ISTA) [18], and alternating direction method of multipli-
ers (ADMM) [19]. However, these methods face two challenges in practical applications.
First, the tuning of one or more parameters in these methods is required to guarantee a
high performance, which is time-consuming and less robust [20]. Second, the performance
of these methods deteriorates significantly under strong noise [21].

Recently, DOA estimations using the deep neural network (DNN) has attracted interest
due to fast developments in deep learning (DL) [22–35]. DL-based methods enjoy several
advantages over the abovementioned methods. For instance, DL-based methods do not
require any specific tuning of the parameters in contrast with CS-based methods. Moreover,
they demonstrate resilience to data imperfections, e.g., that of using fewer snapshots. The
core of DL-based methods can be summarized as transforming the DOA estimation into a
classification task. These methods can obtain high-accuracy DOA estimations by learning
features from large-scale datasets. However, the existing DL-based methods usually work
in an end-to-end “black-box” manner. This means that their performance mainly depends
on the datasets and is potentially unstable. Additionally, the robustness of the network
under strong noise is required to be improved.

In this paper, a novel DNN architecture is proposed for DOA estimations in NULA
configurations under strong noise. The proposed network mimics the behavior of the
denoising-based alternating direction method of multipliers (Dn-ADMM), which is hence
dubbed as the learned Dn-ADMM network (LDnADMM-Net). We construct an unfolded
DNN structure that maps the iterative processing of the ADMM into a network. In this
way, the parameters in the ADMM can be designed as the learnable network weights.
Thus, the parameters in the proposed network are fully interpretable and can be adaptively
optimized through network training. Furthermore, we develop a denoising module (DnM)
with a DnCNN and integrate it into the unfolded DNN. This module can be employed
to eliminate the noise, thus providing the anti-noise capability for the proposed network.
Extensive simulations and experiments are carried out to demonstrate the performance of
the proposed method. The main contributions of this paper are listed as follows:

1. We design an unfolded DNN architecture for DOA estimations with NULA config-
urations in a low SNR. This network is interpretable as its architecture mimics the
iterative processing of the ADMM. Moreover, this network can adaptively obtain the
optimal parameters in a conventional ADMM through training, thus obtaining stable
estimation results.

2. We integrate a denoising module into the unfolded DNN. This module can remove
the strong noise in observed data, thus enhancing the robustness of the proposed
network in a low SNR.

The rest of this paper is organized as follows: In Section 2, we introduce the related
works. In Section 3, we describe the signal model in DOA estimations with NULA con-
figurations and the fundamental principles of the ADMM algorithm. In Section 4, we
construct the LDnADMM-Net and describe each functional module in detail. In Section 5,
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we utilize the simulation results to demonstrate the performance of the proposed network.
In Section 6, we carry out experiments to verify the feasibility of the proposed method.
Finally, the conclusions are given in Section 7.

2. Related Works

We introduce the existing studies in relation to our work in the following two aspects,
i.e., model-driven DOA estimation methods and data-driven DOA estimation methods.

2.1. Model-Driven DOA Estimation Methods

In model-driven methods, the DOA estimation problem can be formulated as an
optimization model over a feasible DOA region. Then, these methods employ various
optimizers to solve this optimization problem, thereby obtaining the DOA values.

Early works for NULA DOA estimations were focused on subspace methods. This
method traces back to “Fourier domain root-MUSIC” [10], which was achieved by ap-
proximating the NULA array manifold through a Fourier series. There also exist array
interpolation techniques that transform the ULA manifold into a NULA manifold [13].
However, this technique is limited by a tradeoff between accuracy and computational
complexity.

Recently, DOA estimations using the CS technique have become one hotspot. The CS-
based methods treat the DOA estimation as a sparse signal recovery problem and resolve
this problem by introducing certain sparse regularizations. In [16], a sparse Bayesian
learning (SBL) method was explored to obtain the DOA estimation for arbitrary linear
arrays. In [17], a super-resolution DOA estimation method that combines the orthogonal
matching pursuit (OMP) algorithm with root-MUSIC was presented for the NULA. In [18],
the iterative shrinkage-thresholding algorithm (ISTA) was utilized to obtain high-accuracy
and high-resolution DOA estimations for a NULA with 32 elements. In [19], the alternating
direction method of multipliers (ADMM) was employed to reach a compromise between
complexity, resolution, and accuracy in a DOA estimation.

In summary, the abovementioned methods are based on subspace and sparsity, i.e.,
they can be categorized as model-driven methods. However, there exist various imperfec-
tions of the observed data in practical applications, thus leading to the non-linearity of the
signal model. We cannot obtain data that are the same as those in the ideal situation of the
assumption. This means that most of these methods under simple assumptions cannot be
applied to real applications directly.

2.2. Data-Driven DOA Estimation Methods

Deep learning-based DOA estimations are a kind of data-driven method that does not
rely on the ideal assumption of arrays. The DL-based methods can build the propagation
model according to the data, which can obtain a high-accuracy DOA estimation by learning
features from large-scale datasets [22–27].

A deep neural network (DNN) with fully connected (FC) layers was employed in [28]
for DOA classification using the signal covariance matrix. Nevertheless, the demonstrated
results indicate poor DOA estimation results. A multilayer autoencoder for DOA esti-
mations was proposed in [29] to reduce the influence of noise and array imperfections.
However, this network is required to train at each individual SNR. In [30], a deep convolu-
tional neural network (CNN) was presented for DOA estimations in a low SNR. However,
this method did not demonstrate significant performance gains in terms of DOA estima-
tions. In [31], the residual neural network (ResNet) was proposed for DOA estimations.
Since the ResNet can converge with a very deep structure, it is helpful for achieving higher
an estimation accuracy. However, the ResNet estimates DOA values by searching peaks in
the recovered spatial spectrum, which limits performance improvement. An artificial neural
network was developed in [32] to enlarge the antenna aperture and obtain high-resolution
DOA estimations using a self-supervised learning scheme. Similarly, the supervised learn-
ing technique in [33] was explored to map a small-size to a larger-size virtual array so as to
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enlarge the array aperture. However, in both [32,33], the DOA estimator still utilizes the
conventional model-driven methods. Thus, the performance gain is limited. In [34], a DNN
for beamforming with a single-snapshot sample covariance matrix was proposed in the
context of acoustics, which was later extended in [35] to include slightly more snapshots
and sources. Such an approach cannot be adopted in a low SNR, where the number of
snapshots needs to be considerably higher.

3. Background
3.1. Signal Model

Let us consider a non-uniform linear array with N antennas, as shown in Figure 1.
Without loss of generality, the antenna spacings are denoted as d = [d1, d2, . . ., dN−1] where
these antenna spacings are unequal.
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Assume that there are M far-field targets impinging on this NULA, the array output
vector y is given by

y = Ax + n (1)

where
y =

[
y1 · · · yn · · · yN

]T ∈ CN×1 (2)

A =


1 · · · 1

exp(−j2πd1sin θ1/λ) · · · exp(−j2πd1sin θL/λ)
...

. . .
...

exp
(
−j2π

(
N−1
∑

i=1
di

)
sin θ1/λ

)
· · · exp

(
−j2π

(
N−1
∑

i=1
di

)
sin θL/λ

)
 ∈ CN×L (3)

x = [0 · · · x1 · · · 0 · · · xm · · · 0 · · · xM · · · 0]T ∈ CL×1 (4)

n =
[
n1 · · · nn · · · nN

]T ∈ CN×1 (5)

where A is the manifold matrix with discretized DOA sampling [θ1, θ2, ···, θL], L is the
number of discrete DOA values in the spatial domain, x represents the target complex
amplitude, and n denotes the additive white Gaussian noise. It should be noted that x in
Equation (4) is a sparse vector with respect to the discretized spatial domain. Namely, the
elements in x corresponding to the DOA values where M targets are located are set to the
target complex amplitude, and the other L − M sampling points are set to 0.
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3.2. ADMM Algorithm for DOA Estimation

According to the ADMM algorithm and the sparsity property, we can formulate the
following optimization problem to estimate x in Equation (4):

min
x

1
2∥y − Ax∥2

2 + λz∥z∥1

s.t. x − z = 0
(6)

where λz controls the sparsity and z denotes an independent auxiliary variable. Given the
received echoes y, the purpose of Equation (6) is to seek an optimal sparse vector x that fits
Equation (1).

To solve the optimization problem as in Equation (6), we can define the corresponding
augmented Lagrangian function as

L(x, z, v, ρ) = 1
2∥y − Ax∥2

2 + λz∥z∥1 + vT(x − z) + ρ
2∥x − z∥2

2
u=vT/ρ⇔ L(x, z, u) = 1

2∥y − Ax∥2
2 + λz∥z∥1 +

ρ
2∥x − z + u∥2

2

(7)

where ρ > 0 is the penalty parameter, vT is the Lagrangian multiplier representing the dual
variable, and u = vT / ρ denotes the scaled dual variable.

Using the ADMM algorithm, x, z, and u can be updated in an alternating or sequential
manner. Referring to [36,37], these variables of the k-th iteration can be optimized by
resolving the following subproblems:

xk = argmin
x

{
1
2

∥∥yk−1 − Axk−1
∥∥2

2 + λz∥zk−1∥1 +
ρ

2
∥xk−1 − zk−1 + uk−1∥2

2

}
(8)

zk = argmin
z

{
1
2

∥∥yk−1 − Axk
∥∥2

2 + λz∥zk−1∥1 +
ρ

2
∥xk − zk−1 + uk−1∥2

2

}
(9)

uk = argmin
u

{
1
2

∥∥yk−1 − Axk
∥∥2

2 + λz∥zk∥1 +
ρ

2
∥xk − zk + uk−1∥2

2

}
(10)

By updating these three variables in an alternating or sequential fashion, we can obtain
the optimal sparse vector x that fits Equation (1), thus achieving the final DOA estimation
results.

4. Proposed Method

The major issue of the above ADMM algorithm is how to choose the hyperparameters,
which pose a high impact on the convergence speed and estimation accuracy. Additionally,
the high noise in Equation (1) will lead to a significant decline in estimation accuracy. To
address these issues, we aim to map the ADMM solver into a deep unfolded neural network
and integrate a denoising module into this network. The network architecture is described
as follows.

4.1. Network Structure

Figure 2 shows the LDnADMM-Net structure. The basic idea of the proposed network
is to unfold the previous iterative ADMM solver as an unfolded deep neural network that
consists of a fixed number of layers. On this basis, the input of each iteration is subjected to
a denoising module (DnM). The LDnADMM-Net is composed of K stages in which the k-th
stage corresponds to the k-th iteration of the ADMM algorithm with a denoising input. The
network input is the observed data y. The network output is the optimal sparse vector x,
and we can obtain the DOA values from that.
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Figure 2. The structure of the LDnADMM-Net.

As shown in Figure 2, each stage of the LDnADMM-Net consists of a denoising module
and three learnable layers. We define these learnable layers as the sparse representation
layer, non-linear transform layer, and multiplier update layer. Moreover, these learnable
layers correspond to the analytical solutions of the subproblems in the ADMM algorithm,
respectively. Next, we introduce the denoising module and three learnable layers in detail.

4.2. Module Design
4.2.1. Denoising Module

The denoising convolutional neural network (DnCNN) can be used to remove the
additive Gaussian white noise, which has been widely applied in image denoising [38,39].
However, in the field of image denoising, the data in the conventional DnCNN are usually
real-valued. Thus, this network cannot be directly applied to array signal processing in
which the observed data are complex-valued. For this reason, we modify the DnCNN to de-
sign the de-noising module, as illustrated in Figure 3. This modified DnCNN is partitioned
into real and imaginary channels to perform complex multiplication for complex-valued
operations.
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The output of the modified DnCNN is the noise. Then, we can remove it from the
original observed data, thus obtaining the clean signal as the output of the DnM. The
structure of the DnM can be summarized as follows:
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1. Decompose the real and imaginary parts of the input data to obtain a dual-channel
input. Herein, assume that the number of antennas is N and the dimension of the
decomposed input is 1 × N × 2.

2. The first layer of the modified DnCNN consists of convolution (Conv) and the rectified
linear unit (ReLu). This layer performs convolution operations with p convolution
kernels (1 × q × 2), thus obtaining the feature maps (1 × N × p). Then, these feature
maps are activated with the ReLu function.

3. The second to (D − 1)-th layers of the modified DnCNN are composed of convolution
(Conv), batch normalization (BN), and the rectified linear unit (ReLu). These layers
perform convolution operations with p convolution kernels (1 × q × p) to output the
feature maps (1 × N × p). These feature maps are further standardized in batches and
non-linearly activated through the ReLu function to obtain the final feature maps.

4. The D-th layer of the modified DnCNN is only composed of convolution (Conv). This
layer performs convolution operations with two convolution kernels (1 × q × p), thus
obtaining the real and imaginary parts of the estimated noise (1 × N × 2).

5. Finally, the real and imaginary parts of the estimated noise are reconstructed into
complex-valued noise. We can remove it from the original input data to obtain the
clean signal as the DnM output.

In the modified DnCNN, there are two crucial parameters, i.e., the number of con-
volutional kernels p and the network depth D. The convolution layer is mainly used for
automatic feature extraction, and increasing the number of convolution kernels can ex-
tract more features. On the other hand, it is customary to use a stack of multiple small
convolution kernels instead of a larger one, which can provide powerful non-linear fit-
ting capabilities for the network. However, excessive convolutional kernels may lead to
overfitting in network training. Additionally, the network depth is related to the size
of the convolutional kernels. Referring to [40], the ideal depth is advised to be set to
(N − 1)/(q − 1) or more where q represents the length of the convolutional kernel.

4.2.2. Sparse Representation Layer

The sparse representation layer corresponds to the iteration of sparse vector x as in
Equation (8). According to the derivation rule, Equation (8) can be simplified as follows:[

1
2
∇x
(
yk−1 − Axk−1

)H(yk−1 − Axk−1
)
+

ρ

2
∇x(xk−1 − zk−1 + uk−1)

H(xk−1 − zk−1 + uk−1)

]
= 0 (11)

The solutions to the above subproblem can be derived as follows:

xk =
(

AHA + ρI
)−1(

AHyk−1 + ρ(zk−1 − uk−1)
)

(12)

where I denotes the identity matrix.
This solution can be further rewritten as follows:

xk = (W1)kyk−1 + (W2)k(zk−1 − uk−1) (13)

where W1 and W2 represent the learnable weights in the sparse representation layer, and
they can be defined as follows:

(W1)k =
(

AHA + ρI
)−1

AH (14)

(W2)k = ρ
(

AHA + ρI
)−1

(15)

Additionally, since the input data are complex-valued, the sparse representation layer
involves complex-valued multiplication operations. Herein, we provide the complex-
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valued multiplication operational form for Equation (13), which can be expressed as
follows:

(xk)R = ((W1)k)R
(
yk−1

)
R − ((W1)k)I

(
yk−1

)
I

+((W2)k)R((zk−1)R − (uk−1)R)− ((W2)k)I((zk−1)I − (uk−1)I)

(xk)I = ((W1)k)R
(
yk−1

)
I + ((W1)k)I

(
yk−1

)
R

+((W2)k)R((zk−1)I − (uk−1)I) + ((W2)k)I((zk−1)R − (uk−1)R)

(16)

where (·)R and (·)I represent the real and imaginary parts, respectively.
Based on the above derivation, we can construct the structure of the sparse representa-

tion layer in the LDnADMM-Net, as shown in Figure 4. Moreover, two parallel propagation
lines are used in this layer to calculate the real and imaginary parts, respectively. Infor-
mation is exchanged between the two propagation lines to ensure that the network can
provide complex-valued multiplication operations (see the right picture of Figure 4). It
should be noted that this manner is also applicable to the complex-valued multiplication
operations involved in the other layers.
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4.2.3. Non-linear Transform Layer

Similarly, the non-linear transform layer corresponds to the iteration of the indepen-
dent auxiliary variable z as in Equation (9). Using the derivation rule, Equation (9) can be
simplified as follows:

λz∇z∥zk−1∥1 +
ρ

2
∇z(xk − zk−1 + uk−1)

H(xk − zk−1 + uk−1) = 0 (17)

This question can be simplified as follows:

λz

ρ
∇z∥zk−1∥1 + zk−1 = xk + uk−1 (18)

The solution of Equation (23) can be derived as follows:

zk = Ω(λz)k/ρk
(xk + uk−1) (19)

where Ωλz/ρ(·) is a soft thresholding function corresponding to the sparse regularization
and can be expressed as follows:

Ωλz/ρ(a) =


a − λz/ρ, a > λz/ρ

0, |a| ≤ λz/ρ

a + λz/ρ, a < −λz/ρ

(20)
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This layer also involves complex-valued operations, which can be expressed as follows:

zk = Ω(λz)k/ρk
((xk + uk−1)R) + j × Ω(λz)k/ρk

((xk + uk−1)I) (21)

To sum up, the structure of the non-linear transform layer is developed in Figure 5.
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4.2.4. Multiplier Update Layer

By expanding Equation (10), we can obtain the simplified subproblem of the scaled
dual variable u as follows:

ρ

2
∇u(xk − zk + uk−1)

H(xk − zk + uk−1) = 0 (22)

The solution of the above subproblem can be derived as follows:

uk = uk−1 + ηk(xk − zk) (23)

where ηk represents an update rate for the Lagrangian multiplier, which can be defined as
the learnable weight in the multiplier update layer.

Obviously, the multiplier update layer only involves complex-valued sum operations,
so it can be directly implemented in the proposed network. The structure of the multiplier
update layer is displayed in Figure 6.
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4.3. Loss Function

For the whole LDnADMM-Net, the mean square error (MSE) is adopted to ensure the
correctness of the output. The label of the i-th input data is a discrete vector corresponding
to different DOA values. In this label, the antennas where the targets are located can be
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defined as the amplitude and phase of the target, and the rest are set to 0. Since the network
output and the label are complex-valued vectors, this loss function is formulated as follows:

LossNet =
1

Num

(
Num

∑
i=1

∥∥∥(F(y(i)
))

R
− L(i)

R

∥∥∥2

2
+

Num

∑
i=1

∥∥∥(F(y(i)
))

I
− L(i)

I

∥∥∥2

2

)
(24)

where Num is the total number of the training data and F
(

y(i)
)

and L denote the output
and the label of the i-th input data.

Moreover, for the denoising module, we choose the MSE to measure the similarity
between the estimated noise and the real noise, which can be represented as follows:

LossDnM =
1

Num × N

(
Num

∑
i=1

∥∥∥(R(y(i)
))

R
−
(

y(i) − x(i)
)

R

∥∥∥2

2
+

Num

∑
i=1

∥∥∥(R(y(i)
))

I
−
(

y(i) − x(i)
)

I

∥∥∥2

2

)
(25)

where R
(

y(i)
)

represents the estimated noise, i.e., the output of the proposed DnCNN,
and N is the number of the array antenna.

In conclusion, the total loss function of the proposed method can be summarized as
follows:

Loss = LossNet + δ · LossDnM (26)

where δ is used to adjust the weight of these two loss functions.

4.4. Complexity Analysis

Although the training process is off-line and it is unnecessary to consider the time cost,
it is still required to assess the computational efficiency for the trained LDnADMM-Net.
Therefore, we analyze the computational complexity of the proposed network, including
the DnM and the three learnable layers.

The operations involved in the implementation of the DnM are mainly convolution
operations. The DnCNN used in the DnM consists of D layers with convolution operations.
We assume that the size of the convolution kernel is q, the length of feature map is N, and
the number of input channels and output channels is equal to the number of convolution
kernels p. Referring to [41], the computational complexity per layer in the DnCNN is
O(qNp2). Therefore, the computational complexity of the D layers in the DnCNN can be
calculated as O(DqNp2).

The operations involved in the implementation of the three learnable layers are mainly
the inverse operations of the matrix, i.e., the updating for x. In Equation (14) and Equation
(15), the length of the vector A is L where L denotes the number of discrete DOA values
in the spatial domain. Thus, we can obtain the computational complexity of the three
learnable layers in each stage, which is approximated as O(L3).

To sum up, the computational complexity per stage in the LDnADMM-Net is O(L3 +
DqNp2). In total, the computational complexity of the proposed network can be approxi-
mated as O(K(L3 + DqNp2)) where K is the number of stages.

Table 1 compares the computational complexity of the proposed network with three
related methods, including those of the OMP, ADMM, and ADMM-Net. We can see that
the LDnADMM-Net has the heaviest computational complexity, while the other methods
have approximately equal complexity. The increase in complexity of the LDnADMM-Net
is mainly caused by the integration of the DnCNN.
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Table 1. Computational complexity of different methods.

Method Computational Complexity

OMP O(ML3) 1

ADMM O(KL3)
ADMM-Net O(KL3)

LDnADMM-Net O(K(L3 + DqNp2))
1 M denotes the number of targets.

5. Simulations

This section describes the numerical simulations conducted to evaluate the perfor-
mance of the LDnADMM-Net and demonstrate its effectiveness and advantages. Two
typical scenarios are considered in the simulations. One scenario contains a one point
target, while the other scenario consists of two point targets. In the first scenario, we
focus on the improvement of the denoising module and the estimation accuracy of the
proposed network. In the scenario of the two point targets, we focus on the super-resolution
performance and the estimation accuracy of the proposed network.

5.1. Parameters Setting and Evaluation Metrics

In this subsection, we first introduce the non-uniform linear array configuration used
in this work. Then, the parameter setting and the training dataset are given. Finally, we
define the metrics used to evaluate the proposed network.

5.1.1. NULA Configuration and Antenna Pattern

The NULA is composed of 12 antennas, which can be set to [0, 3, 5, 6, 9, 10, 11, 13, 14,
15, 17, 19] d (d = λ/2) [42]. Figure 7 displays the antenna pattern of this NULA with the
beam pointing at 0◦. It can be observed that the beamwidth and the peak sidelobe ratio of
this array are 5.3◦ and −9.6 dB, respectively.

Figure 7. The NULA antenna pattern with the beam pointing at 0◦.

5.1.2. Network Parameters and Training Datasets

The parameters of the LDnADMM-Net are given in Table 2. Additionally, we use the
Adam optimizer for the DnM training, which can be found in the references of [43,44].
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Table 2. The parameters of the LDnADMM-Net.

Parameters Value

ADMM

Initial sparsity constraint λz 0.05
Initial penalty parameter ρ 5

Initial update rate η 1
Stage K 10

DnM

Number of convolutional kernels p 64
Length of convolutional kernel q 3

Network depth D 15
Batch size 256

Learning rate 10−4

As mentioned in Section 4.2.1, the number of convolutional kernels p and the network
depth D will pose a high impact on the DnM. Therefore, we analyze the convergence of
DnM training under different parameter settings, as given in Tables 3 and 4. It can be found
that the DnM can obtain optimal results with p = 64 and D = 15.

Table 3. The convergence of DnM training versus the number of convolutional kernels p (D = 15).

Values of p 16 32 64 128

Loss after Convergence 0.0884 0.0838 0.0810 0.0808
Training Time (min) 18.54 19.31 20.16 21.32

Table 4. The convergence of DnM training versus the network depth D (p = 64).

Values of D 11 13 15 17 19

Loss after convergence 0.0818 0.0816 0.0810 0.0810 0.0812
Training time (min) 15.13 18.21 20.16 21.77 22.97

The DL-based DOA estimation method under a large field of view (FOV) requires “Big
Data” for training. This is caused through the increase in discretized DOA sampling points.
To reduce the dependence of the LDnADMM-Net on data, we preprocess the observed
data using spatial filters [45] to simplify the FOV by approximately ±θ3dB (set to ±6◦ in
this work) where θ3dB represents the beamwidth.

The training dataset can be divided into two groups, which are generated by one random
target and two random targets. Based on the above preprocessing, the first dataset is composed
of 50,000 samples in which the DOA value of one target is randomly selected from −6◦ to 6◦

with an interval of 0.1◦. Its SNR is within [−5 dB, 5 dB] with an interval of 1 dB.
Correspondingly, the second dataset also consists of 50,000 samples. Each sample

is generated by two random targets. The distribution of their DOA values and SNRs is
consistent with the first dataset, but ensuring that the DOA values of these two targets are
not equal during sample generation is required.

5.1.3. Evaluation Metrics

We employ five evaluation metrics to comprehensively evaluate the effectiveness of
the proposed method.

First, the mean square error (MSE) is used to evaluate the performance of the LDnADMM-
Net in terms of denoising. The MSE represents the deviation between the estimated noise
(using DnM) and the real noise and can be defined as follows:

MSE =

Nlen
∑

i=1
(Ri − ni)

2

Nlen
(27)
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where Nlen represents the noise length, Ri is the estimated noise, and ni represents the real
noise.

Second, in the scenario of one target, we further adopt the output SNR (SNRout) to
visualize the denoising effect, which is defined as follows:

SNRout = 10log10
S2

0
N2

0
(28)

where S2
0 is the average energy inside the resolution unit, N2

0 is the average energy outside
the resolution unit, and the length of the resolution unit is the beamwidth.

Third, the strong noise may lead to incorrect DOA estimation results. To this end, we
defined the success rate (SR) of the DOA estimation in the scenario of one target, which is
expressed as follows:

SR = p
(∣∣∣∣⌢θ − θ

∣∣∣∣ < θ3dB
2

)
(29)

where θ3dB is the beamwidth and θ and
⌢
θ denote the real and estimated DOA value,

respectively.
Fourth, the probability of resolution (PoR) is used to assess the super-resolution

performance in the scenario of two targets. The PoR [45,46] is a typical performance
indicator used for evaluating high-resolution algorithms and can be defined as follows:

PoR = p
(

max
{∣∣∣∣⌢θ 1 − θ1

∣∣∣∣, ∣∣∣∣⌢θ 2 − θ2

∣∣∣∣} <
|θ1 − θ2|

2

)
(30)

where θ1 and θ2 denote the real values of two targets and
⌢
θ 1 and

⌢
θ 2 represent the estimated

values.
Fifth, we adopt the root mean square error (RMSE) to evaluate the DOA accuracy,

which is defined as follows:

RMSE =

√√√√ 1
S

S

∑
s=1

(
⌢
θ i − θi

)2
(31)

where S denotes the number of samples. It is noted that we only counted the RMSE under
a successful DOA estimation.

5.2. Simulation Results of One Target

In this subsection, we construct a testing dataset with one target. The DOA value of
the target is randomly sampled within [−6◦, 6◦]. Its SNR is selected from −10 dB to 5 dB
with an interval of 1 dB. Specifically, 1000 samples with random DOA values are generated
for each SNR, while the DOA values are fixed with different SNRs. We added an SNR
region of [−10 dB, −5 dB] compared with the training dataset, which can facilitate the
generalization analysis in a low SNR.

5.2.1. Performance for Signal Denoising

We assess the denoising performance through the MSE and output SNR in the scenario
of one target. The simulation results with 1000 times Monte Carlo are displayed in Figure 8.
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Figure 8. The denoising performance versus the target SNR in the scenario of one target. (a) The
mean square error; (b) the output SNR.

Figure 8a shows that the MSE using proposed network is stable under different SNRs.
This means that the LDnADMM-Net can remove the high noise in the observed data
effectively. Further, in Figure 8b, the output SNR after denoising enhances significantly in
low SNR, which is close to the theoretical value of clean signal. Due to the high sidelobes
caused by the NULA configuration, the theoretical output SNR is equivalent to the signal-
to-sidelobe ratio. Therefore, the output SNR through DnM has converged to the theoretical
value in high SNR, but its improvement is not significant.

5.2.2. Performance for DOA Estimations

Using the above testing dataset, the DOA estimation results of different methods are
presented in Figure 9, including the SR and RMSE.

Figure 9. The DOA estimation results versus the target SNR in the scenario of one target. (a) The
success rate; (b) the root mean square error.

As shown in Figure 9a, the success rate of DOA estimations through the LDnADMM-
Net is noticeably superior to that of other methods, especially in a low SNR. Compared
with the ADMM and ADMM-Net, the SR through the LDnADMM-Net at a low SNR
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can be increased by approximately 40% and 12%, respectively. This can be attributed to
the use of a DnM that removes the strong noise from the observed data. By adaptively
learning the parameters during the iterative process, the ADMM-Net can improve the
success rate compared with the ADMM. Moreover, the LDnADMM-Net can obtain a
further improvement by combining the DnM with the ADMM-Net.

Figure 9b demonstrates that the LDnADMM-Net also outperforms the other methods
in terms of the DOA estimation accuracy. As the target SNR increases, the DOA estimation
accuracy of all the methods can be enhanced. Compared with the OMP, ADMM and
ADMM-Net, the RMSE of the LDnADMM-Net can be improved by approximately 0.4◦,
0.4◦, and 0.2◦, respectively.

5.3. Simulation Results of Two Targets

According to the DOA interval and the SNR of two targets, two testing datasets are
constructed to evaluate the performance of the LDnADMM-Net in the scenario of two
targets.

Two targets with the same SNR = 0 dB are considered in the first testing dataset. The
DOA value of the first target is selected randomly from −6◦ to 0◦, and the other one adds a
fixed DOA interval. The interval varies from 1◦ to 6◦, and 1000 samples are generated for
each interval.

In the second testing dataset, the DOA value of the first target is selected randomly
from −6◦ to 0◦, and the DOA interval between the two targets is fixed to 4◦. These two
targets are set to the same SNR, which is traversed from −10 dB to 5 dB with an interval of
1 dB. Similarly, 1000 samples are generated for each SNR.

5.3.1. Performance for Signal Denoising

Using these two testing datasets, we first evaluate the denoising performance of
the proposed network. Specifically, the simulation results with respect to the MSE are
illustrated in Figure 10.

Figure 10. The denoising performance in the scenario of two targets. (a) The mean square error
versus the DOA interval; (b) the mean square error versus the target SNR.

It is apparent that the observed data processed by the DnM in the proposed network
are close to those processed by the clean signal. In the cases of different DOA intervals
or target SNRs, the MSE after denoising can converge stably to approximately 0.15. This
proves that the LDnADMM-Net can effectively remove the noise and has strong robustness.
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5.3.2. Performance for DOA Estimations

Furthermore, using the above testing datasets, we calculate the PoR and RMSE to
compare the DOA estimation performance of different methods.

First, as illustrated in Figure 11a, we analyze the PoR results in the case of two targets
with different DOA intervals. It can be found that the PoR results of all the methods
are improved as the DOA interval increases. The OMP and ADMM methods decline
significantly with a small DOA interval, while their performance can be improved when
the DOA higher is larger than 3.5◦. The ADMM-Net can be used to address this issue;
however, it is still unsatisfactory for a high DOA interval. In contrast, the LDnADMM-Net
reaches a 2◦ resolution with >95% probability. This means that the proposed network can
achieve high super-resolution DOA estimations.

Figure 11. The DOA estimation results versus the DOA interval in the scenario of two targets. (a) The
probability of resolution; (b) the root mean square error.

Then, Figure 11b demonstrates the RMSE results versus the DOA interval of different
methods. The RMSE results are fluctuating, yet they demonstrate a stable trend. They
specifically show fluctuations that increase and then decrease as the DOA interval increases.
The reason for the fluctuations is that we do not use all the samples to calculate the RMSE.
As mentioned in 5.1.3, we only counted the RMSE under a successful DOA estimation, i.e.,
the sample is required to satisfy the indicator’s PoR. According to the definition of the PoR,
a successful resolution of two targets with a small DOA interval means a high estimation
accuracy. On the other hand, these methods can distinguish the two targets well when the
DOA interval exceeds 4◦. In this case, the estimation accuracy of these methods can be
improved as the DOA interval increases. Moreover, the RMSE results of the OMP, ADMM
and ADMM-Net are approximately 1.0◦, 0.8◦, and 0.6◦. Correspondingly, the RMSE of the
LDnADMM-Net can be improved to approximately 0.4◦.

Thereafter, using the second testing dataset, we compare the PoR of various methods
versus that of the target SNR. The simulation results are displayed in Figure 12a. Obviously,
the PoR results of all the methods are enhanced significantly as the SNR increases. The
LDnADMM-Net is superior to the other methods, especially in a low SNR. Additionally, the
proposed network can achieve the resolution with 100% probability at the SNR of > −2 dB.
This further proves that the LDnADMM-Net can obtain a favorable anti-noise performance.
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Figure 12. The DOA estimation results versus those of the target SNR in the scenario of two targets.
(a) The probability of resolution; (b) the root mean square error.

Finally, the RMSE results versus those of the target SNR are shown in Figure 12b.
Compared with the OMP, ADMM, and ADMM-Net, the proposed network can improve
the estimation accuracy by approximately 0.5◦, 0.3◦, and 0.2◦ with different SNRs.

6. Experimental Results

To further validate the effectiveness of our methods, real data experiments in an
anechoic chamber are conducted in this section. We employ a radar prototype with a NULA
configuration in the experiments. This NULA consists of three transmitting antennas and
four receiving antennas, and the formed virtual arrays are consistent with the simulations.

We carry out the amplitude-phase calibration for this NULA before the experiments.
The antenna pattern after calibration is displayed in Figure 13. The antenna pattern is
basically consistent with the simulation results, which proves the effectiveness and accuracy
of the amplitude-phase calibration. Nevertheless, due to imperfect factors such as an array
antenna position error, the peak sidelobe in the experiment increases to −6.8 dB.

Figure 13. The comparison of antenna patterns between the experiment and the simulation.

6.1. Experiments of One Target

As shown in Figure 14, the radar prototype is mounted on a rotating platform in the
anechoic chamber, and we place a 0 dBsm corner reflector as the target. We utilize the
echoes of this corner reflector after range-Doppler matched filtering as the input data. It
should be noted that the SNR of the input data can be calculated as an approximate of 2 dB.
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Since the spatial accumulation gain of the 12 antennas is about 11 dB, the output SNR can
be approximated as 13 dB, which is close to the minimum detectable threshold used in
practical applications.
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Figure 14. The test scenario in the anechoic chamber.

During experiments, the initial DOA value of the target is set to 0◦. Using the rotating
platform, the radar rotates to −5◦ and then gradually rotates to 0◦. For each interval, we
collected one set of data for testing. The experimental results are presented in Figure 15,
and the SR and RMSE results of the different methods are given in Table 5.

Figure 15. The experimental results in the scenario of one target. (a) The OMP method; (b) the
ADMM method; (c) the ADMM-Net method; (d) the LDnADMM-Net method.
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Table 5. The SR and the RMSE of the different methods in the scenario of one target.

Method SR RMSE

OMP 100% 0.4588◦

ADMM 96.08% 0.4627◦

ADMM-Net 100% 0.2961◦

LDnADMM-Net 100% 0.2471◦

It can be observed that the SR of all the methods is close to or reaches 100% in this test.
In terms of the DOA estimation accuracy, the proposed method can achieve the optimal
results. Referring to Table 5, the RMSE through the LDnADMM-Net can be improved by
approximately 0.21◦, 0.22◦, and 0.05◦ compared with the other methods.

6.2. Experiments of Two Targets Separated by 2◦

In this subsection, the initial DOAs of two targets (0 dBsm corner reflector) are set to
0◦ and −2◦, respectively. Using the rotating platform, the radar rotates to −5◦ and then
gradually rotates to 0◦ with an interval of 0.1◦.

For each DOA interval, we collected one set of data for testing. The experimental
results are demonstrated in Figure 16, and the PoR and RMSE results of the different
methods are given in Table 6.

Figure 16. The experimental results in the scenario of two targets separated by 2◦. (a) The OMP
method; (b) the ADMM method; (c) the ADMM-Net method; (d) the LDnADMM-Net method.
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Table 6. The PoR and the RMSE of different methods in the scenario of two targets separated by 2◦.

Method PoR RMSE

OMP 0% /
ADMM 1.96% 0.5585◦

ADMM-Net 58.82% 0.4584◦

LDnADMM-Net 98.04% 0.2830◦

In this scenario where the two targets are separated by 2◦, the proposed network
clearly outperforms the other methods. This means that the LDnADMM-Net can obtain a
stable super-resolution and high-accuracy estimation performance.

6.3. Experiments of Two Targets Separated by 4◦

In this subsection, the initial DOAs of two targets (0 dBsm corner reflector) are set
to 0◦ and −4◦, respectively. Similarly, the radar rotates to −5◦ and then gradually rotates
to 0◦. For each DOA interval, we collected one set of data for testing. The experimental
results are demonstrated in Figure 17, and the PoR and RMSE results of different methods
are given in Table 7.

Figure 17. The experimental results in the scenario of two targets separated by 4◦. (a) The OMP
method; (b) the ADMM method; (c) the ADMM-Net method; (d) the LDnADMM-Net method.
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Table 7. The PoR and the RMSE of different methods in the scenario of two targets separated by 4◦.

Method PoR RMSE

OMP 88.24% 0.9364◦

ADMM 56.86% 0.5827◦

ADMM-Net 90.20% 0.5037◦

LDnADMM-Net 100% 0.3240◦

The experimental results show that the LDnADMM-Net can reach the resolution with
100% probability for two targets separated by 4◦, which is significantly improved compared
with the other methods. Moreover, the DOA estimation accuracy is also superior to that of
the other methods. Referring to Table 7, it can improve by 0.61◦, 0.26◦, and 0.18◦, compared
with the OMP, ADMM, and ADMM-Net.

7. Conclusions

In this paper, we propose the LDnADMM-Net for DOA estimations in a non-uniform
linear array under strong noise. The proposed network is designed by mapping the iterative
processing of the ADMM into an unfolded deep neural network. In this way, the parameters
in the ADMM can be transformed into the learnable network weights, and we can optimize
them through network training. Moreover, to enhance the anti-noise performance of this
network, we integrate the denoising convolutional neural network into each iteration.

Extensive simulations and experiments are carried out to verify the effectiveness
of the proposed network. The simulations and experimental results demonstrate that
the LDnADMM-Net can effectively improve the DOA estimation accuracy in the NULA
configuration and provide a robust, super-resolution capability for multi-target scenarios.
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