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Abstract: In recent years, the three-dimensional (3D) radar detection range has played an essential
role in the layout of devices such as aircraft and drones. To compensate for the shortcomings of
three-dimensional calculations for radar terrain masking, a new calculation method is proposed for
assessing the terrain occlusion of radar detection range. First, the high-dimensional electromagnetic
data after discretization are modeled based on the tensor data structure, and the tensor grid dilation
operator is constructed. Then, the dilation process begins from the overlapping section of the radar
detection range and terrain, and it is adjusted by the terrain occlusion judgment factor and the
dilation judgment factor to obtain the obstructed part due to the terrain. Finally, the actual radar
detection range under terrain occlusion is obtained. The simulation results show that the method
proposed in this paper can adapt to different grid sizes and terrain shapes, significantly enhancing
computational efficiency while maintaining internal features.

Keywords: three-dimensional radar detection range; terrain masking; dilation

1. Introduction

Radar is a kind of radio detection equipment that utilizes the scattering and reflection
of electromagnetic waves to detect targets. It has extensive applications in both military
and civilian fields, including target search, tracking, and surveillance in the military sector,
as well as air traffic control, weather detection, and unmanned environmental perception
in civilian applications. In modern warfare, the 3D coverage of radar is of great concern.
The radar coverage is influenced by factors such as terrain, Earth’s curvature, atmosphere,
and ground clutter, with terrain masking being the most significant factor. Therefore, it
is of crucial importance to accurately calculate the actual 3D radar detection range under
terrain obstruction. Currently, the calculation methods for radar coverage can be mainly
divided into mathematical modeling methods and geometric modeling methods.

The mathematical modeling methods mainly consider the influence of multiple envi-
ronmental factors on the radar detection range. Chen et al. [1] proposed a three-dimensional
modeling method of the radar detection range based on the parabolic equation, which
considered the influence of multiple factors on the detection range. Cheng et al. [2] quanti-
tatively analyzed various factors, including weather, interference, and target height. They
designed a Back Propagation (BP) neural network and trained it with a large amount
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of sample data, enabling the calculation of actual radar detection ranges under various
conditions. In recent years, a wealth of measured data has also been used to correct radar
detection range [3]. However, these methods required access to a large amount of data
and did not consider the influence of terrain. In summary, the advantages of mathematical
modeling methods lie in their consideration of more environmental influences. However,
their shortcomings entail having a high computational complexity and often not being able
to solve the problem of terrain occlusion well.

Geometric modeling methods consider the impact of terrain occlusion. A commonly
used approach is to sample along the azimuth direction at regular intervals, discretize the
radar detection range boundary in the vertical profile corresponding to each azimuth, and
then correct the boundary based on the ray propagation method according to the terrain [4].
To reduce computational overhead, Qiu et al. [5] proposed a hybrid sampling method that
utilized non-uniform sampling in the radar elevation direction. They also explored the
relationship between visualization rendering efficiency and accuracy in different scenarios
and further analyzed the reasons behind it [6]. Sampling along horizontal profiles at specific
elevations is also a common method. Zhang et al. [7] determined the existence of terrain
masking for each sampling point in the horizontal profile through the triangle primitive
intersection algorithm. Liu et al. [8] proposed a line-of-sight visibility detection method,
which determined whether the target was obscured by comparing the target elevation angle
with the terrain elevation angle. Dong et al. [9] defined the radar minimum visible angle
and calculated the detection range at different altitudes based on the Earth’s curvature.
The main issue with geometric modeling methods is that their 3D radar detection range
calculations are still calculated within two-dimensional cross-sections, leading to some
computational redundancies. A new method is to discretize the radar detection range based
on a grid subdivision algorithm and encode the radar detection range and terrain data,
thus converting the complex computation into the intersection operation of the encoded
set, which is relatively simple to compute [10]. However, the algorithm only considers the
scenario where the radar beam is completely occluded by terrain and does not consider the
case where the terrain partially obstructs the radar beam. Therefore, further research is still
needed in this regard.

To directly compute radar terrain occlusion in a three-dimensional space, this paper
proposes a calculation model of radar terrain masking based on a tensor grid dilation
operator. Based on the concept of grid subdivision, high-dimensional electromagnetic data
and terrain data are discretized, and a high-dimensional electromagnetic data tensor grid
model is constructed. The terrain masking is then computed using the idea of dilation
operation in morphology. The algorithm focuses on the radar detection range’s internal
characteristics while considering the calculation efficiency. The overall research framework
of the paper is shown in Figure 1.
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The structure of this paper is as follows: Section 2 explains the tensor model and
related fundamental operations. Section 3 focuses on the tensor grid-based modeling
of high-dimensional electromagnetic data and the definition of the tensor grid dilation
operator. Section 4 elaborates on the construction of the radar terrain masking calculation
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algorithm based on the 3D tensor grid dilation operator, including specific processes.
Sections 5 and 6 present the experimental results and conclusions, respectively.

2. Related Works

In this paper, electromagnetic space data are mainly modeled based on the tensor, and
this section provides an explanation of the tensor and its application to spatio-temporal data.

2.1. Tensor and Its Application to Spatio-Temporal Data

Tensors are generalizations of vectors and matrices to higher orders and higher dimen-
sional [11], which can maintain the underlying structure of complex data and represent
high-dimensional, diverse, and massive data well. By utilizing the high-dimensional
representation properties and coordinate invariance of tensors, it is possible to model mul-
tidimensional data effectively. Therefore, modeling high-dimensional electromagnetic data
based on tensors is of significant importance for discrete electromagnetic computations.

In recent years, tensors have been widely used in spatio-temporal data analysis, such
as time series data prediction, spatiotemporal data interpolation, spatio-temporal corre-
lation analysis, etc. Li et al. [12] proposed a tensor-based irregular spatio-temporal field
data model, which can store and calculate multidimensional geographic spatio-temporal
field data and can realize data compression, retrieval, recombination, and other operations.
Zhang et al. [13] proposed a spatio-temporal tensor model based on spatio-temporal correla-
tion priors, to simultaneously utilize the spatial and temporal information of infrared video
backgrounds, thereby achieving target–background separation. Liu et al. [14] modeled
five-dimensional (5D) seismic data and successfully reconstructed seismic data based on
tensor train decomposition and tensor ring decomposition.

In the field of electromagnetic data, using tensor modeling in Multiple-Input Multiple-
Output (MIMO) systems has been shown to have potential in achieving high spectral
efficiencies by exploiting spatial and code multiplexing [15]. Zhai et al. [16] organized
spectrum data into a spectrum tensor from three dimensions of time, space, and frequency.
Also, they conducted a study on multi-dimensional spectral data denoising based on the
tensor decomposition model. Cai [17] organized the electromagnetic information of the
local area into a multi-level ordered tensor form using the spatial subdividing method and
further provided an efficient method of retrieval and dimension expansion.

2.2. Basic Operations on Tensor

Since it is relatively difficult to represent tensors of order four or higher graphically,
we will use a third-order tensor as an example to introduce the two fundamental operations
of tensors. Figure 2 shows the schematic of a third-order tensor, with the size of each
dimension to five; in this case, there is X ∈ RI1×I2×I3 , I1 = I2 = I3 = 5.
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(a) Fiber

The fiber is a one-dimensional unfolding structure of a tensor along a specific direction,
usually represented as a vector. For the tensor X ∈ Rn1×···×nd , its fiber is defined by fixing
every index but one [18]. Typically, for a third-order tensor, its mode-1 fiber is called the
column fiber, represented by x: j k; the mode-2 fiber is called the row fiber, represented by
xi : k; and the mode-3 fiber is called the tube fiber, represented by xi j:, as shown in Figure 3.
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(b) Slice

Slices are two-dimensional cross-sections of a tensor. For the tensor X ∈ Rn1×···×nd ,
it is defined by fixing all but two indices [18]. The remaining two indices are used as row
index and column index to form a matrix, which is the slice. Figure 4 shows the horizontal,
lateral, and frontal slices of the third-order tensor X , denoted by X (i, :, :), X (:, j, :), and
X (:, :, k), respectively.
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3. High-Dimensional Electromagnetic Data Tensor Grid Model

In this section, the discretized high-dimensional electromagnetic data are modeled by
selecting appropriate bases to represent the electromagnetic spatial data in tensor form.
Then, a 3D tensor grid dilation operator based on the tensor grid model is designed to
provide a basis for the subsequent calculation of radar detection range.

3.1. Tensor Grid-Based Modeling of High-Dimensional Electromagnetic Data

Electromagnetic spatial data are a kind of high-dimensional data with spatio-temporal
characteristics, which can be organized and represented by the tensor model. The continu-
ous electromagnetic information is discretized based on the grid generation method, and
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then a tensor grid model is established with spatial, temporal, and attribute dimensions as
bases. Its mathematical definition is as follows:

XE ∈ RI1×I2×I3×I4×IP , (1)

XE is an electromagnetic data tensor grid model in locally customized spatial settings,
in which I1−3 represent the size of the three spatial dimensions of longitude, dimension,
and height, respectively, I4 represents the size of the time dimension, and IP represents the
size of the property dimension, which can include the coordinate value, frequency value,
power value, polarization angle, detection probability, and other spatial properties and elec-
tromagnetic properties. The schematic diagram of the high-dimensional electromagnetic
data tensor grid model is shown in Figure 5.
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Modeling high-dimensional electromagnetic data using tensors allows for the simul-
taneous consideration of multiple property dimensions of electromagnetic information,
particularly when the position of radiation sources is mobile or the parameters of radiation
sources vary over time, enabling time-varying representations. Additionally, since the
tensor structure is well-suited for matrix operations, modeling electromagnetic data using
tensors makes it more convenient to perform matrix operations, thus effectively boosting
computational efficiency.

Since not all dimensions of data will be used in practical calculations, it is feasible to
extract several dimensions according to specific requirements. Therefore, this paper extends
the tensor slicing operation to higher dimensions and defines it as adaptive dimensional
slicing, which can be used for subsequent calculations. For example, if the spatial three-
dimensional data, with the property p1 at a specific time t2, are selected to participate in the
calculation, then the corresponding portion XE(:, :, :, t2, p1) can be extracted by the adaptive
dimensional slicing operation from the original tensor.

Using the extracted three-dimensional tensor grid structure based on spatial coor-
dinates as the foundation for radar terrain occlusion calculations can convert irregular
point data into regular grid data. This conversion turns irregularly distributed latitude
and longitude coordinates into regularly distributed tensor grid indices. In subsequent
calculations, tensor indices are directly used, thus avoiding complex longitude and latitude
conversions and distance calculations, making spatial operations more convenient. In
addition, when there are multiple radar radiation sources, the tensor addition operation
can also be used to flexibly calculate the superposition effect of multiple radiation sources.

3.2. Definition of Three-Dimensional Tensor Grid Dilation Operator

Morphology is a digital image processing method based on set theory, in which a
structuring element is used to perform set operations pixel by pixel in the image, ultimately
obtaining the image result after morphological operations. Mathematical morphological
operations commonly include erosion, dilation, opening operation, closing operation, etc.
In this paper, the 3D tensor grid dilation operator is constructed from the dilation operation
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in binary image morphology. The set discussed in the dilation operation in the binary
image is the elements of the two-dimensional integer space Z2, where each element of
the set is a coordinate pair corresponding to the coordinate (x, y) of the target pixel in
the image [19]. Extending this notion to higher dimensions, the elements in the set are
coordinate pairs that correspond to the dimensions of the tensor grid; that is, the index
values of each dimension. In particular, the 3D tensor grid dilation operator is defined
within the three-dimensional integer space Z3, and the coordinate pairs corresponding to
the set are the spatial dimensional coordinates (x, y, z).

The operands of the 3D tensor grid dilation operator include the target set and the 3D
structuring element. The target set is the set to be processed, and the 3D structuring element
is a predefined “template” with a certain shape used to measure and extract corresponding
features. Different from the matrix form of 2D structuring elements, 3D structuring elements
can be represented as a three-dimensional tensor. In general, structuring elements are
usually chosen to have symmetric structures. Figure 6 shows several examples of 3D
structuring elements, where the yellow grid represents the origin of the structuring element,
and the blue grid represents the members of the structuring element.
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We must define the set A and the 3D structuring element B in the three-dimensional in-
teger space Z3. Before defining the 3D tensor grid dilation operator, it is necessary to define
the reflection and translation of the 3D structuring element, where reflection represents the
symmetric mapping of the structuring element about its origin, and translation means that
the entire structuring element is shifted by a certain displacement with respect to its origin.
The definitions of reflection and translation of the 3D structuring element B are as follows:

B̂ = {w|w = −b, b ∈ B}, (2)

(B̂)d =
{

c|c = w + d, w ∈ B̂
}

, (3)

where B̂ represents the reflection of B with respect to the origin, (B̂)d represents the trans-
lation of B̂ with respect to d, b represents elements in 3D structuring element B, w repre-
sents elements in B̂, c represents elements in (B̂)d, and d represents displacement vector,
which can be expressed as d = (dx, dy, dz). After reflection, the element (x, y, z) in B be-
comes (−x,−y,−z) in B̂, and after translation, the element (−x,−y,−z) in B̂ becomes
(dx − x, dy − y, dz − z) in (B̂)d.

The 3D tensor grid dilation process can be described as follows: after reflecting and
translating the structuring element B by displacement d, the intersection of (B̂)d and set
A remains a non-empty set. The mathematical expression for the 3D tensor grid dilation
operator is as follows:

A ⊕ B =
{

d
∣∣[(B̂)d ∩ A

]
̸= ∅

}
, (4)

where ∅ represents the empty set, A ⊕ B represents the dilation operation of A and B,
and d represents displacement. Note that d is defined relative to the origin of B̂, which
is the current coordinate of the origin. In practical applications, to reduce computational
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complexity, it is common to use the elements of set A as the origin positions for the 3D
structuring element B, then fill the elements within it. The equation can be expressed
as follows:

A ⊕ B = {b + a|a ∈ A, b ∈ B}, (5)

where a represents the elements of set A and b represents the elements of 3D structuring
element B. The schematic diagram of the 3D tensor grid dilation process is shown in
Figure 7, and to show it more clearly, a specific tensor slice has been chosen to demonstrate
the 2D dilation process, as shown in Figure 8.
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Figure 8. Schematic of 2D dilation process in a specific tensor slice.

In Figure 7, the blue grids represent the original grids set, while the orange grids
represent the 3D structuring element and the results after dilation. In Figure 8, the blue
grids represent the two-dimensional slice of the original grids set, the orange grids represent
the two-dimensional slice of the 3D structuring element, and the red checkmarks indicate
the results after dilation.
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3.3. Definition of Added Points Calculation for Three-Dimensional Tensor Grid Dilation Operator

When the dilation is performed consecutively, since the result after dilation includes
the set before dilation, if each dilation operation uses the result from the previous dilation
operation as the target set, it will result in many repetitive calculations for the displacement
d, thereby increasing the computational complexity. Therefore, in this case, we can calculate
the set of added points during each dilation operation and use it as the target set for the
next dilation operation.

We let the set of added points be C, then C = A ⊕ B − A. As the dilation progresses,
each dilation operation is performed based on the set of added points obtained from
the previous dilation. The set of added points Cn for the nth dilation can be expressed
as follows:

Cn = Cn−1 ⊕ B − A ∪
(

n−1
∪

i=1
Ci

)
= Cn−1 ⊕ B − A ∪ C1 ∪ · · · ∪ Cn−1, (6)

In order to provide a clearer illustration of the set of added points, a two-dimensional
dilation is shown as an example in Figure 9. The calculation of the set of added points for
three-dimensional dilation follows a similar approach.
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Figure 9. Schematic of the set of added points for two-dimensional successive dilation. (a) Original
grid set with structuring element; (b) Result of the first dilation; (c) Result of the second dilation;
(d) Result of the third dilation.

In the above diagram, the blue grids represent the target set for the current dilation
operation, the orange grids represent the set of added points for the current dilation
operation, and the bottom right corner in (a) shows the structuring element used for
dilation. The first dilation operation is based on the original grid set. From the second
dilation operation onwards, the target set for each dilation is the set of added grids obtained
from the previous dilation operation, and the set of added grids for the current operation is
computed according to Equation (6).

4. Radar Terrain Masking Calculation Algorithm Based on Three-Dimensional Tensor
Grid Dilation Operator

To calculate the radar terrain masking, an algorithm based on the 3D tensor grid
dilation operator has been developed. The algorithm dilates outward from the overlapping
region between the ideal radar detection range and the terrain. It then adjusts the dilation
process using the dilation judgment factor, so as to obtain the area of radar occluded by
terrain as well as the actual detection range. The algorithm enables focusing on the radar’s
internal characteristics while considering the boundary of its detection range. The overall
algorithmic flow chart is illustrated in Figure 10.
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4.1. Definition of Data Structure

The electromagnetic tensor grid data model in this paper does not consider the time
dimension, and the property dimension includes the power value and the type flag of the
location, which is expressed as follows:

XE ∈ RI1×I2×I3×IP , (7)

where I1−3 represents the three spatial dimension sizes of longitude, latitude, and altitude,
respectively, and IP represents the property dimension size, in this case IP = 2. The type
flags include “0, 1, 2, 3”, where “0” indicates that the grid has not yet been calculated, “1”
indicates that the grid belongs to the calculated actual radar detection range, “2” indicates
that the grid is the boundary of the ideal radar detection range, and “3” indicates that the
grid belongs to the terrain set. The details are shown in Table 1.

Table 1. Type flags and meanings.

Type Flag Expressed Meaning

0 The grid has not yet been calculated
1 The grid belongs to the calculated actual radar detection range
2 The grid is the boundary of the ideal radar detection range
3 The grid belongs to the terrain set

Since the power values in the property dimension are not used in the calculation, an
adaptive dimensional slicing operation is performed on the electromagnetic tensor grid
data model XE, to extract the remaining dimension involved in the calculation, i.e., the
type flag dimension. This process results in a new tensor, as follows:

X ∈ RI1×I2×I3 , (8)

For subsequent calculations, the ideal radar detection range is stored in set SRader, the
boundary of the ideal radar detection range is stored in set SBoundary, and the terrain data
are stored in set STerrain. These sets can be represented with type flags, as follows:SBoundary =

{
(i, j, k)|Xijk = 2

}
STerrain =

{
(i, j, k)|Xijk = 3

} , (9)

4.2. Dilation Judgment Factor

Before proposing the dilation judgment factor, it is necessary to assess the terrain
masking situation. For this purpose, a terrain occlusion judgment method is proposed. For
any spatial grid P, the first step is to construct a 3D line segment connecting the radiation
source and the spatial grid P. The tensor grid indices are used as the coordinates of the
points on the line segment. The Three-Dimensional Digital Differential Analyzer (3D-DDA)
algorithm [20] is utilized to achieve the construction of the line segment, i.e., the passing
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grids are recorded gradually from the grid where the radiation source is located along
the direction of the connecting line, and the grids are then stored in the 3D line segment
set SLine. Whether this spatial grid is occluded or not is determined by judging whether
there is an intersection between the 3D line segment and the terrain set STerrain. If there
is an intersection between two sets, the spatial grid is considered occluded by the terrain;
therefore, the occlusion factor Focclusion = 1. If there is no intersection, the spatial grid is
considered to be un-occluded, and Focclusion = 0. For spatial grid P, the occlusion factor is
calculated as follows:

Focclusion =

{
1, ifSline_P ∩ STerrain ̸= ∅
0, ifSline_P ∩ STerrain = ∅ , (10)

where Sline_P represents the set of spatial grids in the 3D line segment connecting spatial
grid P to the radiation source and STerrain represents the set of terrain data. The schematic
diagram of terrain occlusion judgment is shown in Figure 11, where the red grid represents
the radiation source, the green grid represents the grid to be judged, and the blue grids
represent the terrain.
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On this basis, the dilation judging factor FJudge is further proposed to judge whether
the dilation should be performed towards a certain spatial grid P

(
px, py, pz

)
. When the

spatial grid P meets one of the following conditions, the dilation judging factor FJudge = 0:
(1) The current spatial grid P coincides with the terrain set; that is, P ∈ STerrain;
(2) The current spatial grid P belongs to the boundary; that is, P ∈ SBoundary;
(3) The current spatial grid P is not occluded by the terrain: that is, Sline_P ∩ STerrain = ∅,

Focclusion = 0.
Conversely, if the spatial grid P does not coincide with the terrain, does not belong

to the boundary, and is occluded by the terrain, i.e., when P /∈ STerrain, P /∈ SBoundary, and
Focclusion = 1 are satisfied, the judgment factor FJudge = 1.

4.3. Algorithm Flow

The radar terrain masking calculation algorithm based on 3D tensor grid dilation
operator firstly represents the ideal radar detection range and terrain as a set, respectively,
and then dilates outwards from the terrain overlapping area. The specific algorithm flow is
as follows, and the flow chart is shown in Figure 12.
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Step 1. Calculate the intersection SRT of the ideal radar detection range set SRader
and the terrain set STerrain, which overlap the radar detection range and terrain under
ideal conditions. Let the initial set of dilation Sd(0) = SRT , set the terrain masking set
STM = STerrain, the 3D structuring element SE3D, the maximum number of iterations n, and
the number of dilation iteration count i = 0.

Step 2. Set the dilation iteration count i = i + 1. If i ≤ n, turn to Step 3; if i > n, turn
to Step 8.

Step 3. Start the ith dilation from the current dilation set Sd(i − 1), select the uncalcu-
lated spatial grid P in the dilation set. If there is no uncalculated grid in the current dilation
set, turn to Step 7; otherwise, turn to Step 4.

Step 4. Dilate based on the 3D tensor grid dilation operator with 3D structuring
element 3D-SE and obtain the added grids, which are defined as to-be-judged grids. Cal-
culate the dilation judging factor FJudge_P of each grid P, if FJudge_P = 1, turn to Step 5; if
FJudge_P = 0, then turn to Step 6.

Step 5. Dilate to this to-be-judged grid and add the current grid to the added dilation
set Sd(i) and turn to Step 3.

Step 6. Do not dilate to this to-be-judged grid, and the current grid is not added to the
added dilation set, turn to Step 3.

Step 7. Record the current added dilation set Sd(i), find the union set of Sd(i) and the
terrain masking set STM, and determine whether Sd(i) is the empty set. If Sd(i) ̸= ∅, turn
to Step 2, and if Sd(i) = ∅, turn to Step 8;

Step 8. End the dilation to obtain the terrain masking set STM. Then, calculate
the actual radar detection range under the influence of terrain, based on the ideal radar
detection range.

5. Experiments and Results

In this section, the radar detection range under ideal conditions is calculated by the
radar equation as initial data, and several experiments are carried out on this basis.

5.1. Experimental Data

According to the radar equation [21], the maximum detection range of the radar with
a transmitter/receiver shared antenna is expressed as follows:

Rmax =

[
PtG2λ2σ

(4π)2Simin

]1/4

, (11)

where Pt represents the radar transmit power, G represents the radar antenna gain, λ
represents the radar operating wavelength, σ represents the target radar cross-section, Simin
represents the minimum detectable signal power, and its expression is as follows:

Simin = kT0BnFn(S/N)omin, (12)

where k is the Boltzmann constant, T is the standard room temperature (it generally takes
290 K), Bn represents the receiver noise bandwidth, Fn represents the noise factor, and
(S/N)omin represents the minimum output signal-to-noise ratio required to detect the
target signal, also known as the detectability factor Do.

Under ideal conditions, the maximum detection range of radar in the determined
direction of elevation θ and azimuth φ is as follows:

R(θ, φ) = Rmax × F(θ, φ), (13)

where F(θ, φ) is the radiation pattern of the antenna. In this paper, the Gaussian pat-
tern is adopted in data simulation, and the bidirectional working Gaussian function is
approximately expressed as follows:

F(θ) ≈ e
−2.8 θ2

θ0.5
2 , (14)
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The ideal radar detection range in the experimental data of this paper is calculated
from the radar equation of Equations (11)–(14). Radar parameters are shown in Table 2.

Table 2. Radar parameters.

Radar Parameter Value

Radiation source location (24◦N, 115◦E)
Radiation source altitude 400 m

Transmit power 50 kW
Antenna gain 10

Radar operating frequency 1 GHz
Radar operating wavelength 0.3 m

Half-power beamwidth 30◦

Target radar cross-section 10 m2

Minimum output Signal-to-Noise Ratio (SNR) 20 dB

This paper uses the global subdividing grid as a foundation. Currently, a representa-
tive example is the “geographical coordinates subdividing grid with one-dimension integral
coding on 2n-Tree”, referred to as GeoSOT [22]. Therefore, we chose to experiment with
GeoSOT-3D subdivision framework, which is the three-dimensional extension of GeoSOT.
Based on the aforementioned experimental parameters, the ideal radar detection range is
calculated, and the spatial subdivision is carried out according to the GeoSOT-3D subdivi-
sion framework. The radar detection range under ideal conditions and its representation
with subdividing grids are shown in Figure 13.
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5.2. Experimental Results and Discussions

To verify the feasibility of the algorithm, three simulated terrain datasets with different
shapes are designed, and a series of experiments are conducted. The software configuration
for the experiment is Python 3.9 and Visual Studio 2019.

Firstly, experiments are conducted separately on three simulated terrain datasets for
validation. Then, experiments are performed on Dataset 1 under different subdivision
layers and grid sizes, with a comparison of the calculation time at each layer. Subsequently,
we compare the calculation time of our algorithm with the line-of-sight visibility detection
method [8]. Finally, experimental validation is performed under real terrain data.

5.2.1. Experimental Results of Two Simulated Terrain Datasets

Three shapes of simulated terrain datasets are designed. Dataset 1 has the shape of a
hemisphere, located 5 km east of the radar radiation source with a radius of 2.5 km. Dataset
2 is shaped like a tetrahedron, located 4.5 km east of the radar radiation source with a height
of 2.5 km and a bottom side length of 5 km. Dataset 3 is a more complex bimodal terrain
located east of the radiation source. The spatial relationship between the simulated terrain
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and the radar detection range, as well as the experimental results, are shown in Figure 14.
In Figure 14, the green grids represent the simulated terrain and the cyan grids represent
the actual radar detection range under terrain occlusion. Specific experimental results are
shown in Table 3. The experiments are conducted with Layer 17, and the corresponding
grid sizes are shown in Table 4.
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Table 3. Specific experimental results of two simulated terrain datasets.

Simulated
Terrain Datasets

Number of
Terrain Grids

Number of
Intersecting Grids

Number of
Masking Grids

Calculation
Time

Dataset 1 1382 271 706 0.143 s
Dataset 2 959 127 361 0.093 s
Dataset 3 1153 151 1092 0.230 s

Table 4. Experimental results of different subdividing layers and grid sizes.

Subdivision
Layer Grid Size Total Number of Grids Number of

Intersecting Grids
Number of

Masking Grids Calculation Time

15 1280 m 433 22 63 0.006 s
16 640 m 2558 72 300 0.034 s
17 320 m 15,987 271 706 0.143 s
18 160 m 115,223 1566 4061 1.139 s
19 80 m 873,155 10,106 20,734 9.124 s
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Among them, the number of terrain grids refers to the number of grids obtained after
subdividing the simulated terrain, the number of intersecting grids refers to the number
of grids in the part of the simulated terrain overlapping with the radar detection range,
and the number of masking grids is the number of grids in the part of the terrain affected
by terrain masking. From Figure 14, it can be seen that the dilation method is capable of
calculating terrain occlusion under various terrain conditions. Even for more complex
terrains such as multi-peak situations, it can accurately perform calculations.

5.2.2. Experimental Results Varying Subdivision Layers and Grid Sizes

To explore the relationship between calculation time and grid size, experiments are
conducted based on Dataset 1, with five consecutive layers and corresponding grid sizes.
The experimental results are shown in Table 4, and Figure 15 shows the results for each layer,
with cyan grids representing the actual radar detection range and green grids representing
the simulated terrain.
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(e) Layer 19.

It can be observed that our algorithm effectively addresses terrain obstruction issues
at each layer. As the layer increases, the grid size decreases gradually, leading to an
exponential growth in the number of grids and, consequently, an exponential increase
in calculation time. Figure 16 illustrates the trend of the logarithm base 10 of the total
number of grids and the number of masking grids, as well as the calculation time as the
layer increases.

It is evident that the logarithm of the number of grids increases almost linearly with
the layer, i.e., the number of grids grows exponentially with the number of layers. As
shown in Table 4, the number of grids increases exponentially with the increase in layers,
while the calculation time exhibits a similar growth trend. When refining from Layer 18 to
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Layer 19, the number of grids increases nearly sevenfold from 115,223 to 873,155, and the
calculation time also increases sevenfold, resulting in a significant surge in calculation time.
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5.2.3. Comparison of Computational Efficiency and Accuracy with Existing Algorithms

Currently, two commonly used methods are the ray propagation method and the
line-of-sight visibility algorithm. The ray propagation method corrects the detection range
boundary by utilizing the principle of ray propagation within vertical profiles. However,
this approach does not consider internal conditions, resulting in faster but less precise
calculations. The line-of-sight visibility method samples at specific intervals within vertical
profiles and determines whether the sampling point is occluded by comparing elevation
angles with the terrain. Therefore, the calculation time of our algorithm is compared with
the line-of-sight visibility algorithm at Layer 17. In the line-of-sight visibility method,
the azimuth angle sampling interval is 2◦, and the vertical profile sampling interval is
300 m × 300 m, which is similar to the grid size at Layer 17. The sampling method for
the line-of-sight visibility method is illustrated in Figure 17, where * in (b) denote the
sampling points.
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Figure 17. Sampling method for line-of-sight visibility method. (a) Sampling method in the azimuthal
direction; (b) sampling method in a vertical profile.

To validate the accuracy of the dilation method, the results of the dilation method are
compared with those of the line-of-sight visibility method. Since the line-of-sight visibility
method evaluates each sampling point on the vertical profiles, it serves as the benchmark
for comparison. The relative error is calculated as follows:
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ε =
|NumD − NumL|

NumL
× 100%, (15)

where ε represents the relative error, NumD denotes the number of grids of the actual radar
detection range obtained by the dilation method, and NumL denotes the number of grids
of the actual radar detection range obtained by the line-of-sight visibility method. The
comparison results are shown in Table 5.

Table 5. Comparison results of calculation time and accuracy between current algorithm and existing
algorithms.

Dilation Method
Calculation Time

Line-of-Sight Visibility
Method Calculation Time Relative Error

Dataset 1 0.143 s 0.338 s 1.29%
Dataset 2 0.093 s 0.597 s 0.42%
Dataset 3 0.230 s 0.406 s 0.98%

It can be observed that the relative errors of the dilation method and the line-of-sight
visibility method are all within 1.5%, which is relatively small. Moreover, the dilation
method significantly reduces computation time compared to the line-of-sight visibility
method, resulting in nearly a doubled increase in computational efficiency. Analysis reveals
that both the dilation method and the line-of-sight visibility method consider internal
points in the calculation, especially the latter method requires visibility determination for
each sampling point, leading to a significant increase in calculation time. In contrast, the
dilation method utilizes dilation judgment factors to skip computation for some grids when
calculating the occlusion case, thereby improving computational efficiency. Additionally,
the line-of-sight visibility method oversamples positions close to the radiation source due
to azimuthal sampling, resulting in computational redundancy, which is not an issue with
the tensor grid method.

5.2.4. Experimental Results with Actual Digital Elevation Model (DEM) Data

In order to validate the adaptability of our algorithm to real terrain, actual digital ele-
vation model (DEM) data are imported, with the center at (24◦N, 115◦E) and the simulated
area spanning from (23.9◦N, 114.9◦E) to (24.1◦N, 115.1◦E), as shown in Figure 18. The
experiment is carried out at Layer 17, with 74 intersecting grids and 479 masking grids,
and the calculation time is 0.088 s. The experimental result is illustrated in Figure 19, where
the green grids indicate the terrain and the cyan grids indicate the actual radar detection
range under terrain occlusion. It can be seen that the algorithm in this paper can be applied
to actual terrain.
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6. Conclusions

To address the issue of radar detection range being affected by terrain masking,
this paper proposes a radar terrain masking calculation model based on the tensor grid
dilation operator. The algorithm first performs grid subdivision of the high-dimensional
electromagnetic data and constructs the tensor grid model. Then, it calculates terrain
masking using the idea of the dilation operation in morphology. This algorithm can
calculate terrain masking with various terrain shape characteristics and at different grid
sizes, significantly improving computational efficiency while focusing on internal features
of the radar detection range.

The research in this paper is limited to terrain masking calculations within the hori-
zontal plane of the Earth, ignoring the influence of the curvature of the Earth. Meanwhile,
the research primarily focuses on computing the radar coverage range at a specific moment
and does not consider cases where the position or parameters of the radiation source vary
over time. In future research, we will consider additional factors such as the curvature of
the Earth, atmospheric attenuation, and electromagnetic wave diffraction. Furthermore,
leveraging the high-dimensional properties of tensors will be crucial for computing the
actual radar detection range when the radiation source undergoes dynamic changes.

Besides, we will also explore the relationship between the actual requirements and
the grid size, which can guide the user in choosing the best parameters for their specific
applications. For example, when the radiation source is fixed, priority can be given to
computation accuracy by selecting a finer grid size. However, when the radiation source
varies, priority should be given to computational efficiency, even if it means sacrificing
some computational accuracy.
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