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Abstract: Semantic segmentation of remote sensing (RS) images is a pivotal branch in the realm of RS
image processing, which plays a significant role in urban planning, building extraction, vegetation
extraction, etc. With the continuous advancement of remote sensing technology, the spatial resolution
of remote sensing images is progressively improving. This escalation in resolution gives rise to
challenges like imbalanced class distributions among ground objects in RS images, the significant
variations of ground object scales, as well as the presence of redundant information and noise
interference. In this paper, we propose a multi-scale context extraction network, ASPP+-LANet, based
on the LANet for semantic segmentation of high-resolution RS images. Firstly, we design an ASPP+

module, expanding upon the ASPP module by incorporating an additional feature extraction channel,
redesigning the dilation rates, and introducing the Coordinate Attention (CA) mechanism so that it
can effectively improve the segmentation performance of ground object targets at different scales.
Secondly, we introduce the Funnel ReLU (FReLU) activation function for enhancing the segmentation
effect of slender ground object targets and refining the segmentation edges. The experimental results
show that our network model demonstrates superior segmentation performance on both Potsdam
and Vaihingen datasets, outperforming other state-of-the-art (SOTA) methods.

Keywords: high-resolution remote sensing images; semantic segmentation; ASPP module; local
attention network model; activation function

1. Introduction

Remote sensing (RS) images can be used to observe natural and artificial phenomena
on the Earth’s surface. In the field of RS, semantic segmentation of high-resolution RS
images entails a pixel-level classification task where the objective is to assign a semantic
label to each pixel in the image [1]. These semantic labels mean different ground objects.

Recently, RS images have achieved spatial resolution at the centimeter scale, empow-
ering the discernment of minute details and targets within high-resolution RS imagery.
The challenge of semantic segmentation in RS images persists due to issues such as re-
dundant information, noise interference, misclassification of tiny targets, and insufficient
smoothness in the edges of ground objects. To solve this problem, this paper proposes a
multi-scale context network ASPP+-LANet based on LANet, which improves the segmenta-
tion performance of ground object targets at different scales and refines the edges of ground
object targets.

The rapid progress of deep neural networks, especially Convolutional Neural Networks
(CNNs), has greatly advanced semantic segmentation in RS images. In 2015,
Long et al. [2] first proposed the concept of Fully Convolutional Networks (FCNs), an encoder-
decoder structure network, which used an anti-convolutional layer instead of the fully con-
nected layer in traditional CNNs. In the same year, the Unet network was introduced by
Ronneberger et al. [3], featuring a U-shaped encoder–decoder architecture with inter-layer
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skip connections. In 2017, the SegNet network was proposed by Badrinarayanan et al. [4],
which implemented an encoder–decoder structure. The key innovation was situated in the
decoder, where instead of using deconvolution for upsampling, pooling indices were uti-
lized to conduct non-linear upsampling during the respective encoder’s max-pooling steps.
The mentioned networks all employed an encoder–decoder structure with robust feature
extraction capabilities. Nevertheless, without further refinement, the direct connection be-
tween shallow texture information and deep semantic information causes underutilization
of feature information, leading to insufficient discrimination between shallow information
and deep information. To address these issues, a multi-scale feature extraction module
was introduced into the convolutional network by researchers. In 2017, the Pyramid Scene
Parsing Network (PSPNet) was introduced by Zhao et al. [5], which proposed the Pyramid
Pooling Module (PPM) to aggregate diverse regional contexts. In addition, Chen et al. [6–9]
successively proposed DeepLab series networks for extracting multi-scale contextual fea-
tures. Among them, based on DeepLab v3 [8], a decoder structure was added to DeepLab
v3+ [9], which integrated the low-level features of the encoder output with the high-level
features of the Atrous Spatial Pyramid Pooling (ASPP) output. Furthermore, attention
mechanisms have been extensively employed in semantic segmentation networks. In 2020,
a Local Attention Network (LANet) was proposed by Ding et al. [10], introducing a patch-
level-based attention mechanism for extracting contextual information. Two approaches
were suggested for enhancing the feature representation: the chunked attention module
enhances the embedding of contextual information, while the attention embedding module
enriches the semantic information of the underlying features by embedding the local focus
of the high-level features. The differences in physical information content and spatial
distribution are effectively addressed, the disparities between high-level and low-level
features are bridged, and significant success in the field of remote sensing image segmenta-
tion is achieved. Due to these excellent features, we chose it as our benchmark network.
In 2021, Li et al. [11] proposed a Multi-Attention Network (MANet), which designed a novel
linear-complexity kernel attention mechanism to alleviate the computational demands of
attention. In 2023, a novel three-branch network architecture, PIDNet, was proposed by
Xu et al. [12]. PIDNet comprises three branches designed to parse detailed, contextual,
and boundary information. Additionally, boundary attention is employed to facilitate the
fusion of detailed and contextual branches.

In recent years, the Vision Transformer (ViT) [13] has demonstrated remarkable perfor-
mance in the field of RS image segmentation due to its powerful self-attention-based global
context modeling capability [14–18]. Among them, in 2022, Wang et al. [18] proposed the
UnetFormer network for real-time urban scene segmentation in RS images. An efficient
global–local attention mechanism known as the Global–Local Transformer Block (GLTB)
was implemented by the network to integrate both global and local information within the
decoder. A lightweight transformer-based decoder was developed using GLTB and Feature
refinement head, which aimed to enhance the network’s capability to extract multi-scale
contextual features and effectively improve the network’s segmentation performance in
semantic segmentation of RS images. In 2022, Zhang et al. [19] proposed a hybrid deep
neural network, Swin-CNN, combining a transformer and a CNN. The model follows an
encoder–decoder structure. A novel universal backbone dual transformer is employed
in the encoder module to extract features, thus aiming to enhance long-range spatial de-
pendency modeling. The decoder module leverages some effective blocks and successful
strategies from a CNN-based remote sensing image segmentation model. In the middle of
the framework, spatial pyramid pooling blocks based on depthwise separable convolutions
are applied to obtain multi-scale context.

As previously noted, the incorporation of multi-scale and attention modules into the
semantic segmentation network of RS images has been shown to effectively enhance the
network’s segmentation performance. Accordingly, we designed a new ASPP+ module
by augmenting an additional feature extraction channel to the ASPP module, redesigning
the dilation rates, and introducing the CA mechanism [20], thereby effectively enhancing
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the network’s segmentation capability. The utilization of parallel dilated convolutions has
been found to enhance the receptive field and capture target features of varying scales.
Additionally, the incorporation of the attention module allows the model to prioritize
meaningful features and acquire contextual information more effectively. Furthermore,
we introduced the FReLU activation function [21] to enhance the network’s generalization
capability, filter out noise and low-frequency information, and retain more higher-frequency
information so as to effectively improve the segmentation performance of slender ground
object targets and refine the segmentation edges.

In conclusion, the main contributions of this paper include the following three aspects
as follows:

(1) We propose a multi-scale context extraction network for semantic segmentation of
high-resolution RS images, ASPP+-LANet, by improving the LANet structure, which
effectively tackles the issue of unclear segmentation in various-sized ground objects,
slender ground objects, and ground object edges. By adding a new multi-scale module,
the segmentation accuracy of ground objects at different scales has been improved.
By introducing the activation function, the segmentation accuracy of slender ground
objects and ground object edges has been improved.

(2) We designed a novel ASPP+ module to effectively enhance the segmentation accuracy
of ground objects at different sizes. This module adds an additional feature extraction
channel to ASPP. In addition, we redesigned its dilation rates and introduced the CA
mechanism. The attention mechanism can focus on more meaningful areas, improving
the overall segmentation progress.

(3) We introduced the FReLU activation function. By integrating it with the LANet
network, the performance of ASPP+-LANet has been improved. The activation
function can filter out noise and low-frequency information and retain more higher-
frequency information so as to effectively enhance the segmentation accuracy of
slender ground objects and ground object edges.

2. Materials and Methods
2.1. Materials

In this paper, we design a series of comparative experiments using Potsdam and
Vaihingen from the ISPRS dataset [22] in order to evaluate our proposed method.

2.1.1. Potsdam Datasets

The Potsdam dataset consists of 38 images, each with a size of 6000 × 6000 pixels
and a spatial resolution of approximately 5 cm [23]. In the Potsdam region, there are six
land cover classes, as shown in Figure 1: impervious surfaces, buildings, low vegetation,
trees, cars, and clutter/background. The clutter/background class primarily includes water
bodies and objects defined as outside the designated classes, which are typically irrelevant
semantic objects in urban scenes. To ensure sufficient experimental data, the dataset was
preprocessed prior to the experiments, involving image cropping and data augmentation.
The images were uniformly cropped into 512 × 512 pixels and subjected to horizontal and
vertical flipping for data augmentation. After filtering out images with problematic labels,
the dataset was divided into training, validation, and testing sets in a 6:2:2 ratio.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 23 
 

 

 
Figure 1. Partial example plot of the Potsdam dataset. 

2.1.2. Vaihingen Datasets 
The Vaihingen dataset consists of a total of 33 images, each of which has a varying 

size, with an average dimension of 2496 × 2064 pixels and a spatial resolution of approxi-
mately 9 cm [23]. The label categories and color representations are the same as those in 
the Potsdam dataset, as shown in Figure 2. Prior to the experiments, the images were 
cropped into 512 × 512 pixels and augmented by horizontal and vertical flips. After filter-
ing out images with problematic labels, the dataset was split into a training set with 6020 
image blocks, a validation set with 2006 image blocks, and a test set with 2052 image 
blocks. 

 
Figure 2. Partial example plot of the Vaihingen dataset. 

2.2. Methods 
In this section, we provide a comprehensive overview of the proposed network 

model, ASPP+-LANet. Firstly, we present a concise summary of the network structure, 
highlighting the general motivation and structure. Subsequently, we explore the intrica-
cies of two pivotal modules: the ASPP+ module and the FReLU activation function. 
Through the examination of these components, we aim to present a thorough understand-
ing of the ASPP+-LANet network. 

2.2.1. Overall Network Structure 
We propose a multi-scale context extraction network for semantic segmentation of 

high-resolution RS images, ASPP+-LANet, as illustrated in Figure 1. Like LANet [10], our 
network is built upon the FCN framework [2] and employs the pre-trained ResNet50 [24] 
as the backbone network. It consists of two parallel branches for high-level and low-level 
feature extraction, incorporating multiple feature extraction and enhancement modules 
within these branches. 

There are two motives in this paper: (1) improving the segmentation performance of 
ground object targets at different scales and (2) enhancing the segmentation effect of slen-
der ground object targets and refining the segmentation edges. To achieve these goals, we 
added two independent modules to the LANet network: (1) the ASPP+ module, which 

Figure 1. Partial example plot of the Potsdam dataset.



Remote Sens. 2024, 16, 1036 4 of 22

2.1.2. Vaihingen Datasets

The Vaihingen dataset consists of a total of 33 images, each of which has a varying size,
with an average dimension of 2496 × 2064 pixels and a spatial resolution of approximately
9 cm [23]. The label categories and color representations are the same as those in the Pots-
dam dataset, as shown in Figure 2. Prior to the experiments, the images were cropped into
512 × 512 pixels and augmented by horizontal and vertical flips. After filtering out images
with problematic labels, the dataset was split into a training set with 6020 image blocks, a
validation set with 2006 image blocks, and a test set with 2052 image blocks.
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2.2. Methods

In this section, we provide a comprehensive overview of the proposed network model,
ASPP+-LANet. Firstly, we present a concise summary of the network structure, highlighting
the general motivation and structure. Subsequently, we explore the intricacies of two pivotal
modules: the ASPP+ module and the FReLU activation function. Through the examination of
these components, we aim to present a thorough understanding of the ASPP+-LANet network.

2.2.1. Overall Network Structure

We propose a multi-scale context extraction network for semantic segmentation of
high-resolution RS images, ASPP+-LANet, as illustrated in Figure 1. Like LANet [10], our
network is built upon the FCN framework [2] and employs the pre-trained ResNet50 [24]
as the backbone network. It consists of two parallel branches for high-level and low-level
feature extraction, incorporating multiple feature extraction and enhancement modules
within these branches.

There are two motives in this paper: (1) improving the segmentation performance of
ground object targets at different scales and (2) enhancing the segmentation effect of slender
ground object targets and refining the segmentation edges. To achieve these goals, we added
two independent modules to the LANet network: (1) the ASPP+ module, which facilitates
the fusion of multi-scale features; (2) the FReLU activation function [21], which enhances the
network’s generalization ability, and filters out noise as well as low-frequency information.

Specifically, we integrated the FReLU activation function into the activation layer
at the residual module of the backbone network ResNet50 and added an ASPP+ mod-
ule on the high-level feature extraction branch, as indicated by the green dashed box in
Figure 3. In the branch of high-level feature extraction, the high-level features generated by
ResNet50 extract multi-scale contextual information through the ASPP+ module and then
enhance their feature representation through the Patch Attention Module (PAM) [10]. In
the low-level feature extraction branch, the low-level features generated by convolution
are first feature-enhanced by the PAM, and then the semantic information of the low-level
features is enriched by embedding the local focus of the high-level features through the
Attention Embedding Module (AEM) [10], which enables the low-level features to en-
hance the high-level semantic without losing spatial information. Ultimately, the features
produced by the upper and lower parallel branches are merged to derive our conclusive
segmentation output.
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2.2.2. ASPP+ Module

In RS images, challenges such as imbalanced ground object classes and significant
variations in ground object scales exist. In such scenarios, it is difficult to extract target
features only by a single scale. To address this issue, the paper proposes an improved
multi-scale context extraction module, ASPP+, with the structure shown in Figure 4. It
mainly consists of two components: the first component is the parallel dilated convolution
multi-scale feature extraction module, employing five parallel dilated convolution branches
to capture feature information of different scales; the second component is the global feature
and context extraction module, taking charge of acquiring global feature and contextual
information. Ultimately, the output features from both components are concatenated to
form a multi-scale feature map.
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In Figure 4, the orange box represents dilated convolutions with different dilation
rates, where except for the first convolution kernel with a size of 1 × 1, the remaining
four convolution kernels are all 3 × 3. Additionally, they have a stride of 1 and no
padding. The Image Pooling module performs global average pooling. CA [20] refers
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to the Coordinate Attention module. “Concat” represents the operation of concatenating
features. By concatenating the output features from these two parts, the model achieves
the functionality of multi-scale context feature extraction. The dilated convolutions with
different dilation rates improve the receptive field and capture target features at different
scales. The attention module allows the model to focus more on meaningful features and
acquire contextual information.

(1) Parallel Dilated Convolution Multi-Scale Feature Extraction

Parallel convolution can alter the receptive field of the convolutional kernel, acquiring
the feature information of different scales. However, multiple parallel convolutions can
increase the number of parameters and computational complexity of the network. Inspired
by the ASPP module [9], using extended convolution instead of standard convolution can
obtain feature information at different scales while reducing the number of parameters and
computational complexity.

While the replacement of dilated convolutions has played a significant role, the setting
of the dilation rate remains a challenge. The consecutive use of the same dilation rate in
atrous convolutions will result in discontinuity of the convolution kernel, leading to a “grid
effect”, as shown in Figure 5a. On the other hand, a reasonable dilation rate, as depicted
in Figure 5b, not only avoids the loss of relevant information but also captures the target
context of different scales [25]. According to the literature [25], the dilation rate should
follow the following principles:
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(b) Reasonable combination of dilation rates in atrous convolutions.

(a) The combination of dilation rates should not have a common factor greater than 1, as
it would still lead to the occurrence of the “grid effect”.

(b) Assuming that dilation rates corresponding to N convolutional kernel sizes k × k of
atrous convolutions are [r1, . . . , ri, . . . , rn], it is required that Equation (1)
satisfies M2 ≤ k.

Mi = max[Mi+1 − 2ri, Mi+1 − 2(Mi+1 − ri), ri] (1)

where ri represents the dilation rate of the i-th atrous convolution and Mi represents
the maximum dilation rate for the i-th layer of atrous convolution, with a default
value of Mn = rn.
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Therefore, this paper follows the aforementioned design principles and obtains a set
of most appropriate dilation rates (1, 2, 4, 8, 12) through several comparative experiments
(detailed experimental procedures described in Section 3.3.4), which significantly enhances
the segmentation performance of ground object targets at different sizes.

Additionally, to enhance the model’s generalization ability, we incorporate batch
normalization and ReLU activation functions [26] after each convolutional layer. Finally,
we connect the five parallel dilated convolution branches to form the parallel dilated
convolution multi-scale feature extraction module, as depicted by the blue dashed box in
Figure 4. The expression is represented as:〈

C1
1×1(X)·Cd

3×3(X)
〉

, d = 2, 4, 8, 12 (2)

where ⟨·⟩ represents feature concatenation, which refers to each feature being spliced along
the channel dimension. C1

1×1 denotes a 1 × 1 convolution with a dilation rate of 1. Cd
3×3

represents a 3 × 3 convolution with a dilation rate of d. X denotes the input feature.

(2) Global features and contextual information extraction

Global feature extraction refers to the generalization and integration of features from
the entire feature map to obtain global contextual information. The global feature and
context extraction module, as illustrated by the orange dashed box in Figure 4, begins
by performing global average pooling on the input feature. It then utilizes a CA module
to emphasize meaningful features, thereby capturing global contextual information. The
expression can be represented as:

CA(GAP(X)) (3)

where CA(·) represents Coordinate Attention. GAP(·) denotes Global Average Pooling. X
represents the input features.

In conclusion, based on the aforementioned information, we can obtain an improved
multi-scale context extraction module, referred to as the ASPP+ module. Its overall repre-
sentation is illustrated by Equation (4).〈

C1
1×1(X)·Cd

3×3(X)·CA(GAP(X))
〉

, d = 3, 6, 12, 18 (4)

where ⟨·⟩ represents feature concatenation, which refers to the concatenation of each feature
along the channel dimension. C1

1×1 denotes a 1 × 1 convolution with a dilation rate of 1.
Cd

3×3 represents a 3 × 3 convolution with a dilation rate of d. X denotes the input feature.
CA(·) represents Coordinate Attention. GAP(·) denotes Global Average Pooling.

2.2.3. FReLU

In RS images, there always exists interference from noise and low-frequency infor-
mation, which makes it challenging for existing image semantic segmentation networks
to achieve satisfactory results for slender and limbic ground object targets. Activation
functions, on the other hand, play a crucial role in enhancing network generalization, filter-
ing out noise and low-frequency information, and preserving high-frequency information,
which can help resolve this issue. Therefore, this paper conducted comparative experi-
ments with different activation functions on the LANet network (detailed in Section 3.3.5),
and the results indicate that incorporating FReLU into the LANet network yields the
best performance.

This paper focuses on improving the bottleneck residual module within the ResNet50
backbone network, as illustrated in Figure 6. The activation functions in each convolu-
tional layer of the bottleneck module are replaced with FReLU. Similar to ReLU [27] and
PReLU [28], FReLU utilizes the max() function as a simple non-linear function. Whereas
ReLU is defined as y = max(x, 0) and PReLU as y = max(x, px), FReLU adds a negligible
spatial condition overhead and extends the conditional part to a two-dimensional condition
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that depends on the spatial context of each pixel, as illustrated in Figure 7. It can be repre-
sented as y = max(x, T(x)), where T(·) denotes the two-dimensional spatial representation.
The function definition of FReLU is as follows:

f
(
xc, i, j

)
= max

(
xc, i, j, T

(
xc, i, j

))
(5)

T
(
xc, i, j

)
= xw

c, i, j· pw
c (6)

where (i, j) represents the pixel position in two-dimensional space; c denotes the c-th
channel; T

(
xc,i,j

)
represents the two-dimensional condition; xw

c,i,j denotes the parameterized
pool window centered on the input pixel of the nonlinear activation function on the c-th
channel at position (i, j) in two-dimensional space; and pw

c represents coefficients that are
shared by this window in the same channel.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 6. BottleNeck structure of ResNet50. 

 
Figure 7. Schematic diagram of FReLU. 

High-resolution RS images often exhibit complex backgrounds, leading to challenges 
in achieving accurate semantic segmentation, especially for slender and limbic ground 
object targets. FReLU, by incorporating spatial context information as a non-linear func-
tion condition, possesses superior contextual capturing capabilities. It effectively filters 
out noise and low-frequency information while preserving high-frequency details. The 
results show that FReLU can significantly improve the segmentation effect of slender 
ground objects and refine the segmentation edges. 

3. Experiments and Results 
In this section, we conducted a series of comparative experiments and ablation stud-

ies to validate the effectiveness of our proposed method. Initially, we delineated three 
evaluation metrics utilized for quantitative analysis. Following that, we furnished com-
prehensive details regarding the network’s parameter configurations and experimental 
setups. Subsequently, we performed comparative experiments with other SOTA methods 
to assess and compare the performance of our proposed network. Additionally, we con-
ducted ablation studies to evaluate the performance of our network under various config-
uration settings. We analyzed the experimental results in terms of segmentation accuracy, 
visual effects, and ablation studies. Ultimately, to bolster the credibility of our experi-
ments, we conducted an investigation into the optimal dilation rate for the ASPP+ module. 
Furthermore, we undertook experiments to evaluate the performance differences of vari-
ous activation functions on the baseline network, LANet. 

3.1. Evaluation Criteria 
To quantitatively evaluate the efficacy of our proposed method, this paper utilizes 

three evaluation metrics for comprehensive comparison and analysis: Pixel Accuracy (PA), 
F1 Score (F1), and Mean Intersection over Union (MIoU). The formulas for these metrics 
are as follows: 

Figure 6. BottleNeck structure of ResNet50.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 6. BottleNeck structure of ResNet50. 

 
Figure 7. Schematic diagram of FReLU. 

High-resolution RS images often exhibit complex backgrounds, leading to challenges 
in achieving accurate semantic segmentation, especially for slender and limbic ground 
object targets. FReLU, by incorporating spatial context information as a non-linear func-
tion condition, possesses superior contextual capturing capabilities. It effectively filters 
out noise and low-frequency information while preserving high-frequency details. The 
results show that FReLU can significantly improve the segmentation effect of slender 
ground objects and refine the segmentation edges. 

3. Experiments and Results 
In this section, we conducted a series of comparative experiments and ablation stud-

ies to validate the effectiveness of our proposed method. Initially, we delineated three 
evaluation metrics utilized for quantitative analysis. Following that, we furnished com-
prehensive details regarding the network’s parameter configurations and experimental 
setups. Subsequently, we performed comparative experiments with other SOTA methods 
to assess and compare the performance of our proposed network. Additionally, we con-
ducted ablation studies to evaluate the performance of our network under various config-
uration settings. We analyzed the experimental results in terms of segmentation accuracy, 
visual effects, and ablation studies. Ultimately, to bolster the credibility of our experi-
ments, we conducted an investigation into the optimal dilation rate for the ASPP+ module. 
Furthermore, we undertook experiments to evaluate the performance differences of vari-
ous activation functions on the baseline network, LANet. 

3.1. Evaluation Criteria 
To quantitatively evaluate the efficacy of our proposed method, this paper utilizes 

three evaluation metrics for comprehensive comparison and analysis: Pixel Accuracy (PA), 
F1 Score (F1), and Mean Intersection over Union (MIoU). The formulas for these metrics 
are as follows: 

Figure 7. Schematic diagram of FReLU.

High-resolution RS images often exhibit complex backgrounds, leading to challenges
in achieving accurate semantic segmentation, especially for slender and limbic ground
object targets. FReLU, by incorporating spatial context information as a non-linear function
condition, possesses superior contextual capturing capabilities. It effectively filters out
noise and low-frequency information while preserving high-frequency details. The results
show that FReLU can significantly improve the segmentation effect of slender ground
objects and refine the segmentation edges.

3. Experiments and Results

In this section, we conducted a series of comparative experiments and ablation studies
to validate the effectiveness of our proposed method. Initially, we delineated three evalua-
tion metrics utilized for quantitative analysis. Following that, we furnished comprehensive
details regarding the network’s parameter configurations and experimental setups. Subse-
quently, we performed comparative experiments with other SOTA methods to assess and
compare the performance of our proposed network. Additionally, we conducted ablation
studies to evaluate the performance of our network under various configuration settings.
We analyzed the experimental results in terms of segmentation accuracy, visual effects, and
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ablation studies. Ultimately, to bolster the credibility of our experiments, we conducted an
investigation into the optimal dilation rate for the ASPP+ module. Furthermore, we under-
took experiments to evaluate the performance differences of various activation functions
on the baseline network, LANet.

3.1. Evaluation Criteria

To quantitatively evaluate the efficacy of our proposed method, this paper utilizes
three evaluation metrics for comprehensive comparison and analysis: Pixel Accuracy (PA),
F1 Score (F1), and Mean Intersection over Union (MIoU). The formulas for these metrics
are as follows:

PA refers to the proportion of correctly predicted pixels of a certain category to the
total number of pixels.

PA =
TP + TN

TP + TN + FP + FN
(7)

F1 takes into account both the precision and recall of a classification model and enables
it to be seen as the harmonic mean of precision and recall.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(10)

MIoU refers to the average Intersection over Union (IoU) of each class in the dataset.

IoU =
TP

TP + FP + FN
(11)

MIoU =
1
n

n

∑
i=1

IoU (12)

where TP stands for True Positive, indicating the number of pixels in the predicted results
that belong to a certain class and are indeed of that class; FP stands for False Positive,
signifying the number of pixels in the predicted results that belong to other classes but are
mistakenly classified as that class; TN stands for True Negative, depicting the number of
pixels in the predicted results that belong to other classes and are indeed of other classes;
FN stands for False Negative, referring to the number of pixels in the predicted results
that belong to a certain class but are mistakenly classified as other classes. n represents the
number of classes. i represents the i-th class.

3.2. Implementation Details

In this article, our network and other comparative networks are implemented in the
PyTorch deep learning framework, and experiments are conducted on a 64-bit Windows
10 system server. The server is equipped with an Intel Core i9-12900k CPU (3.20 GHz),
128 GB of memory, and an NVIDIA GeForce RTX 4090 graphics card.

During the training process, referring to some model [18] and synthesizing our hard-
ware and our experimental results, the experimental parameters were set as follows: the
batch size was set to 6, the learning rate was set to 0.025, the total epochs was set to 400,
the momentum was set to 0.9, adaptive moment estimation optimizer (Adam) [29] was
used to optimize our model, and stochastic gradient descent (SGD) was employed for the
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optimization training. Additionally, a “poly” learning rate decay strategy was utilized to
dynamically adjust the learning rate using the following expression:

l = lini

(
1 − e

emax

)0.9
(13)

where l represents the current learning rate, lini stands for the initial learning rate, e denotes
the current training epoch, and emax refers to the maximum number of training epochs.

3.3. Experiment Results
3.3.1. Segmentation Precision Analysis

To validate the efficacy of our proposed method, we conducted comparisons with sev-
eral classical network models, including UNet [3], SegNet [4], DeepLab V3+ [9], LANet [10],
MANet [11], UnetFormer [18], and Swin-CNN [19] on the Potsdam and Vaihingen datasets.
The evaluation metrics for each method are presented in Tables 1 and 2. The tables clearly
demonstrate that LANet’s experimental results outperform classical semantic segmentation
networks such as UNet, SegNet, and so on. Nonetheless, the utilization of a single-scale
feature extraction approach in LANet results in diminished segmentation performance
when confronted with ground object targets of varied sizes. Consequently, we implemented
enhancements to LANet by integrating the ASPP+ module and the FReLU activation func-
tion. This integration effectively enhances the segmentation performance for ground object
targets at different scales, as well as slender ground objects and ground objects’ edges.

Table 1. Segmentation accuracy of different methods on the Potsdam dataset.

Method Parameters(M) PA/% F1/% MIoU/% Kappa

UNet 17.27 92.66 78.08 71.35 0.9492
SegNet 29.45 92.61 77.61 70.84 0.9491

DeepLab V3+ 21.94 90.00 72.24 64.17 0.8913
LANet 23.81 93.29 78.77 72.29 0.9496
MANet 35.86 92.06 76.89 69.86 0.9256

UNetFormer 11.28 91.23 75.01 67.51 0.9138
Swin-CNN 66 94.56 81.68 76.62 0.9521

ASPP+-LANet 27.46 95.53 82.57 77.81 0.9552

Table 2. Segmentation accuracy of different methods on the Vaihingen dataset.

Method Parameters(M) PA/% F1/% MIoU/% Kappa

UNet 17.27 98.03 81.83 79.53 0.9637
SegNet 29.45 96.82 80.21 76.77 0.9433

DeepLab V3+ 21.94 92.77 73.31 67.33 0.8721
LANet 23.81 97.55 80.82 77.77 0.9465
MANet 35.86 98.08 81.81 79.55 0.9677

UNetFormer 11.28 96.73 80.08 76.52 0.9429
Swin-CNN 66 97.98 81.66 78.86 0.9625

ASPP+-LANet 27.46 98.24 81.99 79.83 0.9689

As shown in Table 1, our proposed method, ASPP+-LANet, achieves the following
performance metrics on the Potsdam dataset: PA reaches 95.53%, F1 reaches 82.57%, and
MIoU reaches 77.81%, which is improved by 2.24%, 3.80%, and 5.52%, respectively, com-
pared to the baseline LANet network. Furthermore, our method demonstrates superior
performance compared to existing semantic segmentation networks. This notable per-
formance can be attributed to two key factors. Primarily, our proposed ASPP+ module
enhances the network’s ability to extract multi-scale features by setting appropriate dilation
rates, thereby effectively improving the segmentation accuracy for ground object targets
of different sizes. Moreover, the introduction of the FReLU activation function filters out



Remote Sens. 2024, 16, 1036 11 of 22

noise and low-frequency information while preserving high-frequency information, thereby
improving segmentation performance for slender and limbic ground object targets.

As shown in Table 2, our proposed method, ASPP+-LANet, achieves the following
performance metrics on the Vaihingen dataset: PA reaches 98.24%, F1 reaches 81.99%,
and MIoU reaches 79.83%, which is improved by 0.69%, 1.17%, and 2.06%, respectively,
compared to the baseline LANet network. Furthermore, our method demonstrates superior
performance compared to existing semantic segmentation networks.

3.3.2. Renderings Analysis

To better highlight the feasibility of the proposed method in this paper, we selected six
representative test targets for analysis on the Potsdam and Vaihingen datasets. Addition-
ally, we conducted a subjective visual comparison analysis among the classical semantic
segmentation methods, as illustrated in the figure below.

By comparing the visualization results on the Potsdam dataset, as shown in
Figures 8 and 9, it can be observed that our proposed method achieves superior segmenta-
tion accuracy on ground object targets of different scales compared to other comparative
methods. Additionally, Figures 10 and 11 demonstrate that our proposed method achieves
superior segmentation accuracy on slender ground objects and ground object edges com-
pared to other comparative methods. Moreover, Figures 12 and 13 reveal that our proposed
method outperforms other comparative methods in terms of missing detections and false
detections. The above experimental results validate the efficacy of our proposed ASPP+-
LANet model. After integrating the ASPP+ module and the FReLU activation function,
there was indeed a noticeable improvement in the segmentation performance of ground
object targets at varying scales in the Potsdam dataset. Moreover, it also enhances the
segmentation effect for slender ground object targets, refining the segmentation edges.
These results demonstrate the effectiveness of our approach.
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Figure 8. Visual comparison of semantic segmentation for small object features on the Potsdam da-
taset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet, (g) MANet, (h) 
UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet. The colors represent the same types of ground object 
as shown in Figure 1, and the same applies to other similar images. 
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Figure 9. Visual comparison of semantic segmentation for large object features on the Potsdam da-
taset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet, (g) MANet, (h) 
UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet. 

Figure 8. Visual comparison of semantic segmentation for small object features on the Potsdam
dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet, (g) MANet,
(h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet. The colors represent the same types of ground
object as shown in Figure 1, and the same applies to other similar images.

By analyzing the visualization results on the Vaihingen dataset, as shown in
Figures 14 and 15, it can be observed that our proposed method achieves superior segmen-
tation accuracy on ground object targets of different scales compared to other comparative
methods. Additionally, Figures 16 and 17 demonstrate that our proposed method achieves
better segmentation accuracy on slender ground objects and ground object edges compared
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to other comparative methods. Moreover, Figures 18 and 19 reveal that our proposed
method outperforms other comparative methods in terms of missing detections and false
detections. The above experimental results validate the effectiveness of our proposed
ASPP+-LANet model. After integrating the ASPP+ module and the FReLU activation
function, there was indeed a noticeable improvement in the segmentation performance of
ground object targets at varying scales in the Vaihingen dataset. Moreover, it also enhances
the segmentation effect for slender ground object targets, refining the segmentation edges.
These results further demonstrate the effectiveness of our approach.
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Figure 9. Visual comparison of semantic segmentation for large object features on the Potsdam da-
taset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet, (g) MANet, (h) 
UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet. 

Figure 9. Visual comparison of semantic segmentation for large object features on the Potsdam
dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet, (g) MANet,
(h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.
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Figure 11. Visual comparison of semantic segmentation for limbic ground objects features on the 
Potsdam dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet, (g) 
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Figure 12. Visual comparison of semantic segmentation for the missing detection of object features 
in the Potsdam dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) 
LANet, (g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet. 

Figure 10. Visual comparison of semantic segmentation for slender ground objects features on the
Potsdam dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet,
(g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.
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Figure 11. Visual comparison of semantic segmentation for limbic ground objects features on the 
Potsdam dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet, (g) 
MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet. 
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Figure 12. Visual comparison of semantic segmentation for the missing detection of object features 
in the Potsdam dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) 
LANet, (g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet. 

Figure 11. Visual comparison of semantic segmentation for limbic ground objects features on the
Potsdam dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet,
(g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.
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Figure 12. Visual comparison of semantic segmentation for the missing detection of object features in
the Potsdam dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet,
(g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.
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Figure 13. Visual comparison of semantic segmentation for the false detection of object features in
the Potsdam dataset. (a) Image, (b) Ground truth, (c) UNet, (d) SegNet, (e) DeepLabv3+, (f) LANet,
(g) MANet, (h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.
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(h) UnetFormer, (i) Swin-CNN, (j) ASPP+-LANet.
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3.3.3. Ablation Experiments Analysis

To effectively capture detailed features from high-resolution RS images and overcome
the technical challenges in accurately segmenting ground object targets at various scales,
we propose the ASPP+ module. Building upon the ASPP module, the ASPP+ module adds
a feature extraction channel, redefines the dilation rates, and introduces CA mechanisms,
thereby effectively improving the segmentation performance of ground object targets at
different scales. Moreover, in order to enhance the segmentation performance of slender
ground object targets and refine the segmentation edges, we replaced the activation func-
tion on the backbone network (ResNet50) with FReLU. This alteration assists in filtering out
noise and low-frequency information while preserving more high-frequency information,
thereby further improving the segmentation accuracy of RS images. We conducted corre-
sponding ablation experiments to individually verify the effectiveness of the ASPP module,
ASPP+ module, and FReLU activation function. The results of the ablation experiments on
the Potsdam and Vaihingen datasets are presented in Tables 3 and 4.

Table 3. Results of ablation experiments on the Potsdam dataset.

Method PA/% F1/% MIoU/%

LANet 93.29 78.77 72.29
LANet + ASPP 93.71 79.46 73.29

LANet + ASPP+ 93.86 79.80 73.75
LANet + FReLU 95.22 82.05 77.06
ASPP+-LANet 95.53 82.57 77.81

Table 4. Results of ablation experiments on the Vaihingen dataset.

Method PA/% F1/% MIoU/%

LANet 97.55 80.82 77.77
LANet + ASPP 97.77 81.31 78.65

LANet + ASPP+ 97.80 81.42 78.79
LANet + FReLU 97.76 81.30 78.59
ASPP+-LANet 98.24 81.99 79.83

According to Table 3, it can be observed that the inclusion of the ASPP module leads
to improvements in all performance metrics compared to the baseline network, LANet.
Furthermore, by further refining the ASPP module, we were able to achieve even more
significant enhancements in the performance metrics compared to the initial inclusion of the
ASPP module. By incorporating the FReLU activation function, significant improvements
can be observed in all performance metrics compared to the baseline network, LANet.
Finally, by integrating the ASPP+ module and the FReLU activation function into the
LANet network, we further improved the overall performance metrics. The metrics such
as PA, F1, and MioU reached 95.53%, 82.57%, and 77.81% respectively. Compared to the
baseline network, LANet, there were increases of 2.24%, 3.80%, and 5.52% in PA, F1, and
MioU, respectively.

According to Table 4, it is evident that the addition of the ASPP module leads to
improvements in all metrics compared to the baseline LANet. Subsequent modifications
made to the ASPP module result in slight enhancements in the metrics compared to the
initial implementation. Furthermore, the inclusion of the FReLU activation function leads
to improvements in all metrics compared to the LANet baseline. However, it is worth
noting that the improvement achieved by incorporating FReLU is not as significant as that
observed in the Potsdam dataset. This discrepancy could be attributed to the presence
of a higher number of RS images related to narrow streets in the Potsdam dataset, a
characteristic absent in the Vaihingen dataset. Finally, by integrating the ASPP+ module
and FReLU activation function into the LANet network, we further enhanced the overall
performance metrics. The metrics, including PA, F1, and MioU, reached 98.24%, 81.99%,
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and 79.83%, respectively. Compared to the baseline LANet, there were improvements of
0.69%, 1.17%, and 2.06% in PA, F1, and MioU metrics, respectively.

In addition, to further visually represent the impact of each module in the ablation
experiments on the results of semantic segmentation, we present the visualization of
the core component ablation experiments of our method on the Potsdam and Vaihingen
datasets, as shown in Figures 20 and 21. Among them, the first and second rows are used
to verify the efficacy of large object detection and small object detection, respectively. From
the figures, it can be observed that incorporating the ASPP+ module into LANet improves
the detection performance for ground object targets of different scales, surpassing both
LANet alone and the results of incorporating the FReLU activation function in LANet.
The third and fourth rows are used to evaluate the detection performance of slender and
limbic ground object targets. The figures demonstrate that integrating the FReLU activation
function into LANet enhances the detection of slender and limbic ground object targets,
outperforming both LANet alone and the results of incorporating the ASPP+ module in
LANet. Thus, we can conclude that the efficacy of our integration of the ASPP+ module
and FReLU activation function in LANet has been validated.
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3.3.4. Dilation Rates Analysis of ASPP+ Module

The ASPP+ module is a fusion of the enhanced ASPP [9] module and the CA [20]
module. This fusion facilitates the efficient extraction of multi-scale semantic features in RS
images. Due to the addition of an extra feature extraction channel in ASPP, as the backbone
network performs feature extraction, the resolution of the feature maps gradually decreases.
The combination of (1, 6, 12, 18) is not optimal for effectively extracting multi-resolution
feature maps. Insufficient utilization of smaller dilation rates hinders the segmentation
capability of small targets, resulting in weaker segmentation ability of the network for
ground object targets at different scales. Therefore, it is necessary to readjust the dilation
rates of the atrous convolution. Considering our two distinct datasets, to avoid redundant
experiments, we exclusively conducted the experimentation on the Potsdam dataset for
readjusting the dilation rates. In order to effectively extract multi-scale contextual features
and enhance the segmentation performance for ground object targets of varying scales, this
paper follows the guidelines outlined in Section 2.2 to determine rational dilation rates. To
this end, we devised five groups of experiments with different dilation rates for comparison
within the ASPP+-LANet network, which comprise of (1, 2, 4, 6, 8), (1, 2, 4, 8, 12), (1, 3, 6,
12, 18), (1, 3, 8, 16, 18), and (1, 3, 8, 18, 24). The experimental results are presented in Table 5.
According to the evaluation metrics obtained from different combinations of dilation rates,
the experiment achieved optimal results when the dilation rates were (1, 2, 4, 8, 12). This is
because such dilation rate settings are well-suited for feature extraction of ground object
targets at different scales in the Potsdam dataset. When the dilation rate is too large or too
small, it adversely affects the effectiveness of feature extraction.

Table 5. Comparative experiments with different dilation rates of ASPP+ on the ASPP+-LANet.

Dilation Rate PA/% F1/% MIoU/%

(1, 2, 4, 6, 8) 95.50 82.51 77.74
(1, 2, 4, 8, 12) 95.53 82.57 77.81

(1, 3, 6, 12, 18) 95.47 82.39 77.60
(1, 3, 8, 16, 18) 95.46 82.51 77.74
(1, 3, 8, 18, 24) 95.51 82.52 77.73

3.3.5. Comparative Analysis of Activation Functions

In order to validate the effectiveness of the FReLU activation function, this paper
conducted experimental comparisons of different activation functions on the benchmark
network, LANet. Considering the availability of two datasets, to avoid redundant experi-
ments, we exclusively performed activation function comparisons on the Potsdam dataset.
The results are summarized in the following table.

As depicted in Table 6, among the numerous activation functions examined, the
incorporation of the FReLU activation function into the baseline LANet network yielded
the most favorable segmentation results on the Potsdam dataset. The evaluation metrics,
including PA, F1, and MIoU, exhibited remarkable values of 95.22%, 82.05%, and 77.06%,
respectively. These findings highlight the superiority of the FReLU activation function in
enhancing the segmentation performance, specifically for RS tasks.

Table 6. Experimental Comparisons of Different Activation Functions on the LANet Network.

Activation Function PA/% F1/% MIoU/%

LANet + LeakyReLU [26] 93.34 78.73 72.31
LANet + PReLU [28] 94.37 80.65 74.94

LANet + ELU [30] 90.23 72.58 64.83
LANet + Mish [31] 89.99 73.50 65.74

LANet + DY-ReLU [32] 94.10 80.26 74.40
LANet + FReLU 95.22 82.05 77.06
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4. Discussion

According to the ablation experiments, the improved model effectively improves the
accuracy of building extraction, as indicated in Tables 3 and 4. Moreover, from the first
and second plots of Figures 20 and 21, we can see that our proposed network performs
outstandingly well in segmenting large ground object targets as well as small ground object
targets. In addition, the segmentation effect of the effect map with the ASPP module alone
is much better than that of the effect map with FReLU alone, which indicates that the ASPP
module can indeed effectively improve the segmentation effect of ground object targets
at different scales. This is due to the fact that ASPP is a multi-scale module, which can
effectively enhance the network’s ability to extract multi-scale contexts. From the third
and fourth plots of Figures 20 and 21, we can see that our proposed network performs
outstandingly well in segmenting slender ground object targets and ground object edges.
However, the segmentation effect of the effect map with the ASPP module alone is much
lower than that of the effect map with FReLU alone, which indicates that the FReLU module
can indeed effectively improve the segmentation effect of the slender ground object targets
and ground object edges. This is because FReLU is able to filter noise and low-frequency
information and retain more high-frequency information, while slender ground object
targets, as well as ground object edges, mostly belong to high-frequency information.

Regarding the ASPP+ module, we conducted detailed experiments on its dilation
rate settings, as shown in Section 3.3.4. We found that the setting of the dilation rate
is not the larger or smaller as being better for different sizes of feature targets; larger
segmentation targets can be segmented by convolutional kernels with larger dilation rates;
on the contrary, smaller targets can be segmented by convolutional kernels with smaller
dilation rates. Therefore, the dilation rate should be set reasonably and appropriately in
order to make the segmentation targets of different sizes achieve effective feature extraction.

Regarding the selection of the activation function, we also conducted detailed exper-
iments on it, as shown in Section 3.3.5. The activation function can enhance the general-
ization ability of the network, filter noise and low-frequency information, and retain more
high-frequency information, which can effectively improve the performance of the network.
However, different activation functions do not improve the performance of the network in
the same way; therefore, in this paper, the activation functions proposed in recent years
are compared and tested, and the most suitable activation function for the network in this
paper is derived.

In order to improve the robustness of the model, in this paper, we use the data
enhancement method to perform operations such as random flipping on the Potsdam and
Vaihingen datasets. We also discuss the impact of the data enhancement method on the
semantic segmentation results and, based on the analysis in Figures 22 and 23, it can be
seen that the use of the data enhancement method improves the combined performance
metrics over the non-use of the data enhancement method on both semantic segmentation
datasets, provided that all other conditions remain consistent. This further indicates that
data enhancement is one of the factors that improve the semantic segmentation results of
the method proposed in this paper.
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5. Conclusions

In this paper, we propose a multi-scale context extraction network for semantic seg-
mentation of high-resolution RS images, ASPP+-LANet, aiming to fully capture the rich
characteristics of ground object features. Firstly, we design a new ASPP+ module, expand-
ing upon the ASPP module by incorporating an additional feature extraction channel and
redesigning the dilation rate, which effectively improves the segmentation effect of ground
object features at different scales by controlling the size of the dilation rate. Furthermore,
the CA mechanism has been introduced to extract meaningful features and acquire con-
textual information. The FReLU activation function has been incorporated to enhance the
segmentation effect of slender ground object targets and refine the segmentation edges.
Therefore, on the Potsdam and Vaihingen datasets, ASPP+-LANet achieves superior seg-
mentation performance for ground object targets at different scales, as well as slender and
limbic ground object targets.

Nevertheless, certain limitations of our current approach must be acknowledged,
especially concerning the influence of shadows on the segmentation accuracy of buildings,
vegetation, and other objects, as well as the segmentation boundaries of non-smooth objects.
Changes in the color of objects like buildings and vegetation can be induced by shadows. To
address this issue, a more precise color division is required to distinguish between shadows
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and actual objects, aiming to enhance accuracy levels. Furthermore, in the detection of
non-smooth object edges, there is a need to enhance the network’s capability to identify
small target objects. This is crucial as object edges with jagged features can be perceived as
tiny targets.

In the future, we will explore better methods to achieve higher accuracy and ef-
ficiency in RS image segmentation tasks. Firstly, we will be more specific in dividing
the colors to distinguish the shadows from the actual objects; secondly, we will use the
lightweight module to better optimize the network model and improve the network model
segmentation efficiency and segmentation accuracy to solve the non-smooth ground objects
edges problem.
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