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Abstract: For the actual collected point cloud data, there are widespread challenges such as semantic
inconsistency, density variations, and sparse spatial distribution. A network called PointMM is
developed in this study to enhance the accuracy of point cloud semantic segmentation in complex
scenes. The main contribution of PointMM involves two aspects: (1) Multi-spatial feature encoding.
We leverage a novel feature encoding module to learn multi-spatial features from the neighborhood
point set obtained by k-nearest neighbors (KNN) in the feature space. This enhances the network’s
ability to learn the spatial structures of various samples more finely and completely. (2) Multi-head
attention pooling. We leverage a multi-head attention pooling module to address the limitations of
symmetric function-based pooling, such as maximum and average pooling, in terms of losing detailed
feature information. This is achieved by aggregating multi-spatial and attribute features of point
clouds, thereby enhancing the network’s ability to transmit information more comprehensively and
accurately. Experiments on publicly available point cloud datasets S3DIS and ISPRS 3D Vaihingen
demonstrate that PointMM effectively learns features at different levels, while improving the semantic
segmentation accuracy of various objects. Compared to 12 state-of-the-art methods reported in the
literature, PointMM outperforms the runner-up by 2.3% in OA on the ISPRS 3D Vaihingen dataset,
and achieves the third best performance in both OA and MioU on the S3DIS dataset. Both achieve a
satisfactory balance between OA, F1, and MioU.

Keywords: point cloud semantic segmentation; CNN; multi-spatial feature encoding; multi-head
attention pooling

1. Introduction

Compared to 2D images, three-dimensional point clouds obtained using 3D scanners
and depth sensors (such as LiDAR and RGB-D cameras) can more comprehensively and
intuitively express the spatial relationships between various targets in the scene. They
have been widely utilized in various industries, including 3D modeling [1], autonomous
driving [2], and metaverse [3], and natural resource surveys [4]. Point cloud semantic
segmentation is a crucial supporting technology for understanding and analyzing 3D
scenes [5]. However, due to the spatiotemporal complexity, the irregular distribution of
terrain surfaces, and the non-uniformity and disorder of point clouds themselves, achieving
high-precision point cloud semantic segmentation in large-scale complex scenes remains an
extremely challenging task. Designing point cloud semantic segmentation convolutional
neural networks with end-to-end output capability and adaptability to various scenarios
has become a current research focus [6], which can be broadly categorized into two types:
indirect and direct methods. Our approach belongs to the latter.
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An indirect semantic segmentation network needs to preprocess the original point
cloud into a 2D/3D grid structure to leverage mature image-based CNNs for tasks such as
object classification and semantic segmentation. For instance, WhuY4 [7] and NANJ2 [8]
design CNNs to extract multiscale local features from projection view of point clouds. On
this basis, they calculate category probabilities for each point and construct a decision tree
to guide subsequent retraining. Individuals such as GERDZHEV [9] utilize convolutional
kernels of varying scales to capture contextual information and aggregate feature informa-
tion at different scales to obtain segmentation results. GFNet [10] employs bidirectional
alignment and the propagation of complementary information to learn geometric informa-
tion between different projection views. AGNet [11] introduces attention pooling on the
basis of traditional graph neural network (GNN) to score feature importance. GaIA [12]
autonomously learns crucial regions of point clouds based on graphical information gain
and applies it to semantic segmentation tasks. However, a considerable amount of geo-
metric structure, orientation, and other spatial relation information of target objects are
lost during the point cloud projection process. Therefore, the point cloud semantic seg-
mentation networks under multi-view projection are sensitive to changes in viewpoint and
anomalies caused by occlusion. Represented by PVCNN [13], VoxSegNet [14], PVCL [15],
and MPVConv [16], voxel-based 3D convolutional neural networks can effectively learn
3D spatial information and context-dependent relationships of point clouds. However, the
sparsity and uneven density of point clouds can generate a large number of empty grids,
resulting in low computational efficiency and high memory usage.

Direct point cloud semantic segmentation network learns features straightforwardly
from 3D point clouds without the need to pre-process them into 2D/3D grids. Remarkable
works have been carried out by PointNet [17] and PointNet++ [18] in solving the challenges
of large-scale point cloud network computing through farthest point sampling (FPS). How-
ever, overly independent point operations in the networks hinder the capture of local spatial
structures. To address this issue, PointSIFT [19], inspired by the SIFT operator, encodes the
features in eight directions in the XYZ space to overcome the limitation of PointNet++ in
restricting its k-nearest neighbor search to the same direction. However, this method is
exceptionally sensitive to the orientation information of objects. PointWeb [20] aggregates
local point cloud information through an adaptive feature adjustment module. HPRS [21]
develops an adaptive spherical query module to simultaneously capture global features
and finer-grained local features. MappingConvSeg [22] conducts spherical neighborhood
feature learning at each downsampling layer, enhancing the network’s ability to capture
complex geometric structures. Zhao et al. [23] introduces dynamic convolution filters
(DFConv) and an improved semantic segmentation (JISS) module into JSNet [24]. Overall,
these networks aggregate neighborhood information and multiscale features through local
feature encoding, resulting in improved segmentation accuracy compared to the original
PointNet++. However, the feature encoding methods of such networks primarily consider
position and point spacing, with limited attention to the spatial scale information of points.

Different from the PointNet++ series, direct point cloud segmentation networks based
on graph convolution treat each point as a node in the graph and form directed edges with
neighboring points. The challenge of obtaining such networks lies in how to construct
appropriate point-to-point relationships and the advantages lie in their ability to aggregate
target structural features while maintaining translation invariance in a three-dimensional
space. Representative works in this category include KVGCN [25], GCN-MLP [26], RG-
GCN [27], DDGCN [28], and PointCCR [29]. Some researchers attempt to learn fine-grained
point cloud features by introducing self-attention mechanisms in networks. For example,
Hu et al. [30] combine self-attention mechanisms with a random sampling algorithm to
design the RandLA-Net network. Du et al. [31] add a dense convolutional linking layer
on the basis of RandLA-Net for a more comprehensive learning of geometric shapes. LG-
Net [32] achieves learning of global context information through a global correlation mining
(GCM) module. Yin et al. [33], based on geometric structure and object edge integrity,
design a local feature encoding network using rapid point random sampling. In order to
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enhance a network’s ability to learn local features, Deng et al. [34] proposed PointNAC by
introducing a point-pair feature encoding pattern and Copula correlation analysis module,
and Wu et al. [35] developed PointConv by introducing a novel weight calculation as
well. Yan et al. [36] designed an Adaptive Sampling Module and Local-Nonlocal (L-NL)
Module based on attention mechanisms to mitigate noise and outliers that could disrupt
the network’s learning of local features. Zarzar et al. [37] designed PointRGCN for better
extraction of topological structures from point clouds, employing feature encoding and
aggregating context information in the form of graphs. Inspired by the breakthroughs of
Transformer models in Natural Language Processing (NLP) tasks, Zhao et al. [38] applied
Point Transformer and self-attention mechanisms to various point cloud classification
and segmentation tasks, achieving excellent performance. Although the aforementioned
networks have shown advantages in certain category-targeted segmentation tasks, they still
struggle to achieve high overall segmentation accuracy (OA) and average joint intersection
(MIoU) scores at the same time.

Generally speaking, compared to indirect point cloud segmentation methods, direct
methods are more effective in utilizing information and are easier to capture fine-grained
local features for precise segmentation. However, existing feature encoding patterns in
networks only utilize relatively independent information, such as point absolute positions,
point-to-point distances, and direction vectors, to express spatial structures, making it
difficult to effectively extract detailed features from complex scenes. On the other hand,
existing networks typically use the maximum pooling process for feature conveying. But
this process may discard the local details of point cloud samples, making it difficult for the
network to effectively distinguish points in different categories. In response to the above
issues, this article developed a network called PointMM for the high-precision semantic
segmentation of 3D point clouds. The contributions in the paper lie in two aspects, as
outlined below.

Firstly, addressing the limitation of existing network feature encoding methods that
only consider one-dimensional features between sampled points and their neighboring
points, this paper leverages a multi-spatial feature encoding module by computing angles
between point distances and normal vectors, and encoding point coordinates, distances,
directional vectors, and point relationships, thereby enhancing the network’s capability to
learn the spatial structures of various samples more finely and completely.

Secondly, addressing the drawback of the pooling process based on symmetric func-
tions that may discard a significant amount of detailed feature information, especially the
information loss of minority class samples in 3D scene datasets under long-tailed distribu-
tion, this paper leverages a multi-head attention pooling module to score and aggregate
features at different levels, thereby enhancing the network’s ability to transmit information
more comprehensively and accurately.

2. Our Method
2.1. Network Overview

The FPS typically employed in direct point cloud semantic segmentation networks
is a “uniform” point cloud sampling method that can lead to information loss, especially
for samples of the minority class. On the other hand, existing point cloud semantic seg-
mentation networks tend to have a “unidirectional” learning process from the sampled
central point to its neighboring points, which is not conducive to learning the fine local
structures of point clouds. Additionally, the pooling process in existing point cloud seman-
tic segmentation networks tends to retain the maximum values of local features, hindering
the transmission of fine spatial information. This not only affects the effective learning of
various sample features but also has an impact on overall segmentation accuracy to some
extent. To address these issues, we use Balanced Class Sampling (BCS) to perform full
sampling of minority class samples and downsampling of majority class samples in sub
regions, and assign initial values to the sampled samples. When all points are sampled
(given initial values) for learning, we reset all initial value information to zero and cycle this
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process until the set maximum batch is reached. The BCS module ensures that each class of
sample points is learned by the network. Meanwhile, this article combines multi-spatial
feature learning and multi-head attention pooling into PointNet++, and builds a network
called PointMM, as shown in Figure 1.
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PointMM mainly consists of four parts: the Balanced Class Sampling (BCS) module,
the downsampling layer incorporating multi-spatial feature encoding and multi-head
attention pooling, the up sampling layer, and the fully connected layer. Firstly, the training
samples V are obtained using BCS, and each sampling center point vi and its neighborhood
points vi,k are extracted based on FPS and feature KNN. At this point, we obtain a point
cloud of dimensions N × K × D, where N is the number of sampling center points, K
is the number of neighborhood points, and D is the dimensionality of the point cloud
containing coordinate and attribute information. Then, the sampling points and their
neighborhood points are passed through the multi-spatial feature encoding module to
obtain features ηi of dimensions N × K × 13. Subsequently, the features ηi are input into
the multi-head attention pooling module, which integrates neighborhood features through
pooling operations to generate a larger receptive field and more global feature vector MP(Fi).
It is worth noting that we set up four downsampling layers, so the number of attention
heads for each layer is 2n (n ∈ [1, 4]). The initial input to the downsampling layer in this
paper is a point cloud of dimensions N × K × D, and the number of sampled points in each
subsequent layer is multiplied by 4−n (n ∈ [1, 4]), where n represents the downsampling
layer. Additionally, the output of the downsampling layer is feature maps of dimensions
N/4 × 64, N/16 × 128, N/64 × 256, and N/256 × 512. Meanwhile, the upsampling
results are cascaded with corresponding downsampling levels using 3D interpolation
and skip connections to effectively fuse low-level to high-level features. Finally, a fully
connected layer is utilized to establish the transformation relationship between point cloud
features and label results. It should be noted that unlike PointNet++ using FPS for the
indiscriminate downsampling of large-scale point cloud data, we have designed BCS to
perform a complete sampling of minority class samples and downsampling of majority
class samples, ensuring that the network learns each class as well as possible through the
sampling points.

2.2. Multi-Spatial Feature Encoding

The feature encoding in existing point cloud semantic segmentation networks is
often based on point positions and point-to-point distances. However, this relatively
independent feature information is insufficient to represent the complex relationships
within the neighborhood system. In addition, the use of k-nearest neighbors (KNN) in
Euclidean space to extract neighborhood points tends to be limited to the same direction,
preventing the comprehensive expression of spatial topological structures for a given
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point [39]. Inspired by RPM-Net [40] using the PPF encoding method [41] to further
enhance the learning of local spatial relationships in point clouds, this article builds a local
spatial feature encoding module, as shown in Figure 2, to comprehensively understand
and capture spatial relationships in the local context as much as possible.
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In Figure 2, the input point cloud is denoted as V = {ni|i = 1, . . ., N}, where N is
the number of points, and ni = [vi, ri] ∈ R3+d represents the combination of coordinate
information vi and attribute information ri. To save computational costs, point cloud V
is first subjected to feature extraction using the PointNet encoding method [17]. Then, in
the feature space, neighborhood point sampling is performed using k-nearest neighbors
(KNN). On this basis, the neighboring points vi,k that are searched are more likely to
belong to the same object category as the central point vi or are on the edges between
categories. Therefore, obtaining neighborhood points through feature space KNN helps the
network learn the feature information of the sampled points’ categories while increasing the
distinctiveness of inter-class features. However, the feature encoding method of PointNet
has limited capabilities in representing point cloud topological structures and spatial scales.

To further enhance the network’s learning capabilities for point clouds, spatial fea-
ture encoding is applied to the sampled points and their neighborhood points using the
following formula:

ηi = αi⊕βi (1)

αi = Si × (1 + Si
T) + ∑K

k = 1, k ̸=i (Si − Si,k) × [−MLP(Si,k − Si)], Si = P(vi), Si,k = P(vi,k) (2)

βi = MLP(vi,k⊕
√

(vi − vi,k)2⊕(vi − vi,k)⊕F(vi, vi,k)) (3)

F(vi, vi,k) = (∠(mi,(vi − vi,k))⊕∠(mi,k,(vi − vi,k))⊕∠(mi, mi,k)) (4)

In Formula (1), αi and βi correspond to the dual-direction feature encoding of the
sampling center and neighborhood spatial structure features mentioned in Figure 2. In
Formula (2), P(·) generates the sampling point features Si and neighborhood point features
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Si,k based on the PointNet encoding method [17] and then incorporates them into αi for
enhancing the sampling point features. The calculation formula for αi consists of three
parts: 1. Si × (1 + Si

T) represents self-enhancement of the sampling point features. 2.
(Si − Si,k) signifies the mutual relationship between each neighborhood point feature and
the sampling point feature. They are multiplied and accumulated together to achieve the
learning of enhanced sampling point features. 3. −MLP(Si,k − Si) first calculates the impact
factors of each neighborhood point feature on the sampling point feature and projects
them through a multi-layer perceptron. Formula (1) can be analyzed from a force field
perspective, where each Si,k in the local space exerts a force on Si. Gravity attempts to pull
Si closer to Si,k while repulsion pushes them apart. The strength of the force is determined
by −MLP(Si,k − Si), and the direction is determined by (Si − Si,k). They adaptively learn
through the difference between the two feature vectors. Therefore, αi fully integrates the
interrelationship between each neighborhood point and the sampling point, which can
better describe the feature of neighborhood correlation. Formula (3) performs feature
encoding based on the Euclidean distance

√
(vi − vi,k)2 between the sampling point and

neighborhood point, the directional vector (vi − vi,k), the 4D point pair feature F(vi, vi,k)),
and the spatial positional information of the neighborhood points. Formula (4) calculates
F(vi, vi,k)) using the 4D point pair feature encoding method from RPM-Net [42]. In this
context, mi and mi,k represent the normal vectors of the sampling point and neighborhood
point, and the inverse trigonometric function ∠(·,·) is used to calculate the angles between
various vectors. Through Formulas (1) to (4), we not only consider the interactions between
points but also describe the scale and topological structure of the sampling point’s spatial
environment through point distances, point normal vectors, and their angles.

2.3. Multi-Head Attention Pooling

Existing networks commonly utilize max pooling to aggregate neighborhood features
for generating global feature vectors with larger receptive fields [18]. It is noteworthy that
the information transmission capacity of max pooling is not only limited by the size of the
pooling window but also involves a non-parametric downsampling process that results in
the loss of a significant amount of information. The literature [43,44] introduces attention
mechanisms to score features and aggregates them based on their importance, thereby
enhancing the network model’s ability to transmit local fine-grained structural information.
Furthermore, the literature [45] embeds the Transformer model into point cloud semantic
segmentation networks to improve the network’s ability to capture dependencies between
local point clouds and efficiently transmit feature information. Inspired by the above
literature, this paper introduces a multi-head attention mechanism during the pooling stage
to enhance the network model’s capability to capture local salient structures from various
samples. The overall structure is illustrated in Figure 3.
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We concatenate multi-spatial features with their corresponding attribute features, and
after passing through multiple convolutional layers, we can obtain the following multi-head
attention pooling results:

MP(Fi) = ∑(Fi,1, Fi,2, . . ., Fi,h)·Hi (5)
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In Formula (5), ∑(·) denotes the concatenation of information Fi,h learned from different
heads of attention mechanisms, followed by fusion using the learned parameters Hi from
the network. The computation process for each head of attention mechanism is derived
from its self-attention scores and self-feature aggregation, expressed by the following
formula:

Fi,h = [SoftMax((fi,hT × fi,h)/
√

C) + 1] × fi,h, fi,h = [g(ηi)⊕g(ri)]h (6)

In Formula (6), SoftMax refers to the normalized exponential function, C is the number
of output channels, g(·) is a 1 × 1 convolution, and [·]h represents the feature division
according to h heads. In comparison to the max-pooling downsampling output pattern that
retains predominant features, the pooling method in this paper not only utilizes attention
mechanisms to emphasize fine-grained features of the point cloud’s spatial structure but
also reduces the loss of various sample features during information transmission through
the aggregation of features based on multi-head attention scores.

3. Results
3.1. Experimental Environment and Evaluation

The proposed network is deployed on a deep learning workstation with NVIDIA GPU
TiTAN XP 12G, Ubuntu 18.04 operating system and PyTorch1.10.0. The key parameters for
the network were set as follows: batch size = 16, momentum = 0.9, decay steps = 300,000,
decay rate = 0.5, optimizer: Adam, learning rate = 0.001, max epoch = 100, point number
= 4096, the number of KNN = 32, and the radius of KNN = 0.1 × 2n (n ∈ [0, 3]). The
performance evaluation of the network in this study was conducted using three metrics:
balanced F score (F1 score), mean of class-wise intersection over union (MIoU), and overall
point-wise accuracy (OA). The specific formulas for calculating these metrics are as follows:

F1 = 2pii/∑k
j=0 (pij + pji), MIoU = (1/k)∑k

i=0 pii/(∑k
j=0 pij + ∑k

j=0 pji − pii), OA = pii/p (7)

In the above equations, ‘k’ represents the number of classes in the dataset. ‘pii’ stands
for the number of point clouds correctly predicted for class ‘i’; ‘pij’ represents the number
of point clouds belonging to class ‘j’ but predicted as class ‘i’, while ‘pij’ represents the
number of point clouds belonging to class ‘i’ but predicted as class ‘j’. The F1 and MIoU
metrics produce values within the range of 0 to 1, with values closer to 1 indicating better
segmentation results for class ‘i’. On the other hand, OA is an overall segmentation
evaluation metric for the model. It calculates the ratio of correctly labeled point clouds to
the total number of point clouds in the model, where ‘p’ represents the total number of
points in the point cloud model. This section may be divided by subheadings. It should
provide a concise and precise description of the experimental results, their interpretation,
as well as the experimental conclusions that can be drawn.

3.2. Semantic Segmentation of S3DIS Dataset

In this section, we conducted experiments to validate the effectiveness of PointMM
using the publicly available 3D point cloud semantic segmentation indoor dataset, S3DIS.
The S3DIS dataset comprises six areas from three different buildings, totaling 271 individual
rooms. In each scene, every point corresponds to a fixed label, and these labels belong
to 13 different categories such as ceiling, floor, wall, door, and others. The distribution of
point clouds for each category within areas 1 to 5 is presented in Table 1.

In Table 1, the categories “ceiling”, “floor”, and “wall” constitute the majority class
samples, while “clutter” represents the intermediate class samples (just slightly more than
the sample mean but less than the majority class samples). The remaining categories belong
to the minority class samples. Within the minority class samples, there are five categories
“window”, “column”, “beam”, “board”, and “sofa” with an extremely low number of
point clouds. Therefore, the segmentation task based on the S3DIS dataset not only faces
challenges related to large data volume and high scene complexity but also involves an
extremely imbalanced long-tailed distribution issue.



Remote Sens. 2024, 16, 1246 8 of 19

Table 1. Aera1~5 dataset introduction (%).

Class Number Proportion Class Number Proportion

ceiling 5,721,636 21.6 table 715,205 2.7
floor 5,138,877 19.4 chair 953,606 3.6
wall 6,887,155 26.0 sofa 105,956 0.4
beam 317,869 1.2 Bookcase 1,456,898 5.5

column 397,336 1.5 board 264,890 1.0
window 529,781 2.0 clutter 2,595,927 9.8

door 1,403,920 5.3 All 26,489,056 100

3.2.1. Ablation Experiment

We aim to validate the effectiveness of the modules proposed in this paper. Point
spatial coordinates along with their RGB information are used as input features to the
network. For training samples, regions 1 to 5 of the dataset are utilized. Specifically,
experiments were conducted based on PointNet++ with the addition of multi-head attention
pooling (+MHP), multi-spatial feature encoding (+MSF), and a comprehensive evaluation of
all modules combined, as shown in Table 2. Additionally, Table 3 presents the segmentation
results of these modules in region 6. Meanwhile, the training time of each module during a
single epoch is shown in Table 4.

Table 2. Each module introduction.

Name Module

PointNet++ Baseline
+MHP Multi-head attention pooling
+MSF Multi-spatial feature encoding
ALL PointMM

Table 3. Segmentation results of each module on the S3DIS dataset (Area-6) (%).

Module MIoU OA Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

Baseline 70.2 87.7 93.0 97.3 74.8 68.7 43.2 77.8 78.9 72.4 76.8 41.9 58.7 66.2 63.2
MHP 73.3 90.7 91.4 97.9 76.9 68.0 46.5 72.6 79.2 75.3 83.6 63.2 64.7 65.3 67.8
MSF 78.0 92.7 93.3 97.2 80.6 76.4 59.5 73.5 83.8 74.5 83.5 76.8 68.5 77.0 69.7
ALL 80.4 94.0 94.6 97.8 82.7 76.2 52.9 77.5 83.6 77.8 86.6 83.7 79.1 76.9 75.8

Table 4. The training of each module per epoch (seconds).

Module Training Duration for One Epoch

Baseline 233.3703
+MHP 1104.0414
+MSF 681.2939
ALL 1604.5551

Table 3 indicates that, compared to the baseline MIoU (approximately 70.2%), when
the model only considers the MHP, the segmentation accuracy of most categories improves,
except for ceiling, beam, board, and window. The reason lies in the fact that the baseline,
using max-pooling modules for downsampling and feature transmission, results in the loss
of a considerable amount of detailed information during the network training process. As a
result, the network tends to sacrifice the segmentation accuracy of minority classes to ensure
the overall segmentation accuracy with a majority class bias. The MHP module captures
feature information at different levels through a multi-head attention mechanism and
aggregates the features extracted by the network through weighted pooling, ensuring the
complete preservation of feature information for various samples. On the other hand, the
combination of the MSF module with the baseline leads to improvements of 7.9% and 5% in



Remote Sens. 2024, 16, 1246 9 of 19

MIoU and OA, respectively. This demonstrates that the MSF module’s ability to search for
similar neighborhoods, learn the salient structural features of sampled point neighborhoods,
and transmit crucial information is superior to the baseline. When both modules are loaded
onto the baseline, except for the beam, column, window, door, and board, which did
not achieve the best results, the segmentation accuracy for all other categories is optimal.
The overall segmentation accuracy and MIoU also achieve the best results at 94% and
80.4%, respectively. Among the five categories that did not achieve the best results, only the
accuracy of the column fluctuates the most, with the differences for the other four categories
being only 0.1–0.3% from the optimal accuracy. This is because the column is spatially close
to the wall, and their structures and spectral features are highly similar. On the other hand,
the column surface is usually relatively smooth and structurally simple, with corresponding
point cloud coordinates being relatively regular and a strong spectral feature consistency.
The multi-head attention mechanism for modeling the geometric multi-spatial features of
the target space does not achieve significant improvement in the accuracy of point clouds
with regular arrangement (simple structure). This ultimately leads to confusion between
the two in the neighborhood point search and feature learning stages. It should be noted
that the wall belongs to the majority of targets, so its accuracy is not easily disturbed by the
column, while the column belongs to the minority class targets, so its accuracy fluctuates
more significantly. Usually, it is challenging for a semantic segmentation CNN to achieve
optimal OA and MIoU simultaneously, as it tends to sacrifice minority class targets to
achieve the overall optimal segmentation accuracy (OA). On the other hand, focusing on
the learning features of minority class targets may lead to overfitting and limit overall
segmentation accuracy. The PointMM in this article achieved an acceptable balance on the
IoU of various class samples, while improving overall accuracy by 6.3%.

It is worth noting that the MSF module fully learns the local fine-grained structural
features of the diluted point cloud from two aspects: the inter-point relationship αi and
the neighborhood spatial topology structure βi. Meanwhile, the MHP module scores
and aggregates features based on different heads of attention, allowing the network to
consolidate the segmentation accuracy of the majority class targets while also considering
learning minority class targets. On the other hand, according to Table 4, the training time
for each epoch in the baseline is the shortest, only 233 s. Due to the more complex feature
encoding in the MSF module, its duration is almost three times longer than the baseline.
At the same time, as the number of downsampling layers increases, the computational
complexity of the MHP module increases exponentially, resulting in a duration of 1104 s.
When both modules are stacked on the baseline, PointMM shows the maximum duration
(1604 s).

To demonstrate the effects of the ablative experiments more intuitively on each module
in this paper, segmentation results from three different scenes in region 6 are selected for
display, as shown in Figure 4. The three columns of segmentation results in Figure 4, from
left to right, correspond to lounge, hallway, and office. The gray boxes in each image
indicate areas of segmentation errors for comparison. Each row in Figure 4, from top to
bottom, represents the segmentation results of the baseline, baseline with the MHP module,
baseline with the MSF module, PointMM, and ground truth. Observing the images on the
left side of Figure 4, it can be observed that due to the significant similarities in geometric
structure, spatial location, and spectral information between wall and column, door, clutter,
and window, the baseline misclassifies wall as door, window, and column. MHP, through
multi-head attention pooling, fully preserves the features of various samples, correctly
segmenting the wall at the corner of the room, but still missegments some parts of the
wall as door and window. This is because MHP can only ensure the effective transmission
of various sample information by pooling, but cannot extract significant features of local
geometric structures. MSF, based on the original data preprocessing, effectively captures
fine-grained structural features of points in space, greatly reducing the phenomenon of
missegmenting the wall as other targets. However, MSF still missegments a small portion
of the wall as clutter and door. PointMM, which combines the advantages of MHP and
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MSF, essentially achieves the correct segmentation of the wall, with only a small portion of
the point cloud missegmented as a door at the corner of the two wall surfaces. On the other
hand, in the left gray box of the baseline, there is also mutual missegmentation between
sofa, table, and clutter. With the integration of each module, the segmentation accuracy
in this local area gradually improves. For the various types of targets in the right gray
box with sparse distribution or extremely low data volume, the baseline can only correctly
segment some chairs, while the rest of the categories are segmented incorrectly. MHP,
based on the baseline, achieves the correct segmentation of tables and clutter. MSF, based
on the baseline, achieves the correct segmentation of chairs as much as possible. PointMM,
based on MHP and MSF, completes the correct segmentation of all targets, with only a
small amount of missegmentation in the edge area.
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In the hallway scene depicted in Figure 4, the wall, door, and clutter exhibit highly
similar spectral information, contour structures, and spatial positions. The baseline mis-
segments a significant amount of the wall in the left gray box as column, clutter, and door,
while completely missegmenting the wall in the right gray box as column. MHP, employing
the original feature encoding approach, learns various sample information, significantly
reducing the missegmentation of the wall as column in the left gray box, while correctly seg-
menting half of the wall in the right gray box. MSF comprehensively learns the geometric
relationships between sampled points and their neighboring points, leading to a substantial
reduction in the missegmentation of the wall as column in the right gray box. PointMM, on
the other hand, is capable of accurately identifying the aforementioned targets, achieving
segmentation results highly consistent with the annotated data. PointMM only exhibits
a small amount of missegmentation in the region where door, wall, and clutter intersect
(left gray box), as well as an extremely small amount of missegmentation as column in the
corner formed by the two wall surfaces.

In the third column of Figure 4, an office scene containing 13 categories is depicted. Due
to the close connection between the open door and the bookcase, both of which are wooden
structures with approximate spectral information, the baseline exhibits missegmentation at
the border junction of these two objects. Similarly, the baseline missegments the wall as a
board and missegments the column as a wall. MHP and MSF both show varying degrees
of missegmentation between the door and bookcase in the left gray box, with both also
missegmenting some boards as walls. PointMM achieves segmentation results close to
the ground truth in the region where the door meets the bookcase and in the board area,
except for missegmenting some columns as walls in the right gray box. The experimental
results in Figure 4, combined with the segmentation accuracy from Table 3, reveal that the
combination of multi-head attention pooling and the adaptive spatial feature encoding
module significantly enhances the model’s ability to describe features of various sample
types. Additionally, PointMM proves effective in handling targets with complex local
geometric or spectral features. On the other hand, the S3DIS dataset contains instances of
objects of the same class sparsely and discretely distributed in the scene. In this context,
the introduced neighborhood point search module based on feature KNN demonstrates
clear advantages in capturing the ability of the same class point clouds. By integrating
various amounts of sample information through feature KNN and thoroughly learning
their neighborhood salient structural features, the network model’s semantic segmentation
capability is effectively improved under conditions of sparse point cloud density and
complex local structures.

3.2.2. Six-Fold Cross-Validation

This section of the experiment aims to demonstrate the learning capability and gener-
alization of the method proposed in this paper on the entire dataset. The proposed method
is subjected to a standard six-fold cross-validation experiment on the S3DIS data set, and
it is compared with 12 currently popular and classical deep learning methods for point
cloud semantic segmentation. The evaluation metrics for each method, including overall
accuracy (OA) and mean intersection over union (MIoU), are presented in Table 5.

From Table 5, it can be observed that the proposed method achieves the highest MIoU
for ceiling, floor, window, table, chair, and clutter, with values of 95.4%, 97.5%, 66.5%,
73.0%, 84%, and 69.5%, respectively. These values are higher than the second highest by
0.9%, 0.2%, 0.3%, 2.2%, 7.6%, and 9.2%. The MIoU for door and bookcase ranks second,
with values of 73.9% and 68.1%, lower than the first by 2.7% and 6.8%, respectively. Wall
ranks third in MIoU, while beam’s MIoU ranks fifth, and column, sofa, and board all rank
sixth, placing them at a moderate level among the listed literature network models.

GSIP [46] proposed a method based on PointNet that performs downsampling on a
per-room basis, significantly reducing computational costs. However, this network loses a
considerable amount of detailed information, resulting in an OA and MIoU of only 79.8%
and 48.5%, respectively. HPRS [21] has a feature encoding pattern that is too singular,
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limiting its applicability to large-scale complex indoor scenes, resulting in an OA and
MIoU of only 84.7% and 61.3%. MCS [22] introduced MappingConv based on the spherical
neighborhood feature learning pattern, showing a noticeable improvement over HPRS in
accuracy. However, this method only optimizes the feature encoding of the downsampling
layer and does not consider the promoting effect of the self-attention mechanisms in deep
learning, resulting in an OA and MIoU of only 86.8% and 66.8%.

Table 5. Semantic segmentation accuracy on S3DIS dataset.

Method GSIP HPRS MCS KVGCN RGGCN LG-Net JSNet++ KPConv RandLA-Net BSH-Net PointNAC PointTr Ours

OA 79.8 84.7 86.8 87.4 88.1 88.3 88.7 - 88.0 90.5 90.9 90.2 90.4
Miou 48.5 61.3 66.8 60.9 63.7 70.8 62.4 70.6 70.0 66.1 67.4 73.5 70.7

Ceiling 91.8 92.7 92.4 94.5 94.0 93.7 94.1 93.6 93.1 - - - 95.4
Floor 89.8 94.5 95.8 94.1 96.2 96.4 97.3 92.4 96.1 - - - 97.5
Wall 73.0 76.3 79.5 79.5 79.1 81.3 78.0 83.1 80.6 - - - 81.1
Beam 26.3 30.1 55.8 53.4 60.4 65.2 41.3 63.9 62.4 - - - 59.5

Column 24.0 25.5 43.6 36.3 44.3 51.8 32.2 54.3 48.0 - - - 38.8
Window 44.6 63.1 59.6 56.8 60.1 66.2 52.0 66.1 64.4 - - - 66.5

Door 55.8 61.8 63.4 63.2 65.9 69.7 70.0 76.6 69.4 - - - 73.9
Table 55.5 65.6 67.3 64.3 70.8 69.1 69.9 57.8 69.4 - - - 73.0
Chair 51.1 69.3 70.2 67.5 64.9 75.1 72.7 64.0 76.4 - - - 84.0
Sofa 10.2 47.0 63.1 54.3 30.8 63.9 37.9 69.3 60.0 - - - 53.3

Bookcase 43.8 56.1 59.3 23.6 51.9 63.5 54.1 74.9 64.2 - - - 68.1
Board 21.8 60.1 61.8 43.1 52.6 66.0 51.3 61.3 65.9 - - - 58.6
Clutter 43.2 55.1 56.2 53.2 56.4 58.4 60.2 60.3 60.1 - - - 69.5

KVGCN [25] aggregated local–global context features to achieve a higher OA (87.4%)
than GCN. However, it overlooks the impact of minority class features on MIoU (60.9%).
The OA (88.0%) of RandLA-Net [30] was only at a moderate level, even if a random
sampling strategy was used to increase the chances of capturing minority class samples.
Although KPConv [47] achieves the best segmentation accuracy for the two categories of
sofa and bookcase with extremely low point cloud counts, it overly focuses on minority
class sample features, leading the model into an overfitting state, causing a substantial
decline in segmentation accuracy for ceiling and floor. While LG-Net [32] achieved good
results in regions with high similarity for features such as column, beam, and wall, like
KPConv, it overly focuses on certain features and leads to a loss in overall segmentation
accuracy. Instead, RGGCN [27], BSH-Net, PointNAC, and JSNet++ [23] overly emphasize
the features of majority class targets and lose competitiveness in MIoU. Point Transformer
achieved the best MIoU (73.5%) and ranking fourth in OA (90.2%). Overall, the introduction
of MSF in this paper addresses the dilution of majority class samples, thereby improving
the feature extraction and learning efficiency of the network model for all samples. MHP
assigns attention scores to features extracted by MSF at different levels (heads) and clusters
various features based on attention scores. These two components enable PointNAC to
achieve impressive performance, ranking third both in OA (90.4%) and MIoU (70.7%).

3.2.3. The Experiments of Sampling Points and Neighborhood Points

To further validate the feature learning capabilities of the proposed network at different
sampling densities, this section conducts experiments with different numbers of sampled
points, specifically 2048, 4096, 8192, 16,384, and 32,768 points. Additionally, we compare
our PointNet++, RandLA-Net, and the proposed method, and the MIoU scores for each
model are shown in Figure 5.

From Figure 5, it can be observed that the performance of RandLA-Net is entirely
dependent on the density of the sampled points. When the point density is not higher than
4096, RandLA-Net’s segmentation performance is significantly inferior to PointNet++ and
the approach proposed in this paper, with a maximum MIoU of only 65.1%. In contrast,
when the number of sampled points is 2048, the proposed method exhibits a remarkable
improvement, surpassing PointNet++ by 10.2%. Even when the number of sampled points
is increased to 32,768, the proposed method still achieves an improvement of 8.7%. This
indicates that the network model in this paper can effectively learn features from sparse
point clouds through the MSF module, while MHP emphasizes the importance of the main
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features in the feature pooling stage through attention scores. On the other hand, as the
number of sampled points in RandLA-Net gradually increases, its network MIoU also
grows, eventually reaching 78.5%. However, comparing RandLA-Net with the network
proposed in this paper, it is evident that the MIoU difference for RandLA-Net within the
sampled point range is 18.1%, while the difference for this paper’s network is only 0.4%.
This indicates that the network in this paper has a stronger feature learning capability on
point clouds with uneven density distribution compared to RandLA-Net.
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To further investigate the influence of different numbers of neighboring points on
the network’s feature learning capability, this section conducts experiments using varying
numbers of neighboring points, including 8, 16, 32, and 64. Additionally, we compare
the OA of Euclidean k-nearest neighbors (KNN) and feature KNN, as shown in Figure 6.
From Figure 6, it can be observed that the maximum difference in overall accuracy (OA)
for feature KNN is 1.6%, while for spatial KNN it is 1.9%. Moreover, in terms of the
segmentation accuracy with 32 neighboring points, feature KNN outperforms spatial KNN
by 1.1%. This clearly demonstrates that the neighborhood points extracted by feature
KNN are closer in category to their sampling center points, thereby enhancing the network
model’s ability to distinguish between points belonging to different classes.
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3.3. Semantic Segmentation of Vaihingen Dataset

The International Society for Photogrammetry and Remote Sensing (ISPRS) Vaihingen
3D Semantic Labeling Challenge dataset consists of five training areas and two testing
areas. The dataset comprises a total of 1,181,017 points. The original 3D point cloud data
is composed of nine categories of objects, including power line, car, facade, and hedge.
Each point within the dataset contains both 3D coordinates and RGB information. The
distribution of points among these object categories, along with their respective proportions,
is presented in Table 6.

Table 6. Details of Vaihingen 3D dataset.

Model Power Line Car Facade Hedge Impervious
Surface

Low
Vegetation Roof Shrub Tree

Training-N 546 4614 27,250 12,070 193,723 180,850 152,045 47,605 135,173
Training-P 0.072% 0.612% 3.615% 1.601% 25.697% 23.989% 20.168% 6.315% 17.931%
Testing-N 600 3708 11,224 7422 101,986 98,690 109,048 24,818 54,226
Testing-P 0.146% 0.900% 2.726% 1.803% 24.770% 23.970% 26.486% 6.027% 13.170%

From this table, it is evident that, the Vaihingen 3D dataset similar to the S3DIS dataset,
it also exhibits a highly imbalanced long-tail distribution. Specifically, objects such as trees,
building roofs, low vegetation, and road surfaces represent the majority class samples,
while power lines, cars, and hedges are extremely rare minority class samples with very
few points. Since the Vaihingen 3D dataset is a large-scale outdoor scene dataset, the
minority class samples are highly likely to be lost during sub-area partitioning and FPS
sampling. To address this issue, in the training data sampling phase, our network first
performs full sampling for minority class point clouds, then downsamples the majority
class point clouds, and finally employs the BCS module to assign values to point clouds of
various categories. Additionally, in this section, we compare our method with 11 recently
published outdoor point cloud semantic segmentation methods, using the F1 score and OA
as standard metrics for all categories, as shown in Table 7.

Table 7. Segmentation effects of different methods (%).

Model Power Line Car Facade Hedge Impervious
Surface

Low
Vegetation Roof Shrub Tree OA Average

F1

HDA 64.2 68.9 36.5 19.2 99.2 85.1 88.2 37.7 69.2 81.2 63.1

DPE 68.1 75.2 44.2 19.5 99.3 86.5 91.1 39.4 72.6 83.2 66.2
NANJ2 62.0 66.7 42.6 40.7 91.2 88.8 93.6 55.9 82.6 85.2 69.3

BSH-NET 46.5 77.8 57.9 37.9 92.9 82.3 94.8 48.6 86.3 85.4 69.5
PointNAC 52.9 76.7 57.5 41.1 93.6 83.2 94.9 50.5 85.2 85.9 70.6
Randla-Net 68.8 76.6 61.9 43.8 91.3 82.1 91.1 45.2 77.4 82.1 70.9

D-FCN 70.4 78.1 60.5 37.0 91.4 80.2 93.0 46.0 79.4 82.2 70.7
Dance-Net 68.4 77.2 60.2 38.6 92.8 81.6 93.9 47.2 81.4 83.9 71.2
GACNN 76.0 77.7 58.9 37.8 93.0 81.8 93.1 46.7 78.9 83.2 71.5
GANet 75.4 77.8 61.5 44.2 91.6 82.0 94.4 49.6 82.6 84.5 73.2
GraNet 67.7 80.9 62.0 51.1 91.7 82.7 94.5 49.9 82.0 84.5 73.6

PointMM 60.6 77.3 62.3 37.0 93.5 84.0 96.1 57.8 86.4 87.7 72.7

From Table 7, it is evident that, compared to other network models on the Vaihingen 3D
dataset, PointMM achieves the best OA, ranks third in average F1 score, with a difference of
only 0.9% from the top average F1 score. The proposed method excels in the segmentation
accuracy of the façade, roof, shrub, and tree categories, with only a lower segmentation
accuracy for power line and hedge. One reason for this is the extremely sparse point cloud
count and low geometric feature saliency of these two classes. For instance, the power
line consists of sporadic non-continuous line segments distributed on the roof, resembling
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outliers similar to the roof. As a result, PointMM is likely to confuse power line with the
roof during the feature KNN step. However, employing an encoding method with the
capability of extracting local fine-grained features in the feature KNN stage, as GACNN [44]
does, would not only increase computational costs but also focus too much on extremely
scarce minority class targets, restricting the overall OA (83.2%).

Nevertheless, methods such as DPE [48] and HAD [49] sacrifice the segmentation
accuracy of other land cover types to enhance the segmentation accuracy of majority
classes, particularly impervious surfaces. Their performance in OA and average F1 score
needs improvement. NANJ2 [8] projects 3D point clouds onto 2D images and utilizes
a mature CNN network to learn target features. This method effectively improves the
segmentation accuracy of hedge, low vegetation, and shrub. However, the process of
multi-view projection results in the loss of a significant amount of local spatial structure
information, making it challenging to further improve the average F1 score (69.3%) and
OA (85.2%). D-FCN [50], similar to the former, focuses on learning minority class targets,
resulting in an improvement in the average F1 score (70.7%) but a loss in OA (82.2%).

While the random sampling of Randla-Net improves the network’s ability to capture
features of minority class samples, it hampers the model’s comprehensive learning of
majority class sample features, especially in the scenarios involving spatial overlap and
high feature similarity among impervious surface, shrub, tree, and low vegetation. As
a result, the overall segmentation accuracy is compromised, reaching only 82.1%. The
learning ability of BSH-Net [34] for features of minority class samples is weak, result-
ing in an unsatisfactory average F1 score (69.5%). PointNAC builds upon the BSH-Net
framework by introducing a 4D point pair feature encoding scheme, thereby enhancing
the segmentation accuracy of the network. DANCE-Net [51] acknowledges the impor-
tance of elevation-remote features but has weak segmentation capabilities for hedge and
shrub with overlapping low-level features. Therefore, this method fails to achieve further
breakthroughs in OA (83.9%) and average F1 score (71.2%). GANet [52] and GraNet [42]
introduce attention mechanisms on top of GCN to enhance the network’s ability to learn
local fine-grained structural features, obtaining the second and first average F1 scores,
respectively.

Overall, for large-scale outdoor scenes with point cloud data, the proposed method
not only effectively learns spatial scale information and intra-class semantic information for
various samples through adaptive spatial feature encoding but also achieves a satisfying
balance between OA and average F1 score by efficiently transmitting multi-level feature in-
formation through multi-head attention pooling. On the other hand, in Figure 7, we present
the visualization results of PointNet++, NANJ2, BSH-Net, and the proposed method.

In Figure 7, the first row of images shows the segmentation results of ground truth
and the four methods in the testing area. The second to sixth rows display visualizations
of local areas, with segmentation errors marked by red circles. Observing the images in
the first column of Figure 7, it can be seen that, except for PointMM, the other methods
all to some extent misclassify car as roof. Additionally, except for PointMM, the other
methods misclassify facade points as tree and roof, while PointMM only misclassifies a
small portion of facade points as roof and tree. This strongly indicates that our method
outperforms the other three methods in terms of the selection of sampling center points
and their neighborhood points, as well as feature learning capabilities.

Comparing the images in the second column of Figure 7 with the data in Table 7, it
can be observed that only NANJ2 and PointMM correctly segment the power line within
the left red box. The right red box contains roof, low vegetation, and tree. In this context,
our method’s segmentation results closely resemble the ground truth dataset. However,
BSH-Net misclassifies the roof as a car, NANJ2 misclassifies low vegetation as impervious
surface, and PointNet++ exhibits all of the above-mentioned misclassification cases. This
demonstrates the effectiveness of our method in learning the spatial scale, positional
information, and neighborhood relationships of the point clouds.
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Figure 7. Segmentation results of different methods. (The red circle represents the incorrectly
segmented area).

Further examination of the images in the third column of Figure 7 reveals that this area
is mainly composed of three categories of low-level features: low vegetation, tree, and shrub.
These features are similar and spatially close to each other. In the left red box, only PointMM
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incorrectly classifies a few parts of tree as shrub, while the other methods misclassify some
shrub as roof. On the other hand, in the right red box, all four methods misclassify some
shrub as roof. However, PointMM correctly segments tree for the most part, while BSH-
NET completely misclassifies shrub as tree, and NANJ2 and PointNet++ misclassify half of
the tree as shrub. Overall, our method achieves good segmentation performance on the
Vaihingen 3D semantic segmentation dataset and maintains consistency with the ground
truth in areas with overlapping and stacked features of various land cover types.

4. Conclusions

Although the PointNet++ series of networks consider information about sampled
points and their neighborhoods, as well as local–global context information, they often
lack attention to the topological structure information of the categories to which the sam-
pled points belong. The proposed PointMM overcomes these limitations by extensively
leveraging the topology information of the category to which the sampled points belong
through feature KNN. It searches for neighborhood points belonging to the same category
as the sampled point, focusing on more detailed spatial relationships, scales, and coordinate
information. Additionally, the use of multi-head attention pooling ensures the maximal
preservation of features for various sample points. This method effectively enhances the
network’s ability to learn fine-grained features of various sample categories from complex
scenes. Compared to the literature mentioned in this paper, although PointMM achieved
the best OA, the second-best MIoU, and the third-best average F1 score on both the indoor
S3DIS dataset and the outdoor Vaihingen 3D dataset, it requires high computation and
longer training time. Theoretically, adding the multi-head attention mechanism to the
multi-spatial feature encoding module will help extract more accurate features from intra-
class neighborhood points, which has not been discussed in this article. Future work will
delve into this topic and test the proposed network on a larger scale and in more scenarios.

Author Contributions: Conceptualization, J.W.; methodology, J.W.; software, R.C. and Y.L.; validation,
J.W.; formal analysis, Y.L.; investigation, G.X.; resources, R.C.; data curation, R.C.; writing—original
draft preparation, R.C. and J.W.; writing—review and editing, R.C. and J.W.; visualization, Y.L.;
supervision, J.W.; project administration, R.C. and G.X.; funding acquisition, J.W. and G.X. All
authors have read and agreed to the published version of the manuscript.

Funding: The Natural Science Foundation of China under Grant: 42361071 (Funder: Jun Wu); Ningbo
Science and Technology Innovation Project under Grant: 2023Z016 (Funder: Gang Xu); Innovation
Project of Guangxi Graduate Education under Grant: YCBZ2023136 (Funder: Ying Luo); National
Key Research and Development Program of China under Grant: 2023YFB4607000 (Funder: Gang Xu).

Data Availability Statement: The Stanford Large-Scale 3D Indoor Spaces (S3DIS) data set can be
found at: http://buildingparser.stanford.edu/dataset.html (accessed on 7 February 2024) The ISPRS
Vaihingen data set can be found at: https://www.isprs.org/education/benchmarks/UrbanSemLab/
Default.aspx (accessed on 7 February 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhang, J.; Xie, H.; Zhang, L.; Lu, Z. Information Extraction and Three-Dimensional Contour Reconstruction of Vehicle Target

Based on Multiple Different Pitch-Angle Observation Circular Synthetic Aperture Radar Data. Remote Sens. 2024, 16, 401.
[CrossRef]

2. Jiang, Z.; Zhang, Y.; Wang, Z.; Yu, Y.; Zhang, Z.; Zhang, M.; Zhang, L.; Cheng, B. Inter-Domain Invariant Cross-Domain Object
Detection Using Style and Content Disentanglement for In-Vehicle Images. Remote Sens. 2024, 16, 304. [CrossRef]

3. Caciora, T.; Jubran, A.; Ilies, D.C.; Hodor, N.; Blaga, L.; Ilies, A.; Grama, V.; Sebesan, B.; Safarov, B.; Ilies, G.; et al. Digitization of
the Built Cultural Heritage: An Integrated Methodology for Preservation and Accessibilization of an Art Nouveau Museum.
Remote Sens. 2023, 15, 5763. [CrossRef]

4. Muumbe, T.P.; Singh, J.; Baade, J.; Raumonen, P.; Coetsee, C.; Thau, C.; Schmullius, C. Individual Tree-Scale Aboveground
Biomass Estimation of Woody Vegetation in a Semi-Arid Savanna Using 3D Data. Remote Sens. 2024, 16, 399. [CrossRef]

5. Yu, H.; Yang, Z.; Tan, L.; Wang, Y.; Sun, W.; Sun, M.; Tang, Y. Methods and datasets on semantic segmentation: A review.
Neurocomputing 2018, 304, 82–103. [CrossRef]

http://buildingparser.stanford.edu/dataset.html
https://www.isprs.org/education/benchmarks/UrbanSemLab/Default.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/Default.aspx
https://doi.org/10.3390/rs16020401
https://doi.org/10.3390/rs16020304
https://doi.org/10.3390/rs15245763
https://doi.org/10.3390/rs16020399
https://doi.org/10.1016/j.neucom.2018.03.037


Remote Sens. 2024, 16, 1246 18 of 19

6. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep learning for 3d point clouds: A survey. IEEE Trans. Pattern Anal.
Mach. Intell. 2020, 43, 4338–4364. [CrossRef] [PubMed]

7. Yang, Z.; Tan, B.; Pei, H.; Jiang, W. Segmentation and multi-scale convolutional neural network-based classification of airborne
laser scanner data. Sensors 2018, 18, 3347. [CrossRef]

8. Zhao, R.; Pang, M.; Wang, J. Classifying airborne LiDAR point clouds via deep features learned by a multi-scale convolutional
neural network. Int. J. Geogr. Inf. Sci. 2018, 32, 960–979. [CrossRef]

9. Gerdzhev, M.; Razani, R.; Taghavi, E.; Bingbing, L. Tornado-net: Multiview total variation semantic segmentation with diamond
inception module. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China,
30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 9543–9549.

10. Qiu, H.; Yu, B.; Tao, D. GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation. arXiv 2022, arXiv:2207.02605.
11. Jing, W.; Zhang, W.; Li, L.; Di, D.; Chen, G.; Wang, J. AGNet: An attention-based graph network for point cloud classification and

segmentation. Remote Sens. 2022, 14, 1036. [CrossRef]
12. Lee, M.S.; Yang, S.W.; Han, S.W. Gaia: Graphical information gain based attention network for weakly supervised point cloud

semantic segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI,
USA, 2–7 January 2023; pp. 582–591.

13. Liu, Z.; Tang, H.; Lin, Y.; Han, S. Point-voxel cnn for efficient 3d deep learning. Adv. Neural Inf. Process. Syst. 2019, 32. [CrossRef]
14. Wang, Z.; Lu, F. VoxSegNet: Volumetric CNNs for Semantic Part Segmentation of 3D Shapes; Institute of Electrical and Electronics

Engineers (IEEE): Piscataway, NJ, USA, 2020. [CrossRef]
15. Liu, M.; Zhou, Q.; Zhao, H.; Li, J.; Du, Y.; Keutzer, K.; Du, L.; Zhang, S. Prototype-Voxel Contrastive Learning for LiDAR

Point Cloud Panoptic Segmentation. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA),
Philadelphia, PA, USA, 23–27 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 9243–9250.

16. Zhou, W.; Zhang, X.; Hao, X.; Wang, D.; He, Y. Multi point-voxel convolution (MPVConv) for deep learning on point clouds.
Comput. Graph. 2023, 112, 72–80. [CrossRef]

17. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE:
Piscataway, NJ, USA, 2017.

18. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Adv. Neural
Inf. Process. Syst. 2017. [CrossRef]

19. Jiang, M.; Wu, Y.; Zhao, T.; Zhao, Z.; Lu, C. Pointsift: A sift-like network module for 3d point cloud semantic segmentation. arXiv
2018, arXiv:1807.00652.

20. Zhao, H.; Jiang, L.; Fu, C.W.; Jia, J. Pointweb: Enhancing local neighborhood features for point cloud processing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 5565–5573.

21. Su, Z.; Zhou, G.; Luo, F.; Li, S.; Ma, K.K. Semantic Segmentation of 3D Point Clouds Based on High Precision Range Search
Network. Remote Sens. 2022, 14, 5649. [CrossRef]

22. Yan, K.; Hu, Q.; Wang, H.; Huang, X.; Li, L.; Ji, S. Continuous mapping convolution for large-scale point clouds semantic
segmentation. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [CrossRef]

23. Zhao, L.; Tao, W. Jsnet++: Dynamic filters and pointwise correlation for 3d point cloud instance and semantic segmentation. IEEE
Trans. Circuits Syst. Video Technol. 2022, 33, 1854–1867. [CrossRef]

24. Zhao, L.; Tao, W. JSNet: Joint instance and semantic segmentation of 3D point clouds. In Proceedings of the AAAI Conference on
Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12951–12958.

25. Luo, N.; Yu, H.; Huo, Z.; Liu, J.; Wang, Q.; Xu, Y.; Gao, Y. KVGCN: A KNN searching and VLAD combined graph convolutional
network for point cloud segmentation. Remote Sens. 2021, 13, 1003. [CrossRef]

26. Wang, Y.; Zhang, Z.; Zhong, R.; Sun, L.; Leng, S.; Wang, Q. Densely connected graph convolutional network for joint semantic
and instance segmentation of indoor point clouds. ISPRS J. Photogramm. Remote Sens. 2021, 182, 67–77. [CrossRef]

27. Zeng, Z.; Xu, Y.; Xie, Z.; Wan, J.; Wu, W.; Dai, W. RG-GCN: A random graph based on graph convolution network for point cloud
semantic segmentation. Remote Sens. 2022, 14, 4055. [CrossRef]

28. Chen, L.; Zhang, Q. DDGCN: Graph convolution network based on direction and distance for point cloud learning. Vis. Comput.
2023, 39, 863–873. [CrossRef]

29. Zhang, F.; Xia, X. Cascaded Contextual Reasoning for Large-Scale Point Cloud Semantic Segmentation. IEEE Access 2023, 11,
20755–20768. [CrossRef]

30. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. Randla-net: Efficient semantic segmentation of
large-scale point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 14–19 June 2020; pp. 11108–11117.

31. Du, J.; Cai, G.; Wang, Z.; Huang, S.; Su, J.; Junior, J.M.; Smit, J.; Li, J. ResDLPS-Net: Joint residual-dense optimization for large-scale
point cloud semantic segmentation. ISPRS J. Photogramm. Remote Sens. 2021, 182, 37–51. [CrossRef]

32. Zhao, Y.; Ma, X.; Hu, B.; Zhang, Q.; Ye, M.; Zhou, G. A large-scale point cloud semantic segmentation network via local dual
features and global correlations. Comput. Graph. 2023, 111, 133–144. [CrossRef]

33. Yin, F.; Huang, Z.; Chen, T.; Luo, G.; Yu, G.; Fu, B. Dcnet: Large-scale point cloud semantic segmentation with discriminative and
efficient feature aggregation. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 4083–4095. [CrossRef]

https://doi.org/10.1109/TPAMI.2020.3005434
https://www.ncbi.nlm.nih.gov/pubmed/32750799
https://doi.org/10.3390/s18103347
https://doi.org/10.1080/13658816.2018.1431840
https://doi.org/10.3390/rs14041036
https://doi.org/10.48550/arXiv.1907.03739
https://doi.org/10.1109/TVCG.2019.2896310
https://doi.org/10.1016/j.cag.2023.03.008
https://doi.org/10.48550/arXiv.1706.02413
https://doi.org/10.3390/rs14225649
https://doi.org/10.1109/LGRS.2021.3107006
https://doi.org/10.1109/TCSVT.2022.3218076
https://doi.org/10.3390/rs13051003
https://doi.org/10.1016/j.isprsjprs.2021.10.003
https://doi.org/10.3390/rs14164055
https://doi.org/10.1007/s00371-021-02351-8
https://doi.org/10.1109/ACCESS.2023.3248963
https://doi.org/10.1016/j.isprsjprs.2021.09.024
https://doi.org/10.1016/j.cag.2023.01.011
https://doi.org/10.1109/TCSVT.2023.3239541


Remote Sens. 2024, 16, 1246 19 of 19

34. Deng, C.; Peng, Z.; Chen, Z.; Chen, R. Point Cloud Deep Learning Network Based on Balanced Sampling and Hybrid Pooling.
Sensors 2023, 23, 981. [CrossRef] [PubMed]

35. Wu, W.; Qi, Z.; Fuxin, L. Pointconv: Deep convolutional networks on 3d point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9621–9630.

36. Yan, X.; Zheng, C.; Li, Z.; Wang, S.; Cui, S. Pointasnl: Robust point clouds processing using nonlocal neural networks with
adaptive sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 5589–5598.

37. Zarzar, J.; Giancola, S.; Ghanem, B. PointRGCN: Graph convolution networks for 3D vehicles detection refinement. arXiv 2019,
arXiv:1911.12236.

38. Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point transformer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 16259–16268.

39. Bai, X.; Luo, Z.; Zhou, L.; Chen, H.; Li, L.; Hu, Z.; Fu, H.; Tai, C.L. Pointdsc: Robust point cloud registration using deep spatial
consistency. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 15859–15869.

40. Yew, Z.J.; Lee, G.H. Rpm-net: Robust point matching using learned features. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11824–11833.

41. Deng, H.; Birdal, T.; Ilic, S. Ppfnet: Global context aware local features for robust 3d point matching. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 195–205.

42. Huang, R.; Xu, Y.; Stilla, U. GraNet: Global relation-aware attentional network for semantic segmentation of ALS point clouds.
ISPRS J. Photogramm. Remote Sens. 2021, 177, 1–20. [CrossRef]

43. Wen, C.; Li, X.; Yao, X.; Peng, L.; Chi, T. Airborne LiDAR point cloud classification with global-local graph attention convolution
neural network. ISPRS J. Photogramm. Remote Sens. 2021, 173, 181–194. [CrossRef]

44. Gao, Y.; Liu, X.; Li, J.; Fang, Z.; Jiang, X.; Huq, K.M. LFT-Net: Local feature transformer network for point clouds analysis. IEEE
Trans. Intell. Transp. Syst. 2022, 24, 2158–2168. [CrossRef]

45. Zhang, M.; Kadam, P.; Liu, S.; Kuo, C.C. GSIP: Green semantic segmentation of large-scale indoor point clouds. Pattern Recognit.
Lett. 2022, 164, 9–15. [CrossRef]

46. Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. Kpconv: Flexible and deformable convolution
for point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27
October–2 November 2019; pp. 6411–6420.

47. Huang, R.; Xu, Y.; Hong, D.; Yao, W.; Ghamisi, P.; Stilla, U. Deep point embedding for urban classification using ALS point clouds:
A new perspective from local to global. ISPRS J. Photogramm. Remote Sens. 2020, 163, 62–81. [CrossRef]

48. Ye, Z.; Xu, Y.; Huang, R.; Tong, X.; Li, X.; Liu, X.; Luan, K.; Hoegner, L.; Stilla, U. LASDU: A Large-Scale Aerial LiDAR Dataset for
Semantic Labeling in Dense Urban Areas. Int. J. Geo-Inf. 2020, 9, 450. [CrossRef]

49. Wen, C.; Yang, L.; Li, X.; Peng, L.; Chi, T. Directionally constrained fully convolutional neural network for airborne LiDAR point
cloud classification. ISPRS J. Photogramm. Remote Sens. 2020, 162, 50–62. [CrossRef]

50. Li, X.; Wang, L.; Wang, M.; Wen, C.; Fang, Y. DANCE-NET: Density-aware convolution networks with context encoding for
airborne LiDAR point cloud classification. ISPRS J. Photogramm. Remote Sens. 2020, 166, 128–139. [CrossRef]

51. Li, W.; Wang, F.D.; Xia, G.S. A geometry-attentional network for ALS point cloud classification. ISPRS J. Photogramm. Remote Sens.
2020, 164, 26–40.

52. Deng, C.; Chen, R.; Tang, W.; Chu, H.; Xu, G.; Cui, Y.; Peng, Z. PointNAC: Copula-Based Point Cloud Semantic Segmentation
Network. Symmetry 2023, 15, 2021. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s23020981
https://www.ncbi.nlm.nih.gov/pubmed/36679776
https://doi.org/10.1016/j.isprsjprs.2021.04.017
https://doi.org/10.1016/j.isprsjprs.2021.01.007
https://doi.org/10.1109/TITS.2022.3140355
https://doi.org/10.1016/j.patrec.2022.10.014
https://doi.org/10.1016/j.isprsjprs.2020.02.020
https://doi.org/10.3390/ijgi9070450
https://doi.org/10.1016/j.isprsjprs.2020.02.004
https://doi.org/10.1016/j.isprsjprs.2020.05.023
https://doi.org/10.3390/sym15112021

	Introduction 
	Our Method 
	Network Overview 
	Multi-Spatial Feature Encoding 
	Multi-Head Attention Pooling 

	Results 
	Experimental Environment and Evaluation 
	Semantic Segmentation of S3DIS Dataset 
	Ablation Experiment 
	Six-Fold Cross-Validation 
	The Experiments of Sampling Points and Neighborhood Points 

	Semantic Segmentation of Vaihingen Dataset 

	Conclusions 
	References

