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Abstract: Each year, numerous tornadoes occur in forested regions of the United States. Due to the
substantial number of fallen trees and accessibility issues, many of these tornadoes remain poorly
documented and evaluated. The process of documenting tree damage to assess tornado intensity
is known as the treefall method, an established and reliable technique for estimating near-surface
wind speed. Consequently, the demand for documenting fallen trees has increased in recent years.
However, the treefall method proves to be extremely expensive and time-consuming, requiring a
laborious assessment of each treefall instance. This research proposes a novel approach to evaluating
treefall in large, forested regions using deep learning-based automated detection and advanced image
processing techniques. The developed treefall method relies on high-resolution aerial imagery from a
damaged forest and involves three main steps: (1) instance segmentation detection, (2) estimating
tree taper and predicting fallen tree directions, and (3) obtaining subsampled treefall vector results
indicating the predominant flow direction in geospatial coordinates. To demonstrate the method’s
effectiveness, the algorithm was applied to a tornado track rated EF-4, which occurred on 10 December
2021, cutting through the Land Between the Lakes National Recreation Area in Kentucky. Upon
observation of the predicted results, the model is demonstrated to accurately predict the predominant
treefall angles. This deep-learning-based treefall algorithm has the potential to speed up data
processing and facilitate the application of treefall methods in tornado evaluation.

Keywords: tornado damage; treefall; damage assessment; deep learning; aerial imagery

1. Introduction

Tornados are among the most destructive weather phenomena throughout the world.
In 2022, more than one thousand tornadoes occurred only across the United States [1],
where the damage caused by tornadoes reached more than $708 million [2]. Performance-
based engineering philosophies have been recently developed to reduce these losses asso-
ciated with the low probability of occurrence but with high consequence tornadic events
(e.g., [3,4]). However, the quantification of tornado hazard is still ongoing and requires
an estimation of the near-surface wind speeds. Unfortunately, there are no direct meth-
ods to measure the majority of near-surface winds, where the strongest winds occur near
the ground level [5] and where the people and anthropogenic and natural objects reside
(i.e., buildings and trees). Consequently, post-storm evaluation is the most common method
in evaluating tornado intensity. Figure 1 shows two different types of data used for the
post-storm evaluations.

Post-tornado storm evaluations can become more challenging, as a large number of
tornadoes occur in forested rural areas with low density of anthropogenic structures. The
Enhanced Fujita scale is a method developed to estimate the wind speeds of tornadoes.
This method is utilized according to anthropogenic damage indicators (Dis). It is critical to
note that the current Enhanced Fujita (EF) method is unreliable in estimating wind speeds
in regions lacking human-made features and buildings. To evaluate forest damage due
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to windstorms, previous research has focused on understanding the damage mechanism
of the trees to determine the critical wind effect on the trees (e.g., [6]). This research
identified individual tree responses and associated damage following extreme winds.
However, in reality, the resistance of an individual tree is influenced by the interaction of
the forested trees with each other. This research identified individual tree responses and
associated damage caused by extreme winds. However, it is important to consider that
in a forest, the interactions among trees significantly influence the resistance of each tree.
Consequently, assessing an individual tree’s resistance alone does not provide a robust
method for estimating the peak wind speeds in strong tornadoes. A computer model of
the forest stand has been developed to address this. This model simulates the interactions
between trees and wind, offering a deeper understanding of how tree density affects the
overall resistance of the stand [7].

Figure 1. Example of tornado-induced treefall: (a) ground-based image and (b) aerial image.

Tree damage is not solely a function of tree density, species, and wind speed. In
addition, tree damage, along with tornado intensity, is related to terrain and location. This
includes terrain effects such as surface roughness, elevation, and topography variation. In
this regard, some computer simulations have considered the effect of a single parameter,
such as surface roughness, as dominant in their modeling and evaluated variation of
the roughness in the tornado intensification [8]. On the other hand, other computational
modeling work includes topography and roughness [9,10]. While previous research studies
provide valuable information about the tornado structure and their corresponding damage
due to terrain, assumptions in generalized terrain effects due to computational demands
and lack of data availability do not reflect the real-world interactions, limiting the scope of
fully understanding tornado hazards.

Additionally, information on tornadoes in rural forested areas is limited due to a lack
of visual confirmation and sparse reporting/documentation in these regions. However,
unlike other natural hazards and in built-up anthropogenic regions, evidence of tornado
damage is persistent in forested regions. Documenting tree damage to evaluate tornado
intensity is known as the treefall method [11,12]. This is one of the most popular methods of
tornado assessment in rural areas. Treefall data from nine forested regions were analyzed to
explore the potential relationship between the angle of fallen trees and their diameter. The
analysis revealed that the tree’s diameter and its wind resistance can influence the angle of
the fallen trees [13]. These research findings underscore the significance of on-site damage
documentation following tornado events. However, this method, reliant on in-situ access
to the damaged region, underscores the necessity for remote data collection to enhance
efficiency and scalability.

Aerial imagery offers an efficient method for identifying and documenting tornado
damage, concurrently addressing accessibility challenges in forested regions. This holds
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particular significance given that not all tornadoes are documented due to underreport-
ing [14]. One of the principal challenges lies in pinpointing tornado locations in sparsely
populated areas. In addressing this challenge, researchers conducted a comprehensive
analysis of satellite imagery data, utilizing various techniques to accurately detect the
location and path information of tornado damage [15].

Satellite imagery data, with a resolution of 10 m, along with national land cover data
at a resolution of 30 m, provides an opportunity to assess elevation and tornado intensity
across the entire tornado by analyzing pixel intensity in various spectral bands, such as
the Normalized Difference Vegetation Index (NDVI) [16]. However, even with commercial
satellite imagery data, the current highest resolution is around 3 m, which proves generally
insufficient to discern fallen trees. This limitation underscores the growing preference for
aerial imagery, providing a more detailed view of the scene. For example, early studies
utilized aerial imagery to identify distinctive damage patterns [17], document tornado
marks [18], and integrate this information with topographic maps to establish a correlation
between elevation and tornado damage in forests [19,20]. Additionally, when the resolution
of the imagery is sufficient (25 cm), a tree fall pattern map can be constructed [21,22].
Ultimately, these maps can be used to develop near-surface wind speed through generated
wind direction maps [12].

Additionally, high-resolution aerial imagery data with a resolution range of approx-
imately 2-5 cm provides the opportunity to assess tornadoes with improved efficiency
and scalability. For instance, pixel assessment techniques using the Visible Difference
Vegetation Index (VDVI) can be employed to create an efficient colorized damage map [23].
Additionally, this finer resolution range provides the opportunity to estimate the EF scale
from the percentage of fallen trees [11] and to compare the Enhanced Fujita scale (EF)
damage indicator and the degree of damage with tree damage [24]. However, automated
and semi-automated methods are sought to increase the efficiency of the assessment as
well as to reduce human subjectivity.

In recent years and with advancements in computing, artificial intelligence (Al) en-
compassing both machine learning and deep learning techniques are increasingly used to
analyze images. This directly aids in the creation of automated and semi-automated data
analysis techniques. One of the earlier works that used deep learning to classify damaged
regions utilized the 3D point cloud of windstorm-damaged areas [25]. However, this study
demonstrated the computationally extensive and expensive nature of analyzing 3D data,
with only a modest gain in the use of 3D versus 2D data [26]. Consequently, 2D imagery
datasets are the most common datasets used for treefall analysis, along with other remote
sensing analyses of tornado damage.

Prior research has shown that image processing techniques using aerial imagery
can identify treefall patterns [27], with validation confirmed on three other popular tech-
niques [28]. However, it was noted that the data were cumbersome and that automated
processes could significantly enhance treefall methods. Consequently, deep learning and
machine learning approaches have been utilized to address this challenge. For example,
Al categorized images based on tornado damage and generated a heat damage map [29].
Various Al techniques demonstrated high proficiency in analyzing 2D images for tornado
damage detection. In general, the findings indicated superior performance of deep learn-
ing methods over machine learning [30], potentially due to the complexity of the data.
Furthermore, deep learning methods utilizing a pre-trained generic dataset demonstrated
improved accuracy in identifying damaged regions and locating fallen trees [31]. However,
a primary limitation of these methods lies in the low amount of training data, which results
in limited model generalization.

Aiming to increase the accuracy of the estimated near surface-wind speed of the
tornado, previous studies have developed methods and algorithms to evaluate damage
along the tornado path. However, many studies have not taken into consideration some
limitations related to human subjectivity and bias, assessing the whole tornado path
due to extensive labor work and processing time. Another limitation of those methods
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is the accessibility to the high-quality data set. This research aims to provide a time-
efficient automated method empowered by deep learning and image processing techniques
to identify the direction of the fallen trees using high-resolution aerial imagery data to
generate the wind direction map in the impacted area. One of the main advantages of the
proposed method is the high processing speed and generalizability of the trained model, in
addition to improved objectivity.

To this end, this paper aims to overcome the limitations identified in previous re-
search regarding the estimation of treefall angles and the generation of wind direction
maps. It introduces significant contributions to the field, with key factors including the
application of an efficient deep-learning method for improved scalability. This enables
the proposed method to detect a higher number of fallen trees effectively. Moreover, the
algorithm integrates tree taper to achieve accurate estimations of tornado-induced fallen
tree directions, enhancing the interpretability of the deep learning model. Additionally, a
parametric analysis is conducted to eliminate inaccurate predictions by considering the
physical properties of the tree annotations and their deviations. Ultimately, the methodol-
ogy goes beyond conventional approaches by generating a wind direction map based on
the averaged treefall damage. These contributions collectively strengthen the robustness
and precision of the proposed methodology.

2. Dataset and Data Preparation

The data used in this project and the development of the algorithm consist of post-
tornado aerial imagery obtained from an uncrewed aerial system (UAS) in a forested
region of Kentucky and Tennessee. This forest region was devoid of many anthropogenic
structures, except for a few recreational sites and access roads. The forest inventory
primarily consisted of deciduous trees, but conifer trees were also present. The aerial
imagery used in the model development comprises high-resolution orthomosaic images
in the visible spectrum of approximately 2.0 cm, tiled at 1024 square pixels. The format of
the tiled images is GeoTIFE, which includes geospatial information in terms of geographic
coordinates and projection details.

These images were generated using a Structure-from-Motion (S5fM, version 2.0.2)
software platform [32]. Here, orthomosaic images are desirable due to their nadir view,
corrected for perspective, camera angle, lens distortion, and topographic relief. They were
collected using a fixed-wing UAS platform in a single-grid flight pattern, including post-
processing kinematic tagging for centimeter accuracy precision [33]. Moreover, the images
were collected during the leaf-off season to allow the camera view to penetrate the tree
canopy. The data is further described in Section 4, where the model is applied to determine
the near-surface wind direction map for a large region of a tornado track through a forest.

3. Methodology

This research focuses on analyzing and vectorizing treefall patterns through an aerial
imagery dataset in the visible spectrum. The algorithm crafted for this purpose consists
of three primary phases to identify treefall patterns. Initially, the dataset undergoes pre-
processing, training a deep learning model to spot fallen tree trunks. Following this, the
imagery dataset is processed to identify fallen trees in each image. The third phase involves
image processing to vectorize the direction of the fallen tree and geolocate treefall angles.

Figure 2 illustrates a summary flowchart of the algorithm.

In the developed deep learning model, the output is the instance segmentation of each
treefall, providing the boundaries of the tree trunk in pixel coordinates. Subsequently, the
polygon coordinates are utilized to quantify the tree taper rate for each tree trunk. Tree
taper, a critical factor in determining the direction of a fallen tree, is defined as the reduction
in tree diameter with the increase in the tree’s height [34]. This step is critical due to the
rectangular nature of the detected tree trunks, ensuring the correct orientation from the
root to the top of the tree. Finally, the treefall directions are converted to their geolocation
and, if needed, subsampled to generate a representative treefall pattern.
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Figure 2. Synopsis flowchart of the developed treefall algorithm.

3.1. 2D Training Model

In the developed method, the workflow initiates with tiled orthomosaic images in the
visible spectrum. The images in this study were annotated for two categories: treefall and
root ball instances. In the segmentation of treefall instances, focus is placed exclusively
on the visible portion of the tree trunk. This includes the area from the base or the lowest
point of the tree, extending to where a deciduous tree branches out or encompassing the
predominant length of conifer trees. It is important to note that while trees comprise
branches and roots, these components are not always visible or discernible in the dataset.
This lack of visibility is particularly common in densely forested areas, where treetops
often overlap, making them unclear. The annotations were performed by one person, and
a second person always performed quality control validation [35]. The annotated images
train the selected YOLOv8x-seg model [36]. This is the large instance segmentation-specific
version of YOLOv8x-seg developed by Ultralytics, which stands for “You Only Look One-
level version 8”. The series of YOLOv8 models and their predecessors are known for their
real-time object detection capabilities that utilize single-shot detection [37]. This is a critical
feature, meaning they can detect and classify objects in an image at high speed, allowing
for the scalability of the developed algorithm. This is a critical feature, meaning they can
detect and classify objects in an image at high speed, allowing for the scalability of the
developed algorithm.

Regarding the selection of the image sizes, training documentation for YoloV8 indicates
that using higher resolution images is beneficial when training with a high count of small
objects, such as treefall instances [37]. Therefore, the image size was set to 1024 by 1024
pixels. This resolution offers a balance between higher-quality images and the ability to use
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larger batch sizes during training. Additionally, this resolution provides a square tile with
an approximate area of 20 m, meeting the desired specifications. For consistent inference
and detection, input images of the same size are recommended.

The large instance segmentation model, encompassing 71 million parameters, was
selected. Despite a slight reduction in detection speed, this model exhibits the highest
mean average precision, for instance, segmentation. This is particularly evident in the
intersect over union (IoU) metrics at both 50% and 50-90%, as established during the
model’s development [38]. The main parts of this model are the head, neck, and backbone.
The backbone of this model provides five different scaled features labeled as P1-P5. This
architecture is based on the coarse-to-fine (C2f) module that enhances information flow [39].
In this step, the Spatial Pyramid Pooling (SPPF) module adapts the special distribution
of the features to create output features. The location of the backbone output features
is identified in the neck part of the model. This structure enables the model to predict
small details in large images, a key feature in identifying fallen trees in the dataset and
improves the precision of the model. Ultimately, the detection is completed in the head part
of the model. The head of the model contains two different sections; one of these sections
identifies the feature class with binary cross-entropy loss (BCE Loss) for object classification,
and the other section identifies the exact location of the object with distribution focal loss
(DFL) for bounding box regression.

3.1.1. Data Preparation

A total of 5100 instance-level annotated images have been uploaded to an online
platform for management, splitting, and augmentation [40]. These images are annotated for
both the treefall and root ball instances, meaning each image may include instances from
one or both categories. The dataset was divided into three distinct sets: training, validation,
and testing, constituting 60% (3017 images), 20% (1005 images), and 20% (1006 images)
of the entire dataset, respectively. Data augmentation was performed to add variation to
the dataset and mitigate specific biases. The selection of annotated images encompassed
diverse topographical regions of a tornado-damaged forested area, as previously detailed in
Section 2, to accommodate variations in resolution, lighting, and tree species. This process
was carried out to balance the dataset in terms of composition.

Figure 3 presents an illustrative example of annotated images, showing scenarios
where trees are only partially captured or completely absent, along with the presence of
excessive shadows. These images were left unaltered as such scenarios are expected in
the data used by the trained deep learning model. During the annotation process, only
significant and visible instances of treefall and root ball were annotated. The aim is to use
these annotations for further processing to quantify the treefall angle. In these images,
the blue polygons denote fallen tree trunks, while the red polygons represent the root
balls. It is noteworthy that the root balls are reserved for future use in the annotated
data and the developed model, as they are not explicitly utilized in the current treefall
detection algorithm.

Image augmentation is conducted in this study due to the substantial number of
learnable parameters in the yolov8x-seg deep learning model. Within the proposed method,
augmentation enhances model generalizability by introducing both data variation as well
as an increase in the number of training instances. However, it is pivotal to carefully choose
an augmentation method that aligns with the potential challenges present in the dataset [41].
In this algorithm development, eight image augmentation techniques, including flip, rotate,
shear, crop and rotation, noise, blur, and cutout, were employed to increase variability.
Additionally, applying augmentation techniques not only increased the size of the training
dataset but also its variation, reducing potential overfitting. During initial training sessions,
it was noticed that augmentation boosted the mAP50 value by about 6-8%, which is crucial
for the effective deployment of the model. This positive impact of augmentation aligns
with findings from previous studies [42]. It is worth noting that the use of noise, blur, and
cutouts [43], while not common in augmentation techniques, was intentionally incorporated
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to address the peculiarities of less-than-ideal orthomosaic images in nature [44]. Mosaiced
images are susceptible to blur, ghosting, and other irregularities, and the inclusion of noise,
blur, and cutouts contributes to the development of a robust model.

(b)

Figure 3. Example input image annotations: (a) shows a high density of fallen trees, while (b) depicts
a low density of fallen trees. In this image, the blue and red colors are used to represent instances of

treefall and root ball, respectively.

Augmentation was applied randomly exclusively to the training images, thereby
augmenting the size of the training set only. Consequently, the distribution of the dataset
used in the developed model is as follows: training (24,136 images), test (1006 images), and
validation (1005 images). Following the completion of the training process, the performance
is evaluated on the testing dataset. Figure 4 showcases an example of the training images,
highlighting some of the effects of augmentation.

(b)

(@

Figure 4. Examples of training datasets used for the model: (a—d) original images and (e-h) aug-
mented versions of the same images, respectively.
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3.1.2. Deep Learning Model Performance

The model’s training initially took place online [40], but it was subsequently iterated
and refined using local resources, resulting in improved predictions as anticipated. The
model was trained in a Linux-based environment, utilizing an Intel Xeon Gold 5218 CPU,
248 GB of RAM, and an NVIDIA RTX™ A6000 graphics processing unit (GPU) equipped
with 48 GB GDDR6 memory and 10,752 CUDA cores. This GPU is optimized for artificial
intelligence applications.

Based on the results of hyperparameter tuning, the maximum number of epochs
considered was set at 40. Figure 5 illustrates the training and validation loss curves over a
40-epoch training. As shown in Figure 5a, a notable observation in the validation errors
revealed that the model started to diverge slightly after 20 epochs. Consequently, epoch 20,
identified during training, represented the optimal model and was selected for implementa-
tion in the algorithm. As depicted in Figure 5, the validation loss is lower than the training
loss. While this outcome is not commonly expected, it can be attributed to the extensive
data augmentation, incorporating noise, blurring, and cutouts. The results demonstrate
that the trained model exhibits reliable predictive performance on the validation dataset.

3] |——— Train Box Loss | | 3 — Train Seg Loss | |
250 |~ ValBox Loss || 25! —— Val Seg Loss
2 2
Q Q
a2y - Q2 ]
0 10 20 30 40 0 10 20 30 40
Epochs Epochs

(a) (b)

Figure 5. The training and validation loss against the number of epochs for (a) object detection and
(b) instance segmentation of the model.

The evaluation of model performance relies on the mean average precision (mAP)
value, a calculation derived from mean precision (e.g., [45]). A higher mAP value serves as
an indicator of superior overall performance for the prediction model. Figure 6 displays
the mean average precision for both box and mask predictions at an intersection over
union (IoU) of 50 for the testing set. In this figure, ‘box predictions’ refer to bounding box
detection, and ‘mask predictions’ refer to instance segmentation. Notably, the figure shows
a progressive increase in mean average precision across each epoch, ultimately reaching
a peak value of 80.23%. This ascent underscores the model’s precision in pinpointing
instances and accurately classifying them. The observed trend implies not only an enhance-
ment in model precision throughout each epoch, up to 20, but is also an improvement in
the overall performance of the model.

As shown in Figure 5, At the onset of training (epoch 1), the loss (error) is lower
for object detection, with a value of 1.82, as depicted in Figure 5a, compared to instance
segmentation, which shows a loss of 3.09 as illustrated in Figure 5b. This difference can
be attributed to the complexity of the segmentation task. However, as shown in Figure 6,
the mean precision of the model in both detection and segmentation became equal and
reached 80.23% and 80.22%, respectively. An equal mean average precision (mAP) value
observed at the end of the training indicates a balanced performance of the model in both
localization and object segmentation. Here, localization pertains to accurately identifying
the bounding box of the object (treefall or root instance), whereas object segmentation
involves delineating the precise outline of the object within the mask prediction. This
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equality in mAP values suggests that the model is equally proficient in predicting both the
bounding box and the mask with similar levels of precision.

0.8f i i ——
S 0.75
[a )
Qé 0.7
0.65 : ‘ ‘ : : : :
0 10 20 30 40 0 10 20 30 40
Epochs Epochs

(a) (b)

Figure 6. Mean average precision curves of the training. (a) Curve of box mAP in IoU 50. (b) Curve
of mask mAP in IoU 50.

A normalized confusion matrix was employed, given the imbalance in the number of
‘treefall” and ‘root” instances in the training dataset. Therefore, considering their proportion
is crucial as it offers valuable insights into the classification performance of the deep learning
mod1024el on the validation data. The confusion matrix in this study distinguishes among
three classes: root (balls), treefall, and background. The background class, a default category
in YOLO models, aids in identifying false-positive and false-negative predictions for the
annotated classes. It represents areas of the images where the model does not make any
predictions. While this class is instrumental in determining the rates of false positives and
negatives, it is not independently considered in the calculation of performance metrics [46].
Figure 7 presents the confusion matrix constructed based on the count of each prediction in
the validation dataset. In this matrix, a false-negative value represents a missed detection,
where a false-negative rate of 0.24 in the background class indicates that 24% of the actual
treefall instances were mistakenly considered background, leading to missed detections.

Additionally, the high false-positive rate of 0.87 is attributed to the frequent misclassifi-
cation of long fallen tree trunks in numerous instances and some branches as ‘treefall’. The
notable occurrence of false negatives (0.87) in the background for treefall suggests a high
missed detection rate for fallen trees. Nevertheless, the misdetection rate remains relatively
low. In these results, many of the undetected trees were slender, resembling branches due
to their reduced thickness. While it might be assumed that slender trees have lower wind
resistance, they can actually be more resistant due to flexible trunks and smaller surface
areas for wind pressure. Despite not providing a representative indication of the prevailing
wind direction, these trees were retained in the imagery dataset during preprocessing to
avoid introducing bias. Consequently, they may not provide a representative indication of
the prevailing wind direction. Moreover, it is anticipated that many instances of treefalls
will be averaged to provide a representative wind direction in a given grid dimension; this
will be discussed in later sections.

Table 1 presents the precision, recall (sensitivity), F1 score, and specificity calculated
for the prediction model according to the following equations:

Precision True Positive 1)
recision =
True Positive + False Positive

True Positive
Recall = 2
eca True Positive + False Negative @
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Figure 7. Normalized confusion matrix.

Examining the data in Table 1, it becomes evident that the precision for the ‘root ball’
class is 85.96%. This figure suggests a high level of accuracy, with the deep learning model
correctly identifying root balls in 85.96% of cases. Additionally, the recall (sensitivity) for
this class is 79.99%, indicating the model’s capability to correctly classify nearly 80% of the
root ball instances encountered. Collectively, these metrics result in an F1 score of 0.83, a
value typically considered ‘good” in practice, especially when it exceeds the threshold of
0.7 [47]. The “treefall’ class exhibits a precision rate of 75.46%, which is slightly lower than
that of the ‘root’ class. However, since this value surpasses 70%, it generally falls within
the acceptable range in accordance with common guidelines.

Table 1. Precision, recall (sensitivity), F1 score, and specificity of the YOLOv8x-seg.

Class Precision (%) Recall (%) F1 Score Specificity
Treefall 75.46 64.02 0.69 0.36
Root 85.96 79.99 0.83 0.92

Furthermore, this performance aligns with the objectives set for the model. Moreover,
the F1 score, representing the harmonic mean between precision and recall, supports this
conclusion. The F1 score for the ‘root” prediction class is 0.83, signifying excellent model
performance in predicting roots in images. The F1 score for the ‘treefall’ class stands at 0.69,
which is just shy of the 0.70 benchmark. Despite being slightly below this threshold, this
score is deemed acceptable, aligning with the deep learning model’s objectives and intended
application. In practical deployment, it is expected that averaging multiple instances of
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treefalls will enhance reliability, particularly in the generation of a wind direction map [47].
Although the ‘treefall’ class has a lower F1 score due to a higher false-negative rate in
predictions, it still falls within a generally acceptable range. A false-negative value signifies
a missed detection in each prediction class. In this research, the primary objective is to
identify a fallen tree polygon and represent it with a vector arrow. Accurate identification
of the fallen tree is crucial, making high precision less critical. This is further emphasized as
many fallen trees will be averaged to quantify a representative wind direction in a specific
grid size, as will be discussed.

3.2. Taper Estimation

The proposed method leverages image processing techniques to process the infor-
mation extracted from the deep learning model. This approach utilizes the predicted
annotation point coordinates, extracted from model-predicted polygons in the JSON files,
to estimate tree taper. The presumption is made that the tree stem diameter follows a linear
decrease with tree height, where the approximate slope of the tree diameter represents
the average tree taper rate [48]. Consequently, the coordinates of treefall pixel points are
extracted to quantify tree taper and, consequently, determine the direction of the tree.
Figure 8 illustrates an example where one of the tree outlines is imported for analysis in the
local image coordinates (in pixels).

100 -8

200 & ; : —
Selecting tree
300 - ‘ o, polygon for
W4 ¥ Processing.
400 £ /
=
g /;
= 500 -|4
&n
) R
T 600 f
700
800
900
1000 /f LN TN
100 200 300 400 500 600 700 800 900 1000
Width (px)

Figure 8. The boundary of the tree trunk is exported into the image coordinate.

With the imported tree outlines, the initial step involves determining the midpoint
of the trunk as a function of height. Acknowledging that most trees exhibit linear charac-
teristics, but some may be curved, especially after windstorms, a third-degree nonlinear
regression is employed to approximate the middle section of the trunk. Utilizing this curve,
the two edges of the tree trunk are segmented into positive and negative components
(Figure 9), and the distance between them is subsequently measured to quantify the tree
taper rate or slope. Figure 9c demonstrates an illustrative taper rate.
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Figure 9. Treefall trunk polygon example: (a) rotating tree polygon for taper assessment; (b) linear
edge lines replaced with the boundary of the tree polygon; (c) illustration of tree taper rate, denoted
as p.

With a linear taper rate and the variables shown in Figure 9, the taper rate is computed
as shown in Equation (5):
Ty —1r
= 5
A — ®)

where 1 and 7, represent the widths of the tree trunk and h, — h; is the length of the
tree polygon. To assess the validity of the calculations of the taper rate, the computed
values are compared with the recorded taper rate values in the previous studies [48]. It
was found that the remotely sensed tree taper values are in close agreement with their
field measurements. Subsequently, the direction of the fallen trees is assigned based on
the sign of the taper rate (increasing or decreasing). In this method, the top of the tree is
identified in the direction where the taper rate is negative, indicating a decrease in the
trunk’s diameter with an increase in the height of the standing tree [48]. Figure 10 shows
the predicted fall direction for the tree polygon. Note this predicted fall direction is in
agreement with the yellow-boxed polygon in Figure 8. This step completes the basic treefall
detection and directional assignment; however, additional steps are needed to keep only
statistically confident detections and convert them to real-world units.
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Figure 10. Estimated direction for one example tree polygon. The black polygon represents the
boundary of the tree trunk predicted by the model, and the red arrow represents the estimated
direction of the fallen tree.

3.3. Parametric Analysis

Different statistical techniques were employed to reduce mispredictions, which may
occur due to discrepancies in the tree polygon resulting from pixel distortion or errors in
the instance segmentation model. Here, the primary aim of the parametric analysis is to
remove unreliable assigned directions or mispredictions. This is performed by identifying
and filtering out distorted tree polygons. This is performed in an empirical manner, but
this also instills some interpretability in the detected model as it provides some physical
and realistic bounds on the detections based on known characteristics of the fallen trees
and the imagery dataset.

In this analysis, statistical parameters employed for filtering encompass (1) taper
rate, indicating the change in tree diameter over a specific tree length; (2) confidence
level, representing the probability that the prediction is correct; (3) thickness range; and
(4) the coefficient of determination. The first parameter of the tree taper is established to
remove polygons that do not have a pronounced taper. Secondly, the confidence level
relates to the model’s detection confidence. The thickness range removes small-diameter
trees, branches, and other features that are not as reliable and/or characterized by lower
wind resistance. The last filter parameter is also a very efficient geometric descriptor, the
coefficient of determination (R2), which evaluates how well a linear model fits the dataset.
This coefficient value ranges from 0 to 1, with higher values indicating a better fit of the
linear model to the data.

A parametric analysis was performed to achieve the best value for each of the statistical
parameters. Here, the goal was to define a threshold value that increases the efficiency
of the predicted directions by removing the inaccurate directions and retaining as many
correct directions as possible. To this end, a randomly identified subset of 7275 images was
selected, totaling 78,059 instances. These instances provide a comprehensive representation
of the dataset, encompassing various tree species, thicknesses, heights, and environmental
effects, including shadows. Different threshold values were independently applied to
various parameters. The impact of these thresholds on the accuracy of the remaining
dataset was then assessed and documented, focusing on the number of mispredictions and
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the accuracy of treefall angle predictions. The optimal threshold for each parameter was
selected to strike a balance between significantly reducing mispredictions and maintaining
accurate predictions. Table 2 outlines these specific threshold values. By applying these
thresholds, it was possible to eliminate 34% of the inaccurate predictions from the dataset.
It is important to note that the range of these threshold values might vary in other datasets
due to differences in ground sampling distance (GSD) and data quality (e.g., blurriness).
Therefore, it is expected that each statistical parameter discussed in this study will be
fine-tuned when evaluating different tornado tracks for optimal effectiveness. Table 2
shows the optimized threshold value determined based on the parametric evaluations in
this research. As a result of these filters, all of the tree trunks that are extremely curved,
have flat edges, or have unusual taper rates are removed. It is also noted that while these
parameters are determined empirically on a subset of the data, they provide a physical
context to the detections, increasing the interpretability of the deep learning model and the
algorithm that was developed.

Table 2. Optimized threshold values for filtering.

Parameters Values
Thickness range <1.2

Taper rate <0.002
Confidence level <0.2
Coefficient of determination <0.01

3.4. Geolocating the Results and Averaged Representative Directions

In the algorithm to date, the predicted treefall directions are located in the local image
coordinate system for each instance. For a comprehensive assessment of real tornadoes,
it is essential to scale and translate the results into real-world coordinates. This requires
a conversion of the pixel coordinates to projected coordinates. Projected coordinates are
initially selected in lieu of a geodetic coordinate system as they relate to localization in
units of length, with meters being the most common, which is critical for the last step of
the algorithm. The imported file types are GeoTIFFs, where the coordinate system of the
image is defined and can be applied on a per-image basis to the treefall instances. This is
performed for all images that have detected treefall instances and met the filtering criteria,
and the pixel coordinates are converted to projected coordinates (in length units). In a final
and exported step, the start location and end location of each of the detected treefalls are also
translated to WGS-84 values of latitude and longitude along with the predicted fall direction
(azimuth angle) for ease in geographical information system software (GIS) platforms.

Due to the large count of the detected fallen trees and their predicted fall angles, this
can be complex and cumbersome in data size. Consequently, a box method is employed to
determine the representative fall direction in a determined grid cell size. To enhance the
efficiency of the assessment, each box is evaluated separately [49]. This step is commonly
performed in the treefall methods as it provides a more reliable assessment of the wind
direction on average. In this final step, an additional requirement of a minimum number of
fallen trees is established to account for areas where the treefall is sparse. For the selected
grid size, the median direction of fallen trees is calculated for grid cells exceeding the
minimum count of fallen trees. The grid size is fixed at 75 m by 75 m, taking into account
the width of the tornado damage path and the density of treefalls, with a threshold of
at least 10 trees per cell. Although these figures aim to illustrate general trends for this
dataset, they are anticipated to be adjusted for other datasets, depending on the particular
spatial distribution and density of treefalls in the damage scene. The results of the gridded
representative wind directions are illustrated in Figure 11. It is noted that these numbers
work well for this dataset, but it is anticipated that the grid size and the minimum number
of trees will be dependent on the intensity of the tornado, the width and path of the tornado,
and the forest stand structure.
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Figure 11. Treefall pattern generated based on the median of the estimated angles.

4. Results and Discussion

To evaluate the model’s performance, a study area was selected from two tornado
tracks in the Land Between the Lakes National Recreation Area (LBL) in the United States,
which was hit by a tornado on 10 December 2021. In this research, the north track was
chosen for the model assessment. The northern track is located in Kentucky, and according
to the National Weather Service, the tornado was rated as EF-4 [50]. The north track covers
a region of approximately 26 km?, created from the ten surveying zones conducted after
the tornado during the research project. The observed damage in the area was mainly large,
uprooted trees, but snapped trees and thrown trees were also present. Figure 12 shows the
detailed location of the selected study region in red color in Kentucky.
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Figure 12. Map of the Land Between the Lakes (LBL) region showing the tornado extent and the

location of the surveying sites in red.

Tiled orthophotos, exported as GeoTIFFs, were leveraged and imported into the
developed algorithm to detect fallen trees. It is noted that the dataset used to train the
model was selected from various surveying zones of this similar region. However, this
analysis utilizes the entire track that bisected this section of the forest. In this application,
the entire northern track consists of 76,885 orthophotos, which have a ground sampling
distance of 2 cm (or better).

After each of these images was run through the trained deep learning model,
907,863 treefall instances were detected. A JSON was exported for each of the images
that contain a treefall instance, and a polygon outline was provided for each treefall.
Figure 13 demonstrates some detection results on the previously unseen images. This
figure shows that the model could predict fallen tree trunks with high confidence levels.
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More importantly, the observation supports the high false-negative rate in the confusion
matrix. These missed detections correlated with the narrow trees and also trees located in
regions with high branches.

(b)

Figure 13. Example input images with annotations: (a) original images; (b) images with annotations;
(c) detected instances from the deep learning model. In this figure, blue represents a fallen tree trunk,
and red represents a root ball.

4.1. Tree Taper and Parametric Filtering

In the next step, the fallen tree polygon coordinates are used to quantify the taper
rate and its corresponding sign (positive or negative). With the sign of the taper rate,
the direction of the fallen tree is identified for each treefall instance. As highlighted in
Figure 14, some inaccuracies persist in the direction of the fallen trees. This is a result of
some trees being partially covered with other fallen trees due to the dense forest stand;
consequently, the deep learning model predicts a distorted polygon. In this figure, each red
arrow indicates the direction of one fallen tree instance.

Afterward, the predefined threshold values for the parameters were applied to elim-
inate perceived unreliable predicted directions. Here, the mispredicted angles have a
180-degree error, which is associated with the distortion in the tree polygon and the unreli-
ability of the tree taper. As outlined earlier, a parametric analysis quantified values that
can be used for the taper rate, thickness, confidence level, and coefficient determination
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(Table 2). This allows for the identification and subsequent removal of distorted annotations.
After the filtering operation, 788,332 instances remained, and 119,531 (13%) were removed.
This shows that the predictions are mainly logical and accurate.

- "

Figure 14. Estimated treefall direction determined: (a,c) original image; (b,d) predicted fall angle

overlaid on images. In this figure, the red arrows represent the estimated treefall directions and the
yellow circles indicate the inaccurate angle estimations.

4.2. Evaluating Predicted Treefall Direction

To rigorously test the algorithm’s ability to accurately predict the direction of treefall
using tree taper, two distinct regions, each approximately 500 x 500 m in size, have been
selected. These regions were chosen to represent the diversity of the damaged forested
area: one region predominantly features deciduous trees without leaves, and the other
comprises a mix of deciduous and conifer trees. Figure 15 visually represents these regions,
with the first region, shown in Figure 15a, notably containing many shadows. Across these
regions, over 2300 treefall directions were manually annotated to compare with the deep
learning model’s predicted instances and assigned directions. This process was conducted
randomly in these areas, aiming to measure the accuracy of the predicted treefall directions.
The analysis, performed on a per-tree-instance basis, reveals a weighted average accuracy
rate of 73.22% in correctly predicting treefall direction. This metric is derived from 893
correctly predicted directions out of 1238 treefall instances in the first region and 841 correct
predictions out of 1130 instances in the second region.
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(b)

Figure 15. Color-coded results of treefall direction accuracy, with green indicating accurate values

and black representing incorrect values, depicted over two zones: (a) the first region predominantly
populated by deciduous trees with shadows, and (b) the second region characterized by a mixture of
coniferous and deciduous trees.

4.3. Treefall Pattern

The directional information from the filtered treefall instances is employed to compre-
hend the treefall pattern and wind dynamics within the northern track area. As depicted
in Figure 16a, each arrow signifies the median of all tree directions established for the
northern track for a grid spacing of 75 m. This is expanded to show a larger section in
Figure 16b. Moreover, approximately one-third of the northern track is shown in Figure 16c,
demonstrating the algorithm’s efficiency and scalability. This figure also illustrates the
treefall pattern. Concurrently, it reveals a convergent pattern and a broader damaged
region on the south side of the path, consistent with prior findings [11].

The digital elevation map was derived by the project team using a publicly available
lidar dataset captured in [51], which predates the tornado event. The processed DEM was
constructed with a resolution of 2 m. This involved utilizing a digital elevation model
(DEM) representing only ground points, colorized by elevation, as depicted in Figure 17.
Based on a preliminary assessment of wind direction versus elevation, it appears that at
least two interactions may be present in certain regions of the area. The first observed
interaction is the tornado deflecting to the left while climbing the windward side of a hill,
then deflecting to the right while descending the leeward side [9].
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Figure 16. Cont.
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Moreover, further down the track on the east end, the tornado’s path seems to travel

along an undulating valley bottom [52]. It is important to note that these observations are

igure

preliminary in nature. Further exploration will employ a more robust treefall estimation

represents the center of a 75 m by 75 m grid.
method [12], directly leveraging the output from the developed algorithm.
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5. Conclusions and Future Work

This manuscript introduces and assesses a methodology for detecting fallen trees
in tornado-impacted areas using 2D aerial imagery data, eliminating the need for on-
site surveying and minimizing access requirements to the affected forested region. The
developed method employs YOLOv8x-seg, incorporating object detection and instance
segmentation, to identify fallen trees and determine the point coordinates of the trunk
polygon for each treefall. Additionally, a tree taper is employed to ascertain the direction of
each fallen tree, providing interpretability and filtering distorted polygons when the tree
taper is indiscernible.

To assess the method, a dataset from the 2021 Kentucky tornado outbreak is analyzed,
relying solely on tiled 2D orthoimages in GeoTiff format. Due to the extensive volume
of fallen trees in the case study, results are subsampled to quantify the representative fall
directions in terms of the median direction. The developed method achieves a fallen tree
detection accuracy, recall, and precision equal to 74.6%, 64.02%, and 75.46%, respectively.
The analysis demonstrates that the method can successfully identify the direction of treefall
with an accuracy exceeding 73%. While the proposed method precisely detects the direction
for individual trees in unseen data, instances of misalignment by 180 degrees are observed,
often attributed to multiple trees falling in the same region and discrepancies in predicted
trunk polygons.

The algorithm developed primarily for analyzing tornadoes also holds potential for
application in various other types of windstorms. This adaptability broadens the scope of
the algorithm, making it a versatile tool in the study of windstorm impacts.

The current model is deliberately tailored for forested regions, excluding suburban
and crop areas [53]. Ongoing efforts involve implementing a comparable algorithm with
a different deep-learning model designed for these specific scenarios. Regardless of the
training dataset’s size, all imagery datasets inherently exhibit limited representation in
terms of tree species influenced by geographical location. Concurrently, the proposed
method has been utilized to evaluate treefall damage following various windstorms. While
the results are promising, the necessity for further studies is underscored by the limited
size of the data. Such extended research is essential to validate and enhance the reliability
of the findings. The continuous enhancement of the dataset’s diversity and quantity of
tree species remains a critical undertaking poised to have a substantial impact on ongoing
model performance refinement.
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