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Abstract: Robust segmentation in adverse weather conditions is crucial for autonomous driving.
However, these scenes struggle with recognition and make annotations expensive, resulting in poor
performance. As a result, the Segment Anything Model (SAM) was recently proposed to finely
segment the spatial structure of scenes and to provide powerful prior spatial information, thus
showing great promise in resolving these problems. However, SAM cannot be applied directly for
different geographic scales and non-semantic outputs. To address these issues, we propose SAM-
EDA, which integrates SAM into an unsupervised domain adaptation mean-teacher segmentation
framework. In this method, we use a “teacher-assistant” model to provide semantic pseudo-labels,
which will fill in the holes in the fine spatial structure given by SAM and generate pseudo-labels close
to the ground truth, which then guide the student model for learning. Here, the “teacher-assistant”
model helps to distill knowledge. During testing, only the student model is used, thus greatly
improving efficiency. We tested SAM-EDA on mainstream segmentation benchmarks in adverse
weather conditions and obtained a more-robust segmentation model.

Keywords: segment anything model (SAM); unsupervised domain adaptation; semantic road
scene segmentation

1. Introduction

The semantic segmentation [1–7] of road scenes is important for autonomous driving [5],
particularly during scene data analyses and behavior decision-making [8]. This technology
also has good applications in motion control planning [9,10] and multi-sensor fusion pro-
cessing [11]. Furthermore, over the past decade, we have seen tremendous advancements
in semantic segmentation technology [7,12–15]. Currently, intelligent semantic segmenta-
tion algorithms can even outperform humans in recognizing clear scenes [15]. However,
these works mostly ignore the deterioration of image quality caused by adverse weather
conditions such as fog, rain, and snow [16]. This leads to an obvious performance decline.
Unfortunately, the reliable and safe operation of intelligent systems requires the underlying
recognition processes to be highly robust under these adverse conditions. Thus, this issue
is receiving increasing attention now.

Adverse weather conditions bring two main challenges to semantic segmentation.
Firstly, important objects become blurred, which leads to higher uncertainty in the out-
puts of these intelligent algorithms. Although some studies have tried to restore these
images [17] and have attempted to convert them into images with clear scenes, a domain
gap still exists. Secondly, annotating these scenarios is more difficult than annotating
clear ones, making it expensive to use supervised algorithms. Therefore, many studies
have adopted unsupervised domain adaptation (UDA) strategies [18–20] in an attempt to
transfer segmented knowledge from a clear annotated source domain to adverse weather
scenes (the target domain). However, in the transfer process, a domain gap in the UDA
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methods inevitably leads to information loss, resulting in imprecise segmentation in the
target domain scenario.

Recently, the Segment Anything Model (SAM) [1] has attracted much attention as it
uses massive amounts of data to pre-train and conduct self-supervised learning, acquiring
an extremely strong generalization ability. Such a generalization ability enables SAM to
be directly applied to various vision-based tasks without task-oriented training, including
camouflaged object detection [21] and image in-painting [22]. Concretely, SAM can finely
segment all objects in an image, thus providing powerful prior spatial structure information.
Even in adverse conditions, SAM remains robust [23]. Thanks to SAM’s generalization
ability, SAM-DA [24] can make predictions from nighttime images and has a large number
of samples for training, which greatly improves the performance of the model. Thus, we
can assume that applying SAM’s spatial structure information to UDA methods, i.e., adding
a powerful supervision signal to the UDA framework, will be beneficial.

However, currently, SAM cannot be integrated directly into the UDA framework
for three main reasons: (1) As mentioned above, SAM is not a task-oriented model,
and a well-designed access plugin is needed to adapt it to semantic segmentation tasks.
(2) Limited by its computing power, SAM is difficult to mount on the platform of a vehicle.
(3) The operational speed of SAM is very slow and is insufficient when applied to real
scenarios. For problem (1), the SSA [25] method can be used to fuse the spatial structure
information generated by SAM with the semantic information generated by a segmentation
model. However, the SSA method exacerbates the problem of slow operation, taking
40–60 s to complete segmentation for just one image, and its original semantic branch
has not been trained to adapt to adverse weather conditions, resulting in inaccurate infor-
mation and, therefore, producing unsatisfactory results. For problems (2) and (3), some
scholars put forward Fast-SAM [26] and Faster-SAM [26], which have greatly improved
the operational efficiency of SAM and can be deployed from mobile terminals, thus further
adding significance to the research in this paper, as is shown in Figure 1.

Figure 1. The main idea behind the proposed method. For images from the target domain, the
teacher-assistant model and SAM-teacher generate semantic segmentation masks (called “semantic
prompts”) and spatial structure masks, respectively, and, then, use the algorithm mentioned in
Section 2.2 for fusion. Due to SAM’s strong generalization ability, this step can produce pseudo-labels
that are more consistent with real scene distributions; so, the student model can completely explore
the target domain knowledge, similar to the method of supervised learning.

To address the above issues, we propose a SAM-enhanced UDA method called SAM-EDA
as shown in Figure 2, aiming to improve segmentation performance by utilizing the SAM
knowledge while maintaining its original operational speed. Specifically, we plugged SAM (or its
variants) into a mean-teacher’s self-training domain adaptation architecture [19,27], dynamically
carrying out SAM-enhanced learning on the target domain, as well as knowledge distillation.
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The whole architecture and pipeline consist of three sub-modules: (1) the student
model, (2) the teacher-assistant (TA) model, and (3) the SAM-teacher model. However,
only the student segmentation model will be published for evaluation. In a single training
iteration, the TA and SAM-teacher models generate semantic segmentation masks (called
“semantic prompts”) and spatial structure masks on the target domain, respectively, and,
then, use the pseudo-label fusion algorithm mentioned in Section 2.2 for fusion. Due to
SAM’s strong generalization ability, this step can produce pseudo-labels that are more
consistent with real scene distributions, so the student model can completely explore the
target domain knowledge, similar to the method of supervised learning. After completing
the training, neither the SAM-teacher nor TA models remain, thus maintaining the speed
of the existing semantic segmentation network.

The contributions of this article can be summarized as follows:

(1) We propose a simple, but effective semantic filling and prompt method for SAM
masks, which utilizes the output of existing semantic segmentation models to provide
SAM with class information and explore methods to address the scale of the SAM
segmentation results;

(2) To the best of our knowledge, we are the first to incorporate SAM into an unsupervised
domain adaptation framework, which includes the SAM-teacher, teacher-assistant,
and student models, achieving knowledge distillation in the case of completely incon-
sistent structures and output spaces between SAM and the main segmentation model,
effectively improving its adaptability in adverse scenarios;

(3) Our method is applicable to different UDA frameworks and SAM variants, providing
useful references for the application of large models in local professional fields.

Figure 2. The pipeline of the proposed method. Both the source and target domain images used
in this method were captured from a vehicle perspective camera. The target domain image YT was
first fed into the teacher-assistant gϕ to generate coarse pseudo-labels ỸT , which serve as semantic
prompts. Then, YT was put into SAM to obtain a spatial structural segmentation map M, leveraging
SAM’s generalization. We merged ỸT and M to incorporate the semantic information. During the
merging process, the top-k occupancy ratio method was mainly used to retain some key class pixels
from ỸT while considering the holes in the SAM’s missing segmentation. The weights were also
calculated based on the proportion of semantic pixels to reduce the impact of uncertainty in SAM.
The merged pseudo-label YT was close to the distribution of the real-world scene, thus enabling
supervision of the student model.
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2. Method

2.1. Unsupervised Domain Adaptation (UDA)

In order to perform an unsupervised domain adaptation for semantic segmentation,
we utilized a student network fθ and a teacher-assistant network gϕ based on the mean-
teacher [19,27] pipeline. Given a set of labeled source domain data {(Xi

S, Yi
S)}

NS
i=1 (where Yi

S
is the pixel-wise semantic label of Xi

S), the student network directly learns from the source
domain data using the cross-entropy loss function:

LS,cls/seg
i = H( fθ(Xi

S), Yi
S) (1)

H(ỹ, y) = −
H

∑
h=1

W

∑
w=1

C

∑
c=1

yhwc logỹhwc (2)

However, models trained only on the source domain often lack generalization; thus,
knowledge from the target domain needs to be extracted with NT unlabeled images
{(Xk

T)}
NT
k=1. In our UDA pipeline, the teacher-assistant network gϕ needs to make pre-

dictions using the target domain images and needs to generate pseudo-labels {(Ỹk
T)}

NT
k=1,

so the learning loss function based on the pseudo-labels can be denoted as LT
k , which is

similar to the supervised LS,cls/seg
i :

LT
k = H(gϕ(Xk

T), Ỹk
T) (3)

The pseudo-labels generated by gϕ are often inaccurate (especially during the early
stages of training), so it is necessary to set a dynamic weight λ to balance the impact of
noise in the pseudo-labels. Generally, λ is set as the confidence pixel ratio exceeding a
certain threshold τ:

λk
T =

∑H×W
p=1

[
maxc′ gϕ(Xk

T)
(p,c′) ≥ τ

]
H × W

(4)

Finally, the total loss function of our UDA architecture is the weighted sum of source
domain loss and target domain loss:

min
θ

1
NS

NS

∑
i=1

LS
i +

1
NT

NT

∑
k=1

λTLT
k (5)

2.2. Semantic Prompt Fusion and Learning

After standard UDA loss computation, we employed SAM [1] (or its variant) to make
additional predictions on the target domain image Xk

T . Taking the standard SAM as an
example, the input image was first patchified, automatically calculating the points of each
patch as prompts. Then, SAM used a ViT-based [28] encoder and decoder head to obtain a
feature embedding and a mask embedding. Finally, a mask decoder head identified several
masks M without semantic information. Let hφ denote SAM-series used in our pipeline.
This process can be described as follows:{

Mj
}Nm

k
j=1 = hφ(Xk

T) (6)

The distribution of M closely matches real-world scenarios, but it requires semantic
information from pseudo-label ỸT , referred to as a “semantic prompt”. For a single mask
Mj, the class ID can be obtained by calculating the most-frequent category ID within the
corresponding region in ỸT :

Mcls
j = arg max

c
(count(Mj ⊙ Ỹk

T)p=c) (7)



Remote Sens. 2024, 16, 758 5 of 12

However, existing dataset label systems are often restricted to the broadest instance-
level labels (such as cars, buses, buildings, etc.), while SAM’s segmentation has multi-scale
outputs (e.g., window, car, etc.). This leads to some errors when preserving the SAM
segmentation masks (see Section 4.2), meaning that certain parts of the SAM output are not
fully representative of their objects, which makes it difficult to avoid using general rules. To
mitigate this, we calculated the weights for each mask Mj based on the maximum occupied
pixel’s class ID proportion:

Wcls
j =

sum(count(Mj ⊙ Ỹk
T)p=c)∣∣Mj

∣∣ (8)

Then, due to holes being present in small objects when using the SAM and the potential
confusion between similar classes (such as roads and sidewalks), it is important to preserve
some pixels to identify key classes. Taking the Cityscapes dataset [12] as an example, we
selected a set of classes among [0, 19], denoted as set K, through empirical judgment. The
final obtained pseudo-label is a combination of the masks Mj, along with the inclusion of
key class pixels from ỸT :

Yk
T =

nm
k⋃

j=1
Mcls

j ∪Ỹk
T [c = cd] cd ∈ K (9)

For the mask filled using Equation (7), the weights are determined using Equation (8).
For the remaining parts, the weights (which will participate in the loss function) were
uniformly set to 1. The final weight matrix is as follows:

Wk
T =

nm
k⋃

j=1
Wcls

j ∪1 ⊙ Ỹk
T [c = cd] cd ∈ K (10)

Thus, we can obtain the pseudo-labels enhanced by SAM, which can be used to

construct a loss function similar to that in Equation (1), namely LM = H( fθ(Xk
T), Yk

T).
Consequently, the final loss function is

min
θ

1
NS

NS

∑
i=1

LS
i +

1
NT

NT

∑
k=1

(λTLT
k + Wk

TLM) (11)

3. Results

3.1. Implementation Details

3.1.1. Adverse Condition Semantic Segmentation Dataset

We used the Cityscapes dataset [12] as the source domain for training, which includes
2975 training images. The candidate target domain includes four different datasets—ACDC [16],
Foggy Driving [29] and Foggy Driving Dense [30], Rainy Cityscapes [31], and Dark-Zurich
(DZ) [32]—covering images with adverse conditions such as foggy, rainy, snowy, and nighttime
scenes. Among them, ACDC contains 1600 images for training and 400 images for validation.
Dark-Zurich contains 2416 training images and 151 test images. All datasets were labeled
according to the Cityscapes standard, which includes 19 categories.

3.1.2. SAM-EDA Parameters

For the UDA architecture, we used DAFormer [19] as the baseline. Both the teacher-
assistant and student models were SegFormer [7] with an MiT-B5 backbone. We followed
DAFormer to set the EMA parameter α = 0.99 and the confidence threshold τ = 0.968. For
the SAM mask generator, we used the largest SAM-ViT-H [1,28] and set the prediction IoU
threshold δiou to 0.8. We also set the stability score threshold δsta to 0.8 and the minimum
mask region rmin to 50 pixels. The settings of the SAM parameters directly affect the
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quality and quantity of segmentation masks and determine the geographical scale. All the
experiments were conducted on a Tesla v100 graphic card with 32 GB of graphic memory,
equipped with CUDA 10.2 and cudnn 7.6.5.

3.2. Performance Comparison

We compared our methods with prominent UDA methods for four kinds of adverse
conditions, as well as with the segmentation method SSA [25] combined with SAM ap-
plication. For foggy scenes, we compared CuDA-Net [20] and FIFO [33]; for nighttime
scenes, we compared VBLC [34] and GCMA [35]. These methods are all specialized for spe-
cific scenes. As for universal domain adaptation methods, we compared DAFormer [19],
CumFormer [36], and the SSA method combined with SAM. For the SSA method, we
provide the results using different extractors (ViT-B, ViT-L, and ViT-H). All performance
comparisons are shown in Table 1 and Figure 3. We not only provide comprehensive
performance comparisons for each method, but also present their runtime and memory
consumption. All evaluation metrics were calculated on the validation sets of each dataset.
In Table 2, we show the improvement of our method to different UDA strategies. In Table 3
and Figure 4, we show the influence of different fusion methods between SAM-generated
masks and original pseudo labels. In Table 4, we show the performance of replacing the
original SAM to its variants.

Table 1. Performance comparison. Experiments were conducted on the ACDC, Foggy Driving, Foggy
Driving Dense, Rainy Cityscapes, and Dark-Zurich validation sets and measured with the mean
intersection over union (mIoU %) over all classes.

Dataset

Fog Rain Snow NightModel Pub/Year Backbone

ACDC-f FD FDD ACDC-r Rain-CS ACDC-s ACDC-n DZ

Speed/FPS GPU/GB

DAFormer [19] CVPR 2022 SegFormer [7] 63.41 47.32 39.63 48.27 75.34 49.19 46.13 43.80

6–10
Train: 16 GB

Test: 8 GB

CuDA-Net [20] CVPR 2022 DeepLabv2 [13] 68.59 53.50 48.20 48.52 69.47 47.20 - -
FIFO [33] CVPR 2022 Refinelw-101 [14] 70.36 50.70 48.90 - - - - -

CumFormer [36] TechRXiv 2023 SegFormer 74.92 56.25 51.91 57.14 79.34 62.42 44.75 43.20
VBLC [34] AAAI 2023 SegFormer - - - - 79.80 - - 44.41

GCMA [35] ICCV 2019 DeepLabv2 - - - - - - - 42.01

SegFormer (cs) NeurIPS 2021 - 64.74 46.06 33.15 40.62 68.31 42.03 26.61 23.43 6–10 -

SSA + SAM + SegFormer
arXiv 2023

Github 2023

ViT-B [28] 60.57 39.02 25.33 43.17 67.51 42.93 24.97 22.36
<0.1

Train: 8–48 GB
Test: 16–24 GB

ViT-L [28] 66.78 48.02 31.33 52.94 68.69 51.47 27.69 26.73
ViT-H [28] 68.16 50.89 33.72 54.39 70.27 53.32 29.60 28.92

OneFormer (cs) [15] arXiv 2022 - 72.31 51.33 44.31 56.72 74.96 55.13 32.41 26.74 4–5 -

SSA + SAM + OneFormer
arXiv2023

GitHub2023

ViT-B 69.13 46.97 41.96 58.77 73.03 57.14 36.78 28.96
<0.1

Train: 8–48 GB
Test: 16–24 GB

ViT-L 75.94 53.14 46.78 64.25 75.62 64.21 40.14 34.25
ViT-H 77.87 55.61 48.41 69.25 76.31 66.22 41.22 37.43

SAM-EDA(Ours) -
ViT-B 68.10 50.74 43.66 54.20 71.01 55.47 33.62 27.63

6.7
Train: 8–48 GB

Test: 8 GB
ViT-L 75.30 55.49 46.98 64.68 73.41 58.12 41.30 35.45
ViT-H 78.25 56.37 51.25 69.38 76.63 68.17 43.15 42.63

Table 2. SAM-EDA for UDA methods. Experiments were conducted on the ACDC-Fog validation set
and measured with the mean intersection over union (mIoU %) over all classes.

UDA Method w/o SAM-EDA w/ SAM-EDA Diff.

DACS [37] 61.08 64.28 +3.20
ProDA [18] 65.17 68.74 +3.57

DAFormer [19] 67.93 71.61 +3.68
CuDA-Net [20] 68.56 72.37 +3.81

CumFormer [36] 74.92 77.89 +2.97
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Table 3. Different semantic prompt fusion methods. Experiments were conducted on the ACDC
and Dark-Zurich validation set and measured with the mean intersection over union (mIoU %) over
all classes.

ACDC-F
Method/Datasets

Fog Rain Snow Night
Dark-Z Mean

Gain
(mIoU)

DAFormer [19] 63.41 48.27 49.19 46.13 43.80 50.16 +0.00
IoU [38] 55.19 41.58 42.17 39.48 27.66 41.22 −8.94

SSA (SegFormer) [25] 68.16 54.39 53.32 29.60 28.92 46.88 −3.28
SAM-EDA w/o Weight 74.02 65.17 62.74 38.74 39.91 56.12 +5.96
SAM-EDA w/ Weight 78.25 69.38 68.17 43.15 42.63 60.32 +10.16

Table 4. SAM-EDA for SAM variants. Experiments were conducted on the ACDC-Rain validation set
and measured with the mean intersection over union (mIoU %) over all classes.

Performance Time (s/iter) Memory (GB)

SAM [1] 69.38 10 8–48
Fast-SAM [39] 68.22 0.5 16

Faster-SAM [26] 68.87 0.3 16

We found that, in bright scenes, such as foggy, rainy, and snowy ones, the SAM-
enhanced algorithm outperformed the UDA algorithms. The SSA method performed
better than DAFormer, and some methods even outperformed CumFormer, which was
newly proposed by the authors, but our SAM-EDA was better than the SSA method. This
is because SAM demonstrated strong generalization in bright scenes, providing sharper
contour branches. Additionally, the teacher-assistant model can generate relatively accurate
pseudo-labels, contributing to better fusion. For night scenes, however, the SAM itself
has a significant bias (which will be shown in Section 4.2, thereby reducing the overall
performance. However, our SAM-EDA still outperformed the two SSA algorithms for night
scenes. Since we only kept the student model, the testing speed and memory consumption
were the same as the fast SegFormer. In Figure 3, we show the qualitative comparison. Due
to space limitations, we only show the results of ACDC. Based on our method, more-precise
segmentation results were obtained in categories such as poles, traffic lights, and traffic
signs with obvious shapes.

Input SegFormer DAFormer CumFormer SSA ours GT

Figure 3. A qualitative comparison with other methods. From top to bottom, there are foggy, rainy,
snowy, and nighttime scenes. Based on our method, more-precise segmentation results are obtained
in the categories poles, traffic lights, and traffic signs with obvious shapes.
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Input PL SAM mask IoU SSA S-E S-E W. GT

Figure 4. Different pseudo-label fusion methods. From left to right are the target domain image, the
original pseudo-label (PL) generated by the teacher-assistant model, the original masks generated
by the SAM, the pseudo-label fused using the IoU method, the SSA method, our SAM-EDA (S-E)
method, SAM-EDA’s weight, and the ground truth (GT).

4. Discussion

4.1. SAM-EDA for Different UDA Methods

We used the pseudo-labels generated by the teacher-assistant model as semantic
prompts for filling in SAM’s masks. In fact, SAM-EDA is suitable for any UDA segmentation
method that utilizes pseudo-labels for self-training. We conducted ablation experiments on
the ACDC-Fog validation set. Table 2 demonstrates the enhancement of different methods
by SAM-EDA. We found that SAM-EDA can not only improve classic UDA methods
(e.g., DACS [37], ProDA [18], and DAFormer [19]), but also improve methods specific to
adverse scenes (CuDA-Net [20] and CumFormer [36]) by approximately 3%, indicating
that SAM’s information is generalizable. This shows that SAM-EDA is a good plugin, and
through data-side processing, complex knowledge distillation or fine-tuning operations
can be avoided, thus taking advantage of both SAM and domain-specific models.

4.2. Influence of Different Pseudo-Label Fusion Methods

Different semantic prompt fusion methods matter. We chose as many comprehensive
fusion strategies as possible and present them in Figure 4. From left to right are the target
domain image, the original pseudo-label generated by the teacher-assistant model, the
original masks generated by SAM, the pseudo-label fused using the IoU method [38], the
SSA method [25], our SAM-EDA method, and SAM-EDA’s weight. From top to bottom are
the four adverse-condition scenes. Among the three label fusion strategies, the simplest
one is to directly assign the class that has the largest intersection over union (IoU) between
the mask and category ID layer [38], which was successfully applied in weakly supervised
semantic segmentation and saliency detection. However, this approach led to many holes
(black areas in the fourth column of Figure 4). This is because the semantic segmentation
task is at the “category level”, while the SAM masks are at the instance level. When
calculating the IoU, the instance-level mask takes the class-level label as the denominator,
making the calculation ineffective. For example, if there are three cars in the image, in the
“car” category layer, the pixels of the three cars will all be taken into account. Therefore, the
proportion of pixels belonging to the “car” class in the mask of a car instance will decrease
to 1/3 or 1/2 of the original proportion. If there are other classes present in the current
area, it is likely that this area will be misclassified into another class. The SSA method relies
entirely on the SAM mask and assigns instance-level pixel labels to all the masks output by
SAM. This ensures that each mask has a definitive category label and does not generate
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large areas of holes. However, if the segmentation by SAM is inaccurate, it will directly
result in large areas of errors.

When dealing with the SAM masks, we identified three shortcomings. Firstly, SAM
struggled to differentiate classes with similar features, such as roads and sidewalks. In
all scenarios, SAM uses the same mask for roads and sidewalks. This is unacceptable
for autonomous driving. Secondly, SAM has difficulty distinguishing walls from railings
or simply does not recognize them as objects, which could also be fatal for autonomous
driving. Lastly, SAM performed poorly in nighttime conditions. For example, in the fourth
row of Figure 4, SAM mistakenly assigned large areas of buildings to the sky, leading to
errors in the label fusion region and undermining the performance brought by the original
pseudo-labels.

To address these issues, we retained some critical categories from the original pseudo-
labels (such as sidewalks, walls, and fences) to counter SAM’s shortcomings. Then, we
allowed the masks to be assigned to incorrect classes (which is difficult to avoid), and we
calculated the weights for each mask and reduced them in the loss function, thus effectively
optimizing the SSA method. In Table 3, we show the impact of different label fusion
strategies. As seen, the SAM-EDA method, which incorporates weights, achieved real
improvements and outperformed the SSA method and the case without weights.

4.3. SAM-EDA for SAM Variants

SAM-EDA is also applicable to SAM variants with different numbers of parameters,
with the potential to accelerate training. In Table 4, we replaced SAM with the lighter
Fast-SAM [39] and Faster-SAM [26], significantly reducing the duration and memory usage
of each iteration. In the standard SAM-EDA, we do not need to include SAM in the final
segmentation model, so different SAM variants have little impact. However, the emergence
of Faster-SAM undoubtedly provided a better option for future methods to include SAM.

4.4. Influence of SAM’s Hyper-Parameters

SAM’s hyper-parameters are related to the quality, density, and porosity of the gen-
erated masks. We conducted tests on the effectiveness of two hyper-parameters: the
prediction IoU threshold δiou and the stability score threshold δsta (Figure 5). The higher
they were set, the more precise the mask contours, but the fewer the masks. We conducted
separate experiments on the ACDC-Rain validation set and found that the best results were
achieved when δiou = δsta = 0.8. This indicates that we need a stable quantity of masks
to cover the entire image during label fusion rather than solely focusing on the quality of
the masks.

0.65 0.70 0.75 0.80 0.85 0.90
Stability score threshold iou

58

60

62

64

66

68

m
Io

U
 / 

%
 o

n 
th

e 
AC

D
C

-R
ai

n-
Va

l

sta=0.8
sta=0.7
sta=0.6
sta=0.8
sta=0.9

Figure 5. Influence of SAM’s hyper-parameters. High δiou and δsta both result in performance
degradation, and we found that the best results were achieved at δiou = δsta = 0.8.
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5. Conclusions

We have presented SAM-EDA, a universal framework for using SAM in unsupervised
semantic segmentation tasks. This method utilizes pseudo-labels generated by specific
semantic segmentation models as prompts to fill in the spatial structure of SAM segmen-
tation, thereby obtaining a more-accurate probability distribution of scene segmentation.
The most-significant contribution of our method is the introduction of a more-accurate
and fault-tolerant semantic prompt fusion approach. It can integrate the spatial structure
provided by SAM with the semantic discernment generated by the original segmentation
network. Our experiments showed that our method achieved better performance on se-
mantic segmentation benchmarks under several adverse imaging conditions. Moreover, it
can be implemented in a plug-and-play manner to enhance any unsupervised semantic
segmentation algorithm based on pseudo-labels. After introducing a lightweight variant of
SAM, our method obtained the ability to perform near real-time training and testing. We
also explored the hyper-parameters of SAM.

The universality and generalizability of SAM are valuable resources. In future research,
we plan to introduce SAM into tasks such as Test Time Adaptation, serving as a spatial
structure anchor to combat the catastrophic forgetting that may occur during prolonged
adaptation processes of the model.
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