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Abstract: Red needle cast (RNC), mainly caused by Phytophthora pluvialis, is a very damaging disease
of the widely grown species radiata pine within New Zealand. Using a combination of satellite
imagery and weather data, a novel methodology was developed to pre-visually predict the incidence
of RNC on radiata pine within the Gisborne region of New Zealand over a five-year period from
2019 to 2023. Sentinel-2 satellite imagery was used to classify areas within the region as being
disease-free or showing RNC expression from the difference in the red/green index (R/Gdiff) during
a disease-free time of the year and the time of maximum disease expression in the upper canopy
(early spring–September). Within these two classes, 1976 plots were extracted, and a classification
model was used to predict disease incidence from mean monthly weather data for key variables
during the 11 months prior to disease expression. The variables in the final random forest model
included solar radiation, relative humidity, rainfall, and the maximum air temperature recorded
during mid–late summer, which provided a pre-visual prediction of the disease 7–8 months before its
peak expression. Using a hold-out test dataset, the final random forest model had an accuracy of 89%
and an F1 score of 0.89. This approach can be used to mitigate the impact of RNC by focusing on
early surveillance and treatment measures.

Keywords: early detection; disease forecast; disease prediction; epidemiology; forest monitoring;
machine learning; Pinus radiata; pine needle disease; pre-visual detection; red needle cast

1. Introduction

Radiata pine (Pinus radiata D. Don) is the most extensively planted conifer globally
and constitutes the cornerstone of New Zealand’s forest industry, comprising 90% of the
1.8 M ha plantation resource [1]. Radiata pine is vulnerable to several damaging diseases,
with red needle cast (RNC) emerging as a significant threat to the species over the past
fifteen years. This disease is primarily caused by the oomycete pathogen Phytophthora
pluvialis and occasionally by Phytophthora kernoviae [2]. The symptoms of RNC have been
observed since at least 2005, with confirmation of Phytophthora infection in 2008 [2]. Since
then, RNC has spread extensively and now affects most areas in the North Island and many
regions in the South Island. However, most damage from the disease has been reported
from central and north-eastern regions of the North Island [3].

Outbreaks of RNC by P. pluvialis are restricted to the needle tissue on radiata pine
and appear to be polycyclic [2]. Following infection, P. pluvialis establishes within the
needle as mycelium before producing semi-caducous sporangia through the stomata within
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three days under optimal laboratory conditions [4]. Sporangia may germinate directly
or through the production of zoospores, which are spread locally by water splash to
initiate new infections on the same needle or nearby needles [4]. This infection cycle can
continue to repeat whilst conditions remain favorable and susceptible host tissue is present.
Both pathogens are also capable of producing oospores, which are typically longer-lived
spores and are believed to have a role in the survival of Phytophthora between epidemics;
however, P. pluvialis oospores have only been observed in vitro to date. Phytophthora
pluvialis symptoms typically form during or following sporulation [2]. Initial symptoms
of the disease are characterized by dark green lesions, frequently accompanied by narrow,
dark, resinous bands. These lesions rapidly transition to a khaki hue, subsequently turning
yellow or red, which precedes the abscission of entire fascicles [2].

The timing of symptom expression varies across sites and between years. Typically,
symptoms on diseased trees emerge during late autumn or winter months and are initiated
on the lower branches and progressively spread upwards through the crown and to adjacent
trees, with the crown changing from green to red-brown and then brown (Figure 1). By
early spring, needle loss can be extensive and, in severe cases, results in near-complete
defoliation [2]. As current spring growth is seldom affected by the disease, trees often
appear to have recovered by summer, with their crowns returning to a green color, although
with a reduced crown density. However, the impact of needle loss due to RNC on radiata
pine growth is significant. The stem basal area growth is found to be reduced by as much
as 35% in the year following severe disease [5].
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Figure 1. Overview of RNC disease symptoms showing (a) full expression at the stand level,
(b) intermediate expression, showing how discoloration moves from the lower canopy upwards and
(c) a close up of the needles affected by RNC. Photo credits (a) Bryan McKinlay; (b,c) Emily McLay.

Seasonal patterns of RNC expression are strongly driven by climate. Needle wetness is
required for the infection and sporulation of P. pluvialis on radiata pine needles (McLay et al.
unpub. data), and culture growth has upper limits of 25 ◦C [6]. Likewise, P. kernoviae is
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limited by warm temperatures with no infection above 22 ◦C [7]. Field studies investigating
P. pluvialis and P. kernoviae sporulation and the infection of radiata pine also indicate that
lower temperatures and sufficient rainfall are required for these processes [8,9]. This results
in the seasonal patterns of disease in which higher expression is noted in cooler and wetter
months, between mid-autumn and mid-spring, with reduced detection during the warmer
and drier summer months [8,9]. There is some evidence that climate conditions over
summer may be a key driver of RNC’s extent and severity during the following seasons.
A summer drought in 2011–2012 corresponded with the reduced detection of P. pluvialis
and P. kernoviae the following year, while milder and wetter summers were followed by a
greater expression of the disease [8]. Summer conditions may influence the rate at which
the infection cycle can repeat and, thus, the level of initial inoculum to start the next
epidemic [9]. Despite the strong relationship between weather variables and RNC, models
that predict disease expression using climate are yet to be published.

Outbreaks of RNC have been intermittent and uneven, with high among-site and
between-year variation in the incidence and severity of symptoms, as well as the timing of
expression. This variation can make decisions on investment into disease management dif-
ficult. For Dothistroma needle blight (Dothistroma septosporum), which is another important
pine needle disease in New Zealand forests, with a long history of management, disease
persists on sites across years, and severity can increase year on year. Chemical control is
applied to symptomatic trees (from infections of the previous season) in spring to protect
newly emerging needles and future growth [10]. The polycyclic nature of RNC and its
ability to develop rapidly under conducive conditions, combined with its often seemingly
sporadic development, means that new approaches to disease management are required.
There is a critical need to monitor disease expression at this scale to quantify between-year
variation and to determine the climatic drivers, potentially enabling disease prediction and
pre-emptive disease control activities [11].

Multispectral satellite imagery has significant potential as a data source for the re-
gional detection of outbreaks from damaging diseases such as RNC. Most studies in the
remote sensing literature have used satellite imagery to characterize and monitor insect
outbreaks [12–15], and despite the substantial global impact of forest pathogens [16,17],
very few have used satellite imagery to detect disease. Using very high resolution (VHR)
QuickBird imagery, the occurrence of pitch canker, which is caused by Fusarium circinatum,
was mapped in a moderate-sized plantation of radiata pine in South Africa [18]. Similarly,
VHR WorldView satellite imagery was used at two sites in north-eastern New Zealand
to develop a classification model of RNC in radiata pine from the red/green/blue (RGB)
and near-infrared bands [19]. Although these studies show that disease can be accurately
mapped from satellite imagery, it is expensive to scale detections to the regional level using
imagery from VHR satellites, which are not that suitable for continuous monitoring as they
require tasking.

The European Space Agency’s Sentinel-2 satellites offer an attractive alternative for
large-area monitoring. Sentinel-2 data are open-access and have a high enough spatial
resolution for stand-level disease detection, while the wide swath width and relatively high
revisit frequency is well suited to regional-scale mapping and monitoring activities. High
resolution Sentinel-2 imagery has been used to accurately detect the decline of maritime
pine (Pinus pinaster) from pinewood nematode within three relatively small test areas
in central Portugal [20]. Although the potential of Sentinel-2 has been recognized and
utilized for the broad scale mapping of forest species (Breidenbach et al., 2021), bark beetle
outbreaks [21], and global land use cover [22], we are unaware of any studies that have
used Sentinel-2 data for the regional monitoring and mapping of forest disease.

Although little research has successfully detected disease prior to expression, the pre-
visual prediction of disease across large scales would be very useful as it allows managers
to manage disease outbreaks more effectively. Hyperspectral and thermal imagery has
often been used for the pre-visual detection of diseases at a range of scales. Physiological
responses in plants subject to infection by pathogens often include changes in chlorophyll
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and other pigments, leaf water content, and key photosynthetic variables, such as stomatal
conductance, transpiration, and photosynthesis. These changes may be detected by shifts
in leaf temperature and changes in indices or plant functional traits [23]. Using these
indices, hyperspectral and thermal imagery has been used to pre-visually detect a range
of diseases in both agricultural and forestry crops [24–29]. However, hyperspectral and
thermal imagery acquired from airborne sensors is very expensive and time consuming to
process, particularly at large scales. While hyperspectral and thermal data from satellites
cover wide spatial extents, this has not been widely used over large areas for pre-visual
disease detection due to infrequent revisit times, cloud cover during revisit, and the high
cost of data acquisition.

Although little research has investigated this approach, the use of weather data may
provide a robust and low-cost method for the pre-visual prediction of disease at a broad spa-
tial scale. Disease occurrence and severity are often the result of environmental conditions
favorable for pathogen development that occur months before the disease is expressed. A
number of studies have identified the conditions or thresholds that regulate the level of
disease expression for discrete sites [30,31]. For instance, Dothistroma needle blight has
been shown to be more severe in a range of pine species when rainfall is high during the
preceding summer [32–34]. Despite the promise of this approach, very little research has
predicted pre-visual spatial variations in disease at a broad scale using weather surfaces
that characterize conditions during pathogen development.

The acquisition of sufficient ground truth data during peak disease expression over
large areas is an impediment to the application of this method. However, this limitation
could be overcome through deriving regional observations of disease severity from satellite
imagery with a high spatial and temporal resolution, such as Sentinel-2. By matching
these data with weather data over the preceding year, extracted from geospatial surfaces,
models could be developed to pre-visually predict the disease. These models could then
be spatially applied to predict disease occurrence at a regional scale. The expression of
RNC on radiata pine in the north-east of New Zealand makes an ideal case study to test
this approach as few other diseases historically impact radiata pine to any extent within
this region.

Using the described approach, the objectives of this study were to (i) use Sentinel-2
satellite imagery to characterize the severity of RNC within the Gisborne region from 2019
to 2023, during peak disease expression (early spring); (ii) identify the weather variables
extracted for the 11 months prior to peak disease expression that were most strongly related
to disease severity in early spring; and (iii) using weather variables, develop a classification
model to pre-visually predict the presence or absence of the disease within the Gisborne
region over the 2019–2023 period.

2. Materials and Methods
2.1. Spatial Predictions of RNC from Sentinel-2
2.1.1. Study Area and Plantation Delineation

The Gisborne region was selected for this study because of consistent RNC expression
in the area, known to be primarily caused by P. pluvialis [2,8,19]. Annual ground visits
by experienced forest pathologists between 2019 and 2023 [19] found RNC to be the
main forest health issue of radiata pine in this region, with the disease constituting 89%
of all 146 inspections (Forest Health Database). Samples of cast needles and accessible
symptomatic needles in the lower canopy (Figure 1c) were tested for the presence of
Phytophthora pluvialis and P. kernoviae through qPCR [35], and P. pluvialis was detected in the
vast majority of cases. In contrast, Dothistroma needle blight symptoms were only observed
in ca. 9% of inspections (Forest Health Database) and mainly occurred in very young stands
during 2022 and 2023, which is consistent with long term observations showing the severity
of Dothistroma needle blight to be relatively low in the Gisborne region [36].

Plantation boundaries within the Gisborne region were mapped using a previously de-
veloped deep learning model trained to delineate radiata pine in aerial imagery using a large
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hand-labeled dataset developed for this task. The model is based on the DeepLabv3+ [37]
architecture for semantic segmentation with a ResNet-101-based backbone [38]. The model
was used to map the boundaries of pine plantations ranging in scale from shelterbelts and
small woodlots through to large forestry estates using 30 cm resolution RGB aerial imagery
covering the Gisborne region, which was captured during the summer flying seasons from
2017 to 2019. As an indication of model performance, the Intersection over Union (IoU)
on a withheld test set was 0.93. Model predictions were further improved using test-time
augmentation to refine the boundary quality. Lastly, a process of semi-automatic cleaning
followed by manual inspection of the predictions across the region was carried out. The
final forest boundary layer provided a detailed and accurate representation of the spatial
extent of all radiata pine plantations across the Gisborne region.

2.1.2. Data Collection

Copernicus Sentinel-2 data were manually reviewed from 2019 to 2023 using Google
Earth Engine (GEE) over the Gisborne region of New Zealand, covering UTM grids 60HWB,
60HWC, 60HWD, 60HXC and 60HXD [39]. The Sentinel-2 constellation is a pair of multi-
spectral satellites operated by the European Space Agency (ESA), capturing visible near-
infrared (VNIR) and shortwave infrared (SWIR) bands at spatial resolutions ranging from
10 to 60 m [40]. The Bottom-Of-Atmosphere (BOA) Level 2A product was used, which was
processed via Sen2Cor from Level 1C Top-Of-Atmosphere (TOA) at ingestion to the GEE
image catalogue to produce an analysis-ready dataset [41].

A time series of Sentinel-2 data collected over a known RNC expression site was used
to compare changes in four commonly used indices, with respect to the values estimated
prior to RNC expression in mid-March 2023. The increases in the Normalized Difference
Red/Green Index (NDRG) were markedly greater than the reductions in the other three
indices (Figure 2), including the Normalized Difference Vegetation Index (NDVI; NIR and
red bands), Enhanced Vegetation Index (EVI; a combination of red, blue and NIR bands),
and Normalized Difference Red Edge (NDRE; NIR and Red Edge 1). Substantial increases
in NDRG were apparent by June, while consistent reductions in the other three indices
did not occur until late July. By the time that maximum RNC expression occurred in
mid-September, increases in NDRE from the baseline were 0.425 which markedly exceeded
the respective reductions from the baseline of 0.204, 0.203 and 0.159 for NDVI, NDRG and
EVI (Figure 2). Based on this comparison, further analyses used NDRG to detect RNC.
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these differences were extracted using Sentinel-2 2A time-series data, and included the Enhanced
Vegetation index (EVI), Normalized Difference Red Edge (NDRE), Normalized Difference Red/Green
Index (NDRG) and Normalized Difference Vegetation Index (NDVI). The vertical lines Time 1 (T1)
and Time 2 (T2) represent acquisition dates that included, respectively, a baseline (no expression) and
the time of maximum RNC expression.

For each year, a baseline image capture as close to the beginning of March as cloud
cover allowed, was selected (T1). The baseline dates ranged from 11th of February in 2020
to 12th of March in 2022. A visual inspection of the imagery and NDRG time series showed
that disease expression tended to peak in September, so corresponding image captures (T2)
were selected for each year within this month and included the 13th (2020, 2022, 2023), 25th
(2021) and 29th of September (2019).

2.1.3. Satellite Imagery Processing

Images were cloud- and cloud shadow-masked using the Cloud Score+ collection
available within GEE and using the cs_cdf band, which describes the likelihood that a given
Sentinel-2 pixel is clear on a dimensionless scale of 0 to 1, with 0 representing occlusion and
1 representing a clear observation relative to an estimated distribution of values for that
pixel [42]. Given that the target region included a managed plantation forest, harvested
areas consisting of large areas of bare earth were present. These areas were masked from
analysis by comparing the NDVI values of the T1 and T2 images and eliminating pixels that
had a drop of greater than 0.4. A pixel-wise erosion and dilation step was also undertaken
within GEE to remove single pixel noise, and a final buffer was applied to avoid the high
reflectance from bare soil in the recently clear-felled sites.

The R/Gdiff was calculated by subtracting the NDRG of T1 from the NDRG of T2 per
pixel for each year, with a scaling factor applied before the export from GEE.

R/Gdiff = (NDRGT2 − NDRGT1)× 1000 (1)

In addition to the cloud masks, other masks were developed to reduce the incidence
of changes not resulting from disease expression, resulting in high R/Gdiff values. These
included limiting the maximum difference value to 750, as observations showed these
generally resulted from canopy loss due to slips or other small total loss events. A simple
brightness band was added to both T1 and T2 images by summing the RGB bands, and
areas with a brightness too high (generally resulting from cloud or harvest) or too low
(from shadow) were masked. Finally, the yearly R/Gdiff surfaces were masked to the extent
of the forest boundaries to remove any pixels not representative of plantation forest. The
resulting masked surfaces were filtered within ArcGIS Pro 3.2.1, using the low pass filter
with a 3 × 3 neighborhood.

Figure 3 shows a comparison of Sentinel-2A images acquired (a) before expression
(T1) and (b) during peak expression (T2). The filtered R/Gdiff surface masked to the forest
boundary extent shown in (c) captures the gradient of expression severity visible across the
planted area. This image has been subsequently classified into regions (d) without RNC
(R/Gdiff < 200), and with low (R/Gdiff 200–280) and medium–high severity (R/Gdiff > 280).
The calculation of R/Gdiff for two areas with contrasting severity (illustrated in panels c, d)
is shown in Figure 3e.
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2.1.4. Sampling

A total of 3000 random points per year were generated within the forest boundaries
and buffered by 20 m, creating pseudo plots (Figure 4). Plot locations were unique between
years, and plots that fell within the areas of noData for each R/Gdiff surface (due to masking)
were eliminated. This left a total of 12,837 plots, with 2751, 2665, 2640, 2213 and 2568 plots
within consecutive years from 2019 to 2023 (Figure 4). The values of R/Gdiff were sampled
for each year from within the pseudo plots using the Zonal Statistics tool within QGIS
3.28. Figure 3d shows an example of the resulting model data against the classified R/Gdiff
surface, classed as either expression or no expression depending on the underlying R/Gdiff
surface values in Figure 3c.
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2.2. Weather Data

Weather data that were used in analyses were from the Virtual Climate Station Network
(VCSN) supplied by the National Institute of Water and Atmospheric Research (NIWA).
The VCSN data provide a national 5 km coverage of a range of weather variables that have
been estimated from 150 automatic climate stations owned and operated by NIWA and
the MetService. The VCSN data that were used included daily rainfall, maximum (Tmax)
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and minimum air temperature (Tmin), relative humidity, solar radiation, and windspeed.
As part of the national coverage, estimates of these six variables were available every day
over the period of the study (2018–2023) on a 5 km grid throughout the Gisborne region.
All six variables were averaged from a daily to a monthly level across the 5 km spatial
grid. Inverse distance weighting was then used to create a spatial surface for each climate
variable for all months that were used for RNC prediction (i.e., 66 monthly surfaces from
October 2018–August 2023), using ArcGIS Pro 3.2.1. September was not included as this
was the month that disease expression was determined. Values for each weather variable
were then extracted from these surfaces for the locations shown in Figure 4 and aligned
with the year in which disease severity was determined (e.g., months from October 2018 to
August 2019 were matched with R/Gdiff points for September 2019).

2.3. Data Analysis
2.3.1. Relationships between R/Gdiff and Weather Variables

Using R version 4.2.3. [43], linear models were fitted between R/Gdiff and the monthly av-
erages of the six weather variables using the full dataset. In total, this analysis included 66 mod-
els, with the predictor variable comprising each of the six weather variables × 11 months.
The coefficient of determination (R2) was extracted from all models and plotted against each
month to determine the seasonal strength of relationships between the six predictor variables
and R/Gdiff. The weather variables that were most strongly related to R/Gdiff and, for these
variables, the months with the strongest correlations were identified. Plots were constructed
showing the relationship between R/Gdiff and these variable/month combinations.

2.3.2. Classification Model

Random forest was used to classify no expression (No RNC) and the expression of
RNC (RNC) from the weather variables using scikit-learn, version 0.23.2 [44] for Python
(version 3.8.5). Random forest is an ensemble learning method that creates a collection of
decision trees during training. Each tree in the forest is built from a sample drawn with a
replacement (bootstrap sample) from the training set, and split decisions are made at each
node based on a random subset of these features. This approach enhances diversity among
the trees, which reduces overfitting and improves generalization to unseen data. The final
classification decision is made based on the majority voting principle, where the class label
predicted by the majority of the trees is chosen as the final output, thereby enhancing the
accuracy and robustness of the model.

Prior to model development, two data preparation steps were undertaken. To ensure
that these two classes were correctly identified within the underlying dataset (n = 12,837), the
predictions of R/Gdiff were categorized into two groups. Plots with R/Gdiff < 200 comprised
plots with no RNC (n = 10,533), while values of R/Gdiff > 280 comprised plots with RNC
(n = 988). Comparisons of these categories with hand-digitized boundaries from VHR
GeoEye satellite imagery (pansharpened resolution of 0.5 m) provided accurate RNC
delineation across a number of years [19]. The example illustrated in Figure 5 clearly
shows that these cutoffs were able to accurately define the two groups through excluding
potentially ambiguous observations, without RNC or low severity RNC, with R/Gdiff
values ranging from 200 to 280. The number of observations within the No RNC group was
then randomly sampled so that it matched the number of observations within the RNC
group (n = 988 in both groups) to avoid issues with data imbalance between groups [45].

Recursive feature elimination (RFE) was used with the random forest algorithm to
subset the predictors to the most important variables. The RFE undertook cross validation
and was constrained so that no more than 10 features that had correlations of <0.9 were
selected to avoid redundancy and overfitting in the final models. This initial selection
was subsequently refined by removing the less important variables during the model
fitting process.
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Figure 5. Comparison of a (a) Maxar GeoEye-1 very high resolution (VHR) 0.5 m pansharpened
image captured in October 2021 with the (b) T2 Sentinel-2 image captured in September 2021. Hand-
digitalized boundaries of RNC derived from the GeoEye-1 image in (a) are shown in (b), and also
overlaid are R/Gdiff values > 280 (Med/High classes) for 2021 derived from the T2 Sentinel-2 image.

Following the feature selection, a stratified split (with respect to the group) was used
to divide observations into a training dataset comprising 80% of the observations (n = 1580),
with the remaining 20% (n = 396) retained as a test dataset. The random forest model was
fitted to the training dataset using a stratified cross validation with predictions from this
fitted model made on the independent test dataset. This process was repeated 49 times
using a different train/test split during each iteration, and performance statistics were
averaged over predictions on all 50 test datasets. This approach removed any potential
bias that might have resulted from an unbalanced choice of the test dataset using a single
train/test split and providing a more rigorous evaluation of true model performance.

Three hyperparameter grids were evaluated for model fitting that varied in complexity,
with the simplest using default parameters and the most complex optimizing model
performance across a range of five hyperparameters (the number of estimators, max depth,
max features, min samples split, and min samples leaf). The default hyperparameter grid
was selected for the final model as this had the best mean performance from the 50 iterations
on the test dataset.

Using predictions made on the 50 independent test datasets, a confusion matrix
was constructed for each model. As is common practice in experiments where disease
is predicted [45], the plots with RNC were designated positive. Using data from the
50 confusion matrices the mean percentage of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN) was determined.

Model performance was determined from the confusion matrix data using precision,
recall, F1 score, and accuracy, which were calculated as follows:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1score = 2 × Precision × Recall
Precision + Recall

(4)
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Accuracy =
TP + TN

TP + FP + TN + FN
(5)

Precision quantifies the fraction of correct positive predictions, whereas recall identifies
the fraction of true positives that were accurately detected. High values of precision mean
there are few false positives, while high values of recall indicate low numbers of false
negatives. The F1 score represents the harmonic mean of precision and recall, serving as a
balanced measure of model discriminatory power. F1 scores span a continuum from 0 to 1,
with categorizations from 0.5 to 0.7, 0.7 to 0.8, 0.8 to 0.9, and >0.9, signifying poor, acceptable,
excellent, and outstanding levels of discrimination, respectively. Accuracy was defined as
the percentage of correctly predicted observations to the total observations.

Using the final fitted model, predictions were made across the Gisborne region. Predic-
tions of disease absence or presence were made for each of the 5 years to visually display
the changes between years. These predictions were overlaid with the categorized plots
used within the model (RNC, No RNC) to check if model predictions spatially aligned with
variations in disease presence/absence identified through R/Gdiff.

3. Results
3.1. Variation in RNC Severity

The extracted data showed a wide variation in mean disease severity between the
years. R/Gdiff varied four-fold across the five years, ranging from 60 in 2020 to 225 in 2023
(Table 1). From the extracted data, plots with disease expression (R/Gdiff > 200) ranged
from 1% in 2020 to 52.7% in 2023. The percentage of plots with medium/high severity
(R/Gdiff > 280) was very low during 2020 (only four extracted plots) and relatively low in
2019 and 2021, when these plots comprised 1.7% and 0.9% of the total, respectively. The
percentage of plots with medium/high severity increased in 2022, when these plots were
5.5% of the total, and further increased in 2023, when these plots constituted 30.9% of the
total (Table 1).

Table 1. Variation in RNC severity (mean ± S.E) and allocation of plots to the four severity classes.

2019 2020 2021 2022 2023

R/Gdiff 132 (1.1) 60 (1.0) 88 (1.3) 150 (1.7) 225 (2.5)
RNC severity by class (%)
None 89.9 99.0 94.8 77.1 47.3
Low 8.4 0.9 4.3 17.4 21.8
Med 1.6 0.0 0.7 5.0 18.0
High 0.1 0.1 0.2 0.5 12.9

3.2. Variation in Environmental Conditions

Solar radiation in 2019–2021 peaked during summer in December and January at
between 24.4 and 26.3 MJ m2 day−1 (Figure 6). During 2022 and 2023, summer solar
radiation was lower, and values peaked at 21.6 MJ m2 day−1 and 19.9 MJ m2 day−1,
respectively. Rainfall varied widely between months from 2019 to 2021 but, except for June
2020 (14.7 mm day−1), was lower than 8 mm day−1. Although there were marked monthly
fluctuations, summer and autumn rainfall during 2022 and 2023 was markedly higher than
in the preceding three years, reaching maximum values of 14.1 mm day−1 in March 2022
and 13.1 mm day−1 in February 2023 (Figure 6).

Relative humidity peaked in mid–late winter during all years. However, there was
considerable variation in relative humidity between the years during summer. These
differences were mostly marked in February, with the values for 2022 and 2023 at 82% and
84% considerably exceeding those of 73–77% between 2019 and 2021 (Figure 6). Although
Tmax peaked in mid–late summer each year, values were markedly lower in January and
February during 2023 (19.9–20.2 ◦C) compared to those from 2019 to 2022 (21.8–24.0 ◦C).
Changes in Tmin over the five-year period followed a similar trend each year, generally
peaking in mid-to-late summer, and, with the exceptions of 2020 and 2021, exhibited
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a similar range between years. There was no clear interannual or seasonal pattern in
windspeed (Figure 6).
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Figure 6. Variation in key climatic variables by year and month, that included from top to bottom
mean total daily solar radiation, mean total daily rainfall, mean relative humidity, mean maximum
(Tmax) and minimum (Tmin) air temperature, and mean windspeed. The displayed months are in
chronological order from October to August inclusive, with this period ending immediately before
maximum disease expression (September) in the displayed year (i.e., 2019–2023). September is not
displayed as final estimates of RNC severity were taken mid-way through the month, and data from
this month were not used for model development. The summer months are shaded yellow to provide
a point of reference on the figure.

3.3. Relationships with Climatic Variables and Seasonal Patterns

Using the data pooled across all years, the strongest relationships between R/Gdiff and
weather variables were for relative humidity, rainfall, solar radiation, and Tmax (Figure 7).
The values for R2 generally reached a peak in February and were 0.32, 0.31, 0.24, and
0.21 for relative humidity, rainfall, solar radiation, and Tmax, respectively. Relationships
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between R/Gdiff and these four variables during January were of a similar, but generally
slightly lower strength. In contrast to these four variables, the strength of relationships
between R/Gdiff and both Tmin and windspeed were relatively weak (Figure 7).
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the displayed weather variables and RNC severity (R/Gdiff), by month, using pooled data from all
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The relationships between the strongest four weather variables and R/Gdiff during
January and February are shown in Figure 8. Linear lines were fitted to these data, and
equation coefficients and the coefficient of determination are given in Table A1. During both
months, R/Gdiff was positively related to rainfall and relative humidity and negatively
related to solar radiation and Tmax. The ordering of R/Gdiff values between the years
was relatively consistent with the values for these weather variables. For example, the
extracted plots for 2023, which was the year of the worst outbreak, had very high rainfall
and relative humidity and very low solar radiation and Tmax, with these differences being
most marked in January (Figure 8). Similarly, for 2022, which had the second highest values
of R/Gdiff, the values for these four variables were generally similar but not as extreme as
for 2023, particularly for the four February variables. In contrast, the low values of R/Gdiff
in 2020 were associated with low values of rainfall and relative humidity and high values
of solar radiation and Tmax, with these patterns being particularly evident during February
(Figure 8).
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Figure 8. Relationship between RNC severity (R/Gdiff) and from top to bottom, mean total daily
rainfall, mean relative humidity, mean total daily solar radiation and maximum air temperature
during (left panels) January and (right panels) February by year.

3.4. Classification Model
3.4.1. Variable Selection and Model Performance

The RFE identified eight variables, including relative humidity, Tmax, and solar radia-
tion during February, rainfall and Tmax during January, November rainfall, March solar
radiation, and July relative humidity. This initial model had an accuracy of 89% and F1
score of 0.89. Variables were eliminated from the model without reducing the model perfor-
mance until the following four variables remained, which are listed in order of importance
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as follows: mean total daily solar radiation in February, mean relative humidity in February,
mean total daily rainfall in January, and mean Tmax in February.

The final random forest model with these four variables was able to distinguish the no
RNC from RNC plots with a high level of accuracy. Contingency table values for the mean
number of TN, FP, FN and TP (with percent in brackets) averaged across all iterations on the
test dataset (n = 396) were 175.7 (44%), 22.3 (6%), 22.2 (6%), 175.8 (44%). The accuracy and
F1 score were 89% and 0.89, respectively. Recall and precision were both 0.89, indicating
that there were a similar number of false positives and incorrect RNC classifications.

3.4.2. Model Predictions

There was excellent agreement between model predictions and the underlying R/Gdiff
values by year (Figure 9). As with the underlying data, model predictions showed that RNC
was most severe in 2023, followed by 2022. An intermediate level of disease occurrence
was predicted in 2019 and 2021, and little disease was predicted in 2020.

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 21 
 

 

radiation, and July relative humidity. This initial model had an accuracy of 89% and F1 
score of 0.89. Variables were eliminated from the model without reducing the model per-
formance until the following four variables remained, which are listed in order of im-
portance as follows: mean total daily solar radiation in February, mean relative humidity 
in February, mean total daily rainfall in January, and mean Tmax in February.  

The final random forest model with these four variables was able to distinguish the 
no RNC from RNC plots with a high level of accuracy. Contingency table values for the 
mean number of TN, FP, FN and TP (with percent in brackets) averaged across all itera-
tions on the test dataset (n = 396) were 175.7 (44%), 22.3 (6%), 22.2 (6%), 175.8 (44%). The 
accuracy and F1 score were 89% and 0.89, respectively. Recall and precision were both 
0.89, indicating that there were a similar number of false positives and incorrect RNC clas-
sifications.  

3.4.2. Model Predictions 
There was excellent agreement between model predictions and the underlying R/Gdiff 

values by year (Figure 9). As with the underlying data, model predictions showed that 
RNC was most severe in 2023, followed by 2022. An intermediate level of disease occur-
rence was predicted in 2019 and 2021, and little disease was predicted in 2020. 

 
Figure 9. Predictions from the model showing no expression (grey shade) and expression of RNC 
(orange shade) by year. Overlaid on these predictions are the model data, derived from Sentinel 
R/Gdiff, showing no expression (white circles) and expression (red circles). Also shown (bottom right 
panel) are the radiata pine forested areas within the Gisborne region. 

Figure 9. Predictions from the model showing no expression (grey shade) and expression of RNC
(orange shade) by year. Overlaid on these predictions are the model data, derived from Sentinel
R/Gdiff, showing no expression (white circles) and expression (red circles). Also shown (bottom right
panel) are the radiata pine forested areas within the Gisborne region.

The predicted location of the disease also shifted substantially between years (Figure 9).
In 2022, most diseased areas were predicted to be in the western and southern areas, while
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in 2023, the disease was mainly concentrated in central and north-eastern parts of the
region. Large areas of predicted expression extended beyond the underlying model data
showing expression, particularly in the far west during 2022 and around the outskirts of
model data during 2023. However, this is in line with expectations as there are very few
radiata pine plantations located in these areas (bottom right panel, Figure 9).

4. Discussion

By integrating large scale observations from satellite imagery with climatic data, the
developed methodology provides a unique framework for pre-visual disease prediction
on a large scale. This method provides an efficient means of identifying the location and
severity of the disease well in advance of peak disease expression, which could facilitate
more focused monitoring and control programs. From a model development standpoint,
the large dataset that can be generated through regional captures of satellite imagery
provides a means of more robustly linking diseases, such as RNC, with key determinants
of occurrence and severity. Using this method, RNC severity was most strongly correlated
with solar radiation, relative humidity, rainfall, and maximum air temperature during
mid-to-late summer. The random forest model, which included these four variables, was
able to accurately predict the presence of RNC at a large scale.

The methodology developed here provides an effective and low-cost pre-visual pre-
diction method for understanding the location and severity of RNC. As the model utilized
summer weather data, predictions of disease incidence for the coming year could be made
months in advance of peak disease expression. Regional R/Gdiff data acquired during
the following spring could then be used to validate predictions and further refine the
model. This iterative process provides a framework for continuous predictive improve-
ment through expanding the range and combinations of weather conditions and their
impact on disease expression.

The early prediction of RNC has multiple applications. The data layers that have been
created can provide baseline regional maps to focus on surveillance and control measures.
The real time detection of disease typically relies on aerial sketch-mapping surveillance
or spectral data collection from fixed wing aircraft or high-resolution satellites [18,46,47].
As these imagery acquisitions are very expensive, the predictions made here could be
used to forecast outbreak years and, within a given year, refine the surveillance radius and
eliminate areas unlikely to be at risk.

Predictions could also be used to target preventative sprays to mitigate the impacts
of the disease on growth. The sporulation of P. pluvialis typically occurs on asymptomatic
tissue, and therefore, preventative control is more likely to be effective than the treatment
of visible symptoms identified through monitoring. The application of copper fungicides
has been found to protect needles from infection for at least three months [48], and reduce
subsequent disease severity [11,49]. The identification of hot spots that are confirmed
by ground or aerial surveys from early autumn onwards could provide the basis for the
targeted application of copper to reduce infection success, contributing to lower disease
severity and impacts on growth later in the year. Areas which are identified as frequent
disease hot spots may also inform genotype selections, initially as locations to install
breeding trials for RNC resistance and then in the future as areas for the deployment of
more resistant radiata pine genotypes or alternative species.

The climatic variables identified as important in this study were consistent with those
found in previous research that linked temporal patterns in pathogen sporulation and
infection with weather in a limited number of plots and years [8,9]. Our work complements
this through the expansion of the study area to a regional scale and examination of symp-
toms resulting from the cumulative effect of infections over annual epidemics. Our study
confirmed the positive relationship between both rainfall and relative humidity and RNC
expression, as well as the negative effect of solar radiation and maximum temperature
on disease. Recent research [8] monitored the sporulation of P. pluvialis and P. kernoviae
over three years at sites in the Gisborne region and central North Island. The detection of
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inoculum in both species peaked in late winter and was positively linked with rainfall and
relative humidity but decreased with increasing temperature, dew point, evaporation, and
solar radiation. Windspeed was not significantly related to the presence of either pathogen.
Infection has also been monitored on potted plants [9] over a two-year period at sites in
the Central North Island. This research found infections to occur predominantly between
mid-autumn and early spring during the period of the year when temperatures, solar
radiation, and evapotranspiration are at their lowest, relative humidity is at its maximum,
and rainfall is plentiful.

Although previous studies have suggested that summer conditions are the limiting
phase in the RNC cycle, these data are the first to demonstrate a clear link between weather
conditions in summer and the severity of disease during the following autumn, winter,
and spring. Previous research has found that inoculum of P. pluvialis and P. kernoviae was
not detected for a prolonged period at plots in the Gisborne region and Central North
Island after a summer drought during 2012–2013 [8]. This finding was consistent with
data from the New Zealand Forest Health Database collected over a 10-year period from
2008 to 2017. Nationally, the lowest numbers of P. pluvialis were reported following the
2012–2013 summer drought. Conversely, the mild and very wet summer during 2011–2012
preceded the highest reported numbers of both pathogens in 2012. The severity of a
polycyclic epidemic is determined by the quantity of initial inoculum and the apparent
rate of infection as the disease develops [50]. As outlined by [9], we currently have limited
knowledge on the persistence mechanisms of these pathogens between epidemics or the
impacts of weather variables on this process. It has been suggested that pockets of infection
may persist through summer, which may present the source of outbreaks in the following
autumn [9]. The opposite trend has also been hypothesized, in which trees that have
suffered severe defoliation in the previous year may have a reduced severity due to the
reduced availability of host tissue [4] and less favorable microclimate in lower density
crowns [8].

Our current study supports the hypothesis that weather conditions impacting the
levels of initial inoculum (i.e., summer conditions) are important for determining disease
severity later in the epidemic and, thus, drive between-year variation in disease expression.
We predict that during mild and wet summers, the infection cycle continues, whereas in
warmer and drier summers, the infection cycle is unable to continue except in pockets with
suitable microclimate. Summer weather, therefore, determines the base level of pathogen
presence and abundance the following autumn and, under conditions that are generally
favorable for infection rates, supports an exponential increase in resulting symptoms. There
is still a need to understand the persistence mechanism of P. pluvialis to understand the im-
pact of disease history on future expression. Although this work has clearly demonstrated
the importance of summer weather, in particular late summer conditions, it is important to
note the occurrence of a prolonged La Niña system between late 2020 and early 2023, with
extreme rain events in later summer 2022 and 2023. Consecutive wet summers during this
period may have had an additive effect on the resulting exceptional disease outbreak in 2023.
Continued data capture and re-analysis could further our understanding of these processes.

The system developed here integrates multiple foundational elements that enhance the
practical deployment and scalability of the methodology. The forest boundaries developed
using deep learning provide an accurate base layer that defines the plantation extent. This
layer, developed from aerial RGB imagery, helps constrain the monitoring area to plantation
boundaries, thereby reducing the volume of Sentinel 2 data that needs to be analyzed to
run the detection process. The simplicity of the R/G index allows the RNC detection
approach to be generalized to other platforms, as many unmanned aerial vehicles (UAVs)
or fixed-wing platforms use camera systems that still capture RGB or true color images. The
R/G index is quick to implement and requires less computation than a traditional image
classification approach that requires the manual identification of training sites. Further,
classification approaches require constant review to ensure training sites are transferable
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between image captures. This is a slow and computationally expensive activity requiring
whole image analysis.

Further research should use outputs from this approach to improve our understanding
of RNC. When combined with past predictions from time series satellite coverage, model
predictions using weather data provide a comprehensive understanding of areas likely
to be affected by disease over both the short and long term. The predictive maps created
could be used to place field plots spanning a severity range for determining the impact of
spray on disease and the effects of RNC on growth.

As this framework was based on national climate datasets, the system could be readily
deployed to other regions. Ideally, predictions outside of the Gisborne region should
be based on a model that is built from the weather of the new region. Although model
predictions in random forests can be made outside of the fitted data range, these empirical
predictions are likely to be more robust when the fitted data range covers the range and
combination of input variables used for predictions [51–53].

The modeling framework developed here has global applicability and could be useful
for detecting outbreaks of other pests or diseases on a range of species. All the underpinning
datasets that were used are widely available and are usually low-cost or free. Sentinel-2
has global coverage [54], while many countries have regional RGB imagery collected at a
very high resolution [55] and weather data that can describe past conditions for a range
of important variables [30,31,56]. This method is likely to be most useful for pests and
diseases with clearly discernible symptoms visible from satellite data that are expressed
within the upper canopy.

5. Conclusions

A novel methodology that integrated Sentinel-2 satellite observations and weather
data was used to pre-visually predict the location of RNC over five consecutive years
(2019–2023) within radiata pine forests in the Gisborne region. Sentinel-2 imagery was used
to characterize the severity of RNC within the region using the difference in the R/G index
between the time of maximum expression and no expression of RNC (R/Gdiff). Values
of R/Gdiff were most strongly related to solar radiation, rainfall, relative humidity, and
maximum air temperature during mid–late summer, which was 7–8 months prior to the
peak expression in the following spring. Using a balanced dataset of 1976 plots, which were
disease-free or showed expression of RNC, a random forest model was constructed from
these four variables to pre-visually predict the incidence of RNC. Using a hold-out test
dataset, the model had excellent performance with an accuracy of 89% and an F1 score of
0.89. The pre-visual prediction of RNC using this model could be used to focus monitoring
and treatment to reduce the impact of this disease during the following spring.
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Appendix A

Table A1. Model information for linear equations (R/Gdiff = a + bx) fitted between RNC severity
(R/Gdiff) and the four weather variables for January and February shown in Figure 8. Shown are the
model coefficients (intercept and slope) and the coefficient of determination (R2) for each equation.

Variable Month Intercept Slope R2

Rainfall (mm day−1) January 82.6 16.4 0.28
Relative humidity (%) January −866 13.2 0.30

Solar radiation (MJ m−2 day−1) January 443 −13.9 0.25
Maximum air temperature (◦C) January 653 −23.6 0.13

Rainfall (mm day−1) February 58.1 12.8 0.31
Relative humidity (%) February −910 13.3 0.32

Solar radiation (MJ m−2 day−1) February 561 −21.7 0.24
Maximum air temperature (◦C) February 777 −29.3 0.21
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