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Abstract: Straw burning is a significant source of atmospheric pollutants, releasing particulate matter
and trace gases. Capturing the characteristics of straw burning and understanding its influencing
factors are important prerequisites for regulating straw burning. Based on the fire points detected
by the Moderate-resolution Imaging Spectroradiometer (MODIS) in Hunan province, China, from
2010 to 2020, this study analyzed the spatiotemporal variations of straw burning and employed
Geographically Weighted Regression (GWR) models to investigate the underlying forces driving
straw burning. The results show that the spatiotemporal characteristics of straw burning in Hunan
Province can be categorized into two distinct periods: 2010 to 2014 and 2015 to 2020. The period from
2010 to 2014 witnessed a rapid increase, while the period from 2015 to 2020 experienced fluctuating
decreases. The shift is closely linked to the implementation of the straw burning ban policy in 2015.
Spatially, the areas with a high number of fire points are primarily located in the southern regions,
especially in the border regions between Chenzhou, Yongzhou, Hengyang, and Shaoyang cities. A
significant change was found in the impact of economic development and human activity factors
on straw burning before and after 2015. These factors include crop yield, Gross Domestic Product
(GDP), and road network development. From the implementation of the straw burning ban policy,
increases in GDP and settlement density will have a dampening effect on straw burning in a region.
Straw burning locations may shift towards regions with relatively slow economic development. The
results could serve as a foundation for decision-making to address the issue of straw burning.

Keywords: straw burning; driving forces; kernel density; Geographically Weighted Regression
models; Hunan province

1. Introduction

Air pollution is a severe environmental issue in many developing countries due to its
hazardous effects on human and ecosystem health [1,2]. Fine particulate matter with an
aerodynamic diameter smaller than 2.5 µm (PM2.5) is one of the most significant pollutants,
causing hazy weather and affecting human health [3–5]. Biomass burning is one of the major
sources of PM2.5 and its gaseous precursors [6–9]. Among these, straw burning is an important
source that has caused heavy haze episodes during harvest seasons worldwide [10]. Emissions
of atmospheric pollutants from open straw burning have been previously estimated in several
countries [11–13]. In China, the contribution of the open burning of straw to PM2.5 emissions
in north and northeast China increased significantly to 56.4–66.4% in 2016 [10]. Compared to
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industrial and traffic sources, emissions from biomass sources, especially open straw burning,
can be directly linked to atmospheric pollutants. Thus, characterizing the spatial and temporal
variations of emissions from open straw burning is necessary for formulating emission policies
and developing technology for reusing the straw.

Advancements in remote sensing technology for monitoring fire points have increased
the research on extracting ground fire points using high-resolution satellite data in specific
regions [14–17]. These studies focus on monitoring fire points in large-scale areas, utilizing
mature technologies and research methods. Traditional monitoring of straw burning based on
satellite remote sensing data requires substantial manpower and material resources, resulting
in a time-consuming and inefficient process. Remote sensing methods can overcome the
limitations of traditional methods and rapidly acquire information about the location of straw
burning, which is highly significant in enhancing the effectiveness of government oversight
and the efficient management of straw burning. Previous studies have made significant efforts
to investigate the temporal and spatial variations of fire points [18–21]. For example, Verma
et al. [22] quantified the spatiotemporal changes in straw burning in Madhya Pradesh, India,
from 2002 to 2016 and revealed an increasing trend in the number of fire points. Li et al. [19]
analyzed the changes in straw burning in Henan Province, China. They identified a gradual
evolution from the northern and central regions to the southwestern and southeastern regions
by identifying the locations where straw burning occurred in 2000, 2008, and 2014. Zhang
et al. [16] found that the accuracy of detecting straw burning fires from MODIS data in Henan
Province during the autumn crop harvest period could reach 86.54%, based on field inspections.
The straw-burning fires were spatially concentrated in the central, eastern, and southern regions
of Henan Province. Temporally, they mainly occurred from September 27 to October 20. Zhang
et al. [23] analyzed the spatial and temporal evolution characteristics of straw burning in China
from 2014 to 2018 across various spatial and temporal scales. They found that the number of
straw burning fires decreased annually, with concentrations in October-November and February-
April, and spatial clustering in northeast, northern, and central China. These studies have shed
light on the impact of straw burning on the quality of the atmospheric environment. However,
exploring the driving mechanisms of straw burning remains a significant challenge [24].

Previous studies [23,25,26] have shown that the spatial pattern of straw burning at a
national scale in China exhibits a gradual increase in density from west to east and from south
to north. Given the regional differences in straw burning, many studies have been extended
to the provincial or regional level to characterize the spatial and temporal aspects of straw
burning [16,19,21,27]. However, these studies have primarily focused on the northeastern
and eastern regions of the country and have not adequately addressed the distribution and
detailed spatial and temporal patterns of straw burning in Hunan Province, a major fire center in
southern China. Before the publication of the “Air Pollution Prevention and Control Action Plan”
in China, there were four main regions where straw burning was widespread [28,29]: (1) the
Huang-Huai-Hai region, (2) the eastern plains of the middle and lower reaches of the Yangtze
River, (3) southern China, particularly the Guangdong, Guangxi, Hunan, and Hainan provinces,
and (4) northeastern China. The Huang-Huai-Hai region covers areas at the confluence of
the Yellow River, Huai River, and Yangtze River basins in China, including provinces such as
Henan, Anhui, Jiangsu, and Shandong. Over the past decade, a series of measures to control
straw burning has been implemented in China. As the patterns of straw burning vary across
different provinces, they are influenced not only by the distribution of resources but also by
the implementation efforts of control strategies. Therefore, a comprehensive analysis at the
provincial level will most likely be effective in assessing the rationale behind policies related to
straw burning and help in designing effective and concrete policy responses.

Hunan Province is an important grain-producing region in China. A previous study
showed that, in 2010, the proportion of open straw burning in Hunan Province ranked first
in China, reaching a peak of 43.1% of the total cultivated area [26]. Analyzing the factors
that contribute to straw burning is of great practical importance for controlling fire points of
straw burning and improving air quality in the study area. Therefore, this study collected
fire point data from 2010 to 2020 in Hunan Province, China, to comprehensively assess
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the factors that drive regional straw burning and propose effective response strategies.
Specifically, we analyzed the spatial and temporal variation of straw burning in Hunan
Province from 2010 to 2020 to identify disparities in fire points in terms of both time and
location. Local effects and the factors influencing straw burning were explored using
Geographically Weighted Regression (GWR) models to reasonably explain the spatial phe-
nomenon. We also compared the changes in the effects of various factors from 2010 to 2014
and 2015 to 2020. These analyses provide valuable insights for enhancing the effectiveness
of government regulations and effectively addressing the issue of straw burning.

This paper is organized as follows. The study area and datasets are introduced in
Section 2. Section 2 describes the methodology, including the kernel density estimation
and GWR models. Section 3 reports the results and Section 4 provides a discussion of the
results. Section 5 summarizes this study and draws conclusions.

2. Materials and Methods
2.1. Study Area and Straw Burning Data

Hunan Province is situated in the central and southern regions of China, spanning from
108◦47′ to 114◦15′E longitude and 24◦39′ to 30◦08′N latitude. It covers a total area of 211,800 km2

and comprises 13 cities and 122 counties. By the end of 2021, the population of permanent
residents reached 66.22 million, and the per capita GDP was 69,400 yuan. The landforms of
Hunan Province are diverse, with mountains and hills dominating the region. The province is
surrounded by mountains to the east, south, and west, while the central area consists of hills.
In the north, there are lake basin plains. Diverse soil types provide favorable conditions for
agriculture, forestry, animal husbandry, and fishery production in Hunan Province, as depicted
in Figure 1. It is a predominantly agricultural province with distinctive natural resources. It has
become an important region for grain production in China and requires efficient monitoring
technology to oversee the burning of straw in the area.
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In order to obtain data on straw burning in Hunan Province from 2010 to 2020,
the methods were used as follows, as shown in Figure 2. First, we downloaded the
MODIS fire data from the Fire Information for Resource Management System (FIRMS,
https://firms.modaps.eosdis.nasa.gov/, last access: 30 September 2021). The MODIS
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Remote Sens. 2024, 16, 1438 4 of 23

Fire and Thermal Anomalies product is available from the Terra (MOD14) and Aqua
(MYD14) satellites, as well as a combined Terra and Aqua (MCD14) satellite product,
which can show active fire detections and thermal anomalies. The sensor resolution is
1 km, and the temporal resolution is daily. Each active fire data contains information
such as latitude, longitude, time, brightness, and so on. Second, we extracted the land
use raster data of each fire point, excluding the fire points that were not in the range
of farmland. Thermal anomalies associated with forest fires, grassland fires, industrial
emissions, and coal-fired power plants were also excluded. Only the thermal anomalies
related to farmland, especially straw burning, were retained. Third, the administrative
boundary data were used for masking to produce a database of straw burning fire points
in Hunan Province. Finally, based on the extracted data on straw burning and the vector
data of China’s administrative divisions, a regional statistical analysis was conducted to
obtain data on straw burning in different regions in Hunan Province. The distribution of
fire points is presented in Figure A1 (refer to Appendix A). Table 1 presents the sources and
types of data used in this study.
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Table 1. Description of the data used in this study.

Data Type Source Description Usage Resolution

MODIS

NASA LAADS DAAC
(https://www.earthdata.nasa.gov/
eosdis/daacs/laads) (accessed on

1 April 2023)

MOD14
(Terra)/MYD14 (Aqua)

Extracting the number of
fire points 1 km × 1 km

Land-use and
administrative area

Resource and Environmental Science and
Data Center, Chinese Academy of

Sciences
(https://www.resdc.cn/) (accessed on 1

April 2023)

Land-use data in 2010,
2014, and 2020

Extracting the number of
fire points

1 km raster data
30 km × 30 km

Digital Elevation
Model (DEM)

Geospatial Data Cloud
(http://www.gscloud.cn/search)

(accessed on 1 April 2023)
SRTM DEM

Extracting natural factors,
including elevation, slope,

and aspect
90 m

Crop information Hunan Statistical Yearbook (2010–2020)

Annual crop yield and
crop-sown area of various

districts or counties in
Hunan Province

Extracting Socioeconomic
factors, including crop

yield and crop-sown area
/

GDP and
population density Hunan Statistical Yearbook (2010–2020)

Annual GDP and
population of various
districts or counties in

Hunan Province

Extracting Socioeconomic
factors, including GDP
and population density

/

Roads and
settlements

National Catalogue Service for Geographic
Information (https://mulu.tianditu.gov.cn/

main.do?method=index) (accessed on
1 April 2023)

Public basic geographic
information data in 2014
and 2019, respectively

Extracting human activity
factors, including road

density, settlement density,
and distance from road

/

https://www.earthdata.nasa.gov/eosdis/daacs/laads
https://www.earthdata.nasa.gov/eosdis/daacs/laads
https://www.resdc.cn/
http://www.gscloud.cn/search
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2.2. Kernel Density Estimation

In this paper, we use the spatial smoothing function of Kernel Density Estimation
(KDE) to analyze the distribution density of point elements related to straw burning in
various regions. The objective is to uncover the evolutionary trend of geographical element
diversification, as well as the characteristics of concentration and dispersion. Additionally,
we aim to examine the spatial and morphological characteristics of straw burning in
different regions. KDE is a nonparametric method used to estimate the Probability Density
Function (PDF) of the underlying data [30]. It is highly effective in visualizing and analyzing
the density variations in the spatial distribution of point elements.

This method does not require prior knowledge about the data distribution when
estimating, and it does not make any assumptions about the distribution of the data. It is
a method to study the characteristics of the data distribution using the data sample itself.
Therefore, it is widely used in many areas of basic research and engineering practice [31,32].

Specifically, the method assumes that X1, X2, X3 . . . . . . Xn are samples from a continu-
ous distribution f (x), xϵR with n values, then f (x) is estimated to be:

f̂ (x) =
1

nh∑n
i=1 K

(
x − Xi

h

)
, x ∈ R, (1)

where the f̂ (x) is the kernel density estimation value, n is the number of samples, K(∗) is
the kernel function, and h is the defaulted bandwidth.

2.3. Geographically Weighted Regression Models

To investigate the factors contributing to straw burning in Hunan Province from 2010
to 2020, we identified ten explanatory variables, including natural, socioeconomic, and
human activity factors. Natural factors include elevation, slope, and aspect. Socioeconomic
factors include the area of crops sown, crop yield, population density, and the Gross
Domestic Product (GDP). Human activity factors include road density, settlement density,
and distance from roads. Based on the spatial and temporal distribution characteristics of
straw burning, the number of fire points from 2010 to 2014 and 2015 to 2020 was used as
the dependent variables in this study when applying the GWR model. Table 2 presents the
descriptive statistics for all variables.

Table 2. Statistical description of variables.

Variable Description
2010–2014 (116 Districts) 2015–2020 (111 Districts)

Mean St. Dev. Mean St. Dev.

Dependent variable
Fire points Number of fire points 54.7 59.7 31.7 29.4

Natural factors
Elevation Elevation of administrative districts (m) 383.4 261.3 396.3 258.9

Slope Slope of administrative districts 2.5 1.7 2.6 1.7
Aspect Aspect of administrative districts (sine) −0.02 −0.67 −0.01 0.68

Socioeconomic factors
Crop yield Crop yield in districts (kiloton) 270.7 204.0 271.3 188.5

Crop-sown area Crop-sown area in districts (km2) 78.1 54.8 75.4 48.6

Population density Number of populations divided by the areas
of districts (thousands/km2) 0.5 0.6 0.5 0.6

GDP Gross Domestic Product of districts (billion) 18.8 19.0 28.3 26.1
Human activity factors

Road density Total road length divided by the areas of
districts (100 m/km2) 7.8 1.7 8.0 2.3

Settlement density Number of settlements divided by the areas
of districts (counts/km2) 0.2 0.1 0.3 0.1

Distance from road Average distance from fire points to the
nearest roads in districts (m) 531.8 283.4 1563.1 709.7
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Unlike global linear regression models such as ordinary least squares (OLS), Geograph-
ically Weighted Regression (GWR) models can capture the spatial effects of independent
variables [33]. These models examine the local characteristics of explanatory variables to
provide plausible explanations for spatial phenomena [34].

The normal formula of GWR is expressed as Equation (2):

yi(u, v) = β0(u, v) + ∑k βk(u, v)× xi(u, v) + εi(u, v), (2)

where yi and xi are dependent variable and independent variable at the ith location. (u, v)
is the geographical coordinate of the ith location. The parameter βk refers to the estimated
coefficient for independent variables and varies from location to location. The model
incorporates the geographical coordinates of observations and efficiently captures the local
variations in variable effects.

For a given geographic location (u, v), βk(u, v) can be estimated using locally weighted
least squares, as shown in Equation (3):

min∑n
i=i

[
yi − ∑k βk(u, v)×xi,k

]2
× wi(u, v), (3)

where wi(u, v) is the spatial weight at the location (u, v). The Gaussian kernel function, as
in Equation (4), is employed to evaluate the spatial effects:

wij = exp

[
−
(dij

b

)2
]

, (4)

where dij denotes the distance between observation i and j. b is an adaptive bandwidth
size, controlling the degree to which spatial effects are considered.

In this study, the Akaike Information Criterion (AICc) and coefficient of determination
(R-square) are used to evaluate model performance. A higher value of the two metrics
suggests a better fit of a model. The AICc is defined by Equation (5):

ICc = −2 × ll f + 2 × n(ENP + 1)/(n − ENP − 2), (5)

where the ll f refers to the value of the loglikelihood function, n is the number of observa-
tions, and ENP denotes the number of parameters.

3. Results
3.1. Temporal Variations of Straw Burning in Hunan Province

As shown in Figure 3a, from 2010 to 2020, there were 9220 fire points in Hunan Province.
The highest number was 1618 in 2014, representing 17.5% of the total, while the lowest was
265 in 2020, accounting for 2.87% of the total. Between 2010 and 2020, when comparing the
annual quantities, it was not difficult to find that the changes in fire points in Hunan Province
exhibited obvious periodic characteristics. There are two main stages of straw burning in Hunan
Province. The first stage occurred from 2010 to 2014. The total number of fire points was 5922
from 2010 to 2014, accounting for 64.23% of the overall total. The initial stage saw a significant
increase in the number of fire points. This indicates a clear upward trend and falls into the
category of rapid growth stage. A sharp decrease occurred in 2015, and the number of straw
fire points in 2015 decreased by 73.61% compared to 2014. The second stage occurred from
2015 to 2020, with an initial increase from 2015 to 2017, followed by fluctuations after 2018, and
ultimately a significant decline in 2020. The number of fire points in 2020 decreased by 59.67%
compared to 2016 and 55.83% compared to 2019.

Moreover, the differences in the monthly variation of fire points were more pro-
nounced. As shown in Figure 3b,c, the number of fire points has two peak intervals during
the year: one from January to April and the second from November to December. It also
shows a trend of fluctuating growth from June to December. The number of fire points in
May and June of each year was relatively low, with the monthly average not exceeding
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20 fire points. In addition, straw burning is primarily concentrated in spring and winter,
with a noticeable decrease in the number of fires during summer and autumn. As a result,
straw burning is mainly concentrated in the first and fourth quarters of the year.
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Figure 3. (a) Annual, (b) monthly, and (c) seasonal distribution of fire points in Hunan Province from
2010 to 2020. Q1 represents Spring from January to March. Q2 represents Summer from April to June.
Q3 represents Autumn from July to September. Q4 represents Winter from October to December.

3.2. Spatial Distribution of Straw Burning

Figure 4 shows the distribution of fire points for the 14 cities of Hunan Province
from 2010 to 2020. The peak years in the 14 cities during this decade differed slightly.
Changde, Zhangjiajie, Xiangxi, and Huaihua cities had the highest number of fire points
in 2013, but the numbers decreased in 2014. In 2014, the number of fire points in other
cities remained high. Moreover, the number of fire points in several cities in the eastern
and western regions of Hunan Province significantly decreased in 2015. For instance, cities
such as Zhuzhou and Chenzhou in the east, as well as Huaihua and Shaoyang in the
west, experienced a sudden decline in the number of fire incidents. In comparison, the
number of fire points in cities in northern and central Hunan Province showed minimal
fluctuations before and after 2015. These cities include Xiangxi, Zhangjiajie, Changde,
Yiyang, Yueyang, Loudi, and Yongzhou. The high number of fire points in 2014 occurred
in the northern, eastern, and southern regions of Hunan, including the cities of Yueyang,
Zhuzhou, Hengyang, Chenzhou, Yongzhou, Shaoyang, and Huaihua. The high number of
fire points in 2020 is primarily concentrated in southern Hunan, which includes Shaoyang,
Yongzhou, Chenzhou, and Hengyang. However, it is significantly lower compared to 2014.
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As depicted in Figure 5, the dense areas of fire points in Hunan Province are primarily
concentrated in the northeastern, southwestern, and southern regions. From 2010 to 2014,
the number of fire spots significantly increased from the southern to the southeastern and
central regions, extending as far as Yueyang city. The number of fire points also increased to
1.66 times that of 2010. The density centers of fire points in Hunan Province have gradually
shifted from one to three. These density centers were mainly distributed at the junction of
Yongzhou, Chenzhou, Shaoyang, Loudi, and Hengyang cities. From 2015 to 2020, a distinct
center of density emerged only in 2017 and 2019, primarily at the junction of Yongzhou and
Chenzhou cities. From a province-wide perspective, the dense areas of fire points in Hunan
Province exhibited a pattern of initial increase, followed by a sharp decline, a gradual
recovery, and, ultimately, a decrease from 2010 to 2020. Fire point density is also decreasing.
The results of this change are closely related to the increased administrative supervision
and punishment of straw burning in Hunan Province. This reflects the effectiveness of
the province’s ban on straw burning policy. On the other hand, the high density of fires is
mostly concentrated near the intersections of different cities. This is likely due to the lack
of effective administrative supervision at the urban fringe, which increases the likelihood
of straw burning in these areas compared to other locations.
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Figure 5. Kernel density of fire points in Hunan Province from 2010 to 2020.

3.3. Spatial and Temporal Variations of Driving Forces
3.3.1. Annual Change Rate

Influenced by socioeconomic and natural factors, there are significant spatial variations
in the practice of straw burning across different counties in Hunan Province. From 2010 to
2020, straw burning in Hunan Province displayed different characteristics during two periods:
2010–2014 and 2015–2020. To understand the potential drivers, we calculated the year-by-year
rates of change for various factors including natural factors, socioeconomic factors, and human
activity factors, as shown in Section 2.3 [27]. The change rate is divided into two types: absolute
and relative change rates. The absolute change rate of the ith factor in year t is calculated as

ARt
i = xt

i−x1
i

x1
i , which requires the first year’s data as a benchmark. The relative change rate of

the ith factor in year t is calculated as RRt
i = xt

i−xt−1
i

xt−1
i , which requires the previous year’s data

as a benchmark; thus, these figures display the change rates of different factors from 2011 to
2020 (See Appendix A).

The absolute change rate shows the global variations in associated factors, while the relative
change rate shows the local characteristics of associated factors. According to Figure A2a, the
population as a whole is growing from 2010 to 2018 and stabilizes or even shows a decreasing
trend by 2019 and 2020. The increasing size of the box each year indicates a gradual population
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difference between regions. Figure A2b shows that the population of most districts steadily
increased from 2010 to 2014. However, between 2016 and 2020, the number of regions in
Hunan Province experiencing negative population growth increased significantly, especially
in Hengyang and Yongzhou. These two regions also have a high number of fire points. The
GDP reflects the economic growth in each region of Hunan Province. Figure A3b shows that
the GDP of most regions in Hunan Province has been growing rapidly from 2010 to 2020, with
a particularly significant increase during the period from 2010 to 2014. The number of fire
incidents increased uniformly in all regions from 2010 to 2014. However, there was a noticeable
shift in the relationship between the growth of GDP and the number of fire points in each region
from 2015 to 2020, especially in 2017 and 2019. The sown area of crops could be an important
factor affecting straw burning. According to Figure A4b, the sown area of crops in the southern
and central regions of Hunan Province exhibited an annual increase from 2010 to 2015. This
increase has a strong spatial correlation with straw burning. However, between 2016 and 2020,
there was a significant spatial imbalance in the rate of change in crop-sown areas. Crop yield
is correlated with straw burning. Figure A5a shows that crop yield fluctuated and increased
from 2010 to 2015. However, from 2016 to 2020, there is an overall decreasing trend in crop
yield. As shown in Figure A5b, there were significant increases in crop yield in 2012 and 2014
compared to the previous year. Additionally, the density of straw burning was higher during
this period. However, the rate of change in crop yield was negative in most areas of Hunan
Province in 2013. As a result, the density of straw burning was lower in 2013 compared to
2012. This result shows a possible correlation between crop yield and straw burning. From
2015 to 2020, there was a change in the correlation between crop yield and the amount of straw
burning. These results may indicate that the relationship between straw burning and its driving
forces is spatially heterogeneous. To quantify the relationship between straw burning and its
drivers, we constructed GWR models to analyze the spatial distribution of fire points. The
models considered the distinct characteristics of the two phases of straw burning (2010–2014
and 2015–2020). The analysis enables us to identify changes in the relationship between fire
points and various factors, influenced by policies.

3.3.2. Geographical Variability Test and Model Evaluation

It is worth noting that the effects of some variables may not differ across regions, which
means that the coefficients on these variables may be spatially fixed. In order to identify local and
global variables, we performed the geographic variability test by calculating the difference in
AICc (DIFF of Criterion) between the original GWR model and the switched model. Specifically,
in the switched GWR model, the kth coefficient is fixed, while the other coefficients are set as in
the original GWR model. Following the theory of Nakaya et al. [35], the difference in the AICc
of the two models (denoted as DIFF of Criterion) is used as a model comparison indicator. If the
AICc of the original model is smaller than that of the switched GWR model, implying a better
fit of the original model and the negative value of the DIFF of Criterion, then the kth coefficient
varies over space. In other words, for a variable, if the value of DIFF of Criterion is greater than
0, it is typically identified as a global variable. Table 3 reports the results of DIFF of Criterion for
two models. For all variables, the values of DIFF of Criterion are negative, suggesting spatial
variability of coefficients associated with these variables. Therefore, all of these variables are set
as the local variables.

Table 3. DIFF of Criterion for GWR models.

Model 1
(2010–2014)

Model 2
(2015–2020)

Elevation −109.65 −0.673
Aspect −1.103 −30.109

Crop yield −46.218 −1.407
Population density −0.037 −0.355

GDP −1.796 −1.226
Road density −259.450 −1.230

Settlement density −7.827 −0.383
Distance from road −3.270 −2.271
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The presence of multicollinearity can lead to incorrect model estimates. To diagnose
multicollinearity among the independent variables under consideration, we employed a
metric known as the variance inflation factor (VIF). A VIF value greater than 10 typically
indicates the presence of high multicollinearity [36]. Therefore, we calculated the VIF
values of the 10 variables (refer to Appendix A) and removed variables with VIF values
larger than 10, including slope and crop-sown area. Finally, we utilized the remaining
eight explanatory variables to fit the models. Compared to traditional linear regression
models, GWR can reveal spatial heterogeneity of variables and may achieve higher accuracy.
Therefore, we compared the ability of OLS and GWR in model fitting. We quantified the fitness
of OLS and GWR models by calculating AICc and R2. As shown in Table 4, the R2 of the GWR
models is higher than that of the OLS models, and the AICc is smaller than that of the OLS
models. Specifically, the R2 values of the GWR models are significantly higher by 44.8% and
28.2% compared to the R2 values of the OLS models. The results indicate that the GWR models
can significantly improve the model performance compared to the OLS models.

Table 4. Model comparison.

Model 1
(2010–2014)

Model 2
(2015–2020)

AICc R2 AICc R2

OLS 1276.259 0.184 1055.406 0.223
GWR 1247.339 0.632 1033.696 0.505

3.3.3. Spatially Heterogeneous Effects Analysis

Table 5 displays the estimated coefficients of the GWR models. The GWR models
can explore the spatially non-stationary effects of associated factors, and as a result, the
coefficients of these factors are spatially different. The results suggest that the effects of
these factors may be spatially inconsistent, and they are highly sensitive to the underlying
spatial context [37].

Table 5. Estimation of the GWR models for fire points.

Variable
Model 1

(2010–2014)
Model 2

(2015–2020)

Min Max Mean STD Min Max Mean STD

Intercept −493.60 236.73 −77.41 177.30 −10.11 43.34 11.86 15.32
Geographic factors

Elevation (x1 ) −0.09 0.21 0.02 0.08 −0.04 0.04 −0.01 0.02
Aspect (x2 ) −0.43 2.04 0.59 0.56 −0.09 0.09 0.01 0.04

Socioeconomic factors
Crop yield (x3 ) 0.03 0.17 0.09 0.04 0.04 0.08 0.07 0.01

Population density (x4 ) −79.88 20.26 −19.28 26.29 −1.85 41.96 8.17 9.77
GDP (x5 ) −0.20 3.13 0.64 0.90 −0.38 −0.10 −0.22 0.08

Human activity factors
Road density (x6 ) −24.25 20.50 −1.20 10.19 −1.23 1.37 0.09 0.74

Settlement density (x7 ) −526.91 571.04 23.48 197.92 −1235.61 −19.30 −383.19 321.35
Distance from road (x8 ) −0.08 0.12 0.02 0.05 0.00 0.01 0.01 0.00

Figure 6 shows the spatial distribution of the coefficients associated with elevation
and aspect. The results show that the estimated coefficients of elevation were positive for
districts in northeastern Hunan Province from 2010 to 2020. Additionally, the increase
in elevation is associated with an increase in the number of fire points. The coefficient is
negative for districts in southwestern Hunan Province. Higher elevation is not favorable
for straw burning, which has a negative effect on the number of fire points in the western
and southern regions of Hunan Province, where the elevation is higher. However, it has a
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positive effect in the northern and central regions of Hunan, where the elevation is lower. In
the 2010–2014 and 2015–2020 periods, the impact of slope on fire points in Hunan Province
remained relatively stable. The overall topography of Hunan Province slopes from south
to north and is surrounded by mountains to the east, south, and west. The Dongting Lake
Plain is in the north, while the hills and basins are in the center. Agricultural land in Hunan
Province is primarily concentrated in the plains, basins, and hills. As a result, the fire points
are also concentrated in the northern and central regions of Hunan Province.
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Figure 7 shows that the impact of socioeconomic factors on fire points changed signifi-
cantly between the 2010–2014 and 2015–2020 periods. Crop yield consistently exhibits a
positive correlation in both periods. An increase in crop yield will lead to a certain extent
of increase in the number of straw fire points. In the 2010 to 2014 period, the population
density in the western part of Hunan Province increased, which resulted in a decrease in the
number of fire points. However, between 2015 and 2020, the increase in population density
in these areas resulted in a higher number of fire points. Similarly, the impact of GDP also
changed significantly. Between 2015 and 2020, the increase in GDP resulted in a decrease in
fire points across all regions, particularly in the western and southeastern regions. During
the 2010–2014 period, the impact of GDP in these regions was significantly positive. This
positive effect can be attributed to the increase in policy subsidies and investments in
science and technology, which were made possible by improvements in the economy. These
factors greatly contributed to the utilization of straw resources.
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A similar pattern was observed in the coefficients related to human activities. Figure 8
shows the distribution of the effects of human activity factors. An increase in road density
leads to an increase in fire points in the northern region of Hunan Province and a decrease
in the southern region of Hunan Province. However, from 2010 to 2020, this effect shifted
from inconsistency between the south and north to inconsistency between the east and
west. The increase in road density in the west caused an increase in fire points, while the
opposite is true in the east. Over time, the impact of settlement density in western Hunan
Province changes from positive to negative, while the impact of distance from the road
in central Hunan Province changes from negative to positive. However, it is important to
note that this correlation weakens. In terms of settlement density, the coefficient is negative
overall. Specifically, between 2015 and 2020, the negative effect of settlement density was
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more pronounced. This indicates that fire points are primarily located in areas with low
population density and more open space. Regarding distance from the road, the estimated
coefficients are mainly positive, particularly in northern and western Hunan. The impact
of fire points on distance from the road varies from negative to positive, which aligns with
the findings presented in Figure 5. The density of fire points tends to increase from the
center of the region to the edge of the region. In the peripheral regions, the utilization of
technology and management is relatively weak, which consequently affects the spatial
distribution of straw burning to some extent.
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To a certain extent, the reduction of straw burning is closely linked to the level of
economic development in the region. In relatively developed regions, people pay more at-
tention to the ecological environment and its protection, resulting in stronger environmental
awareness. However, in other regions, people’s awareness of environmental protection is
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not strong. In these regions, the practice of straw burning will be common and frequent. In
developed regions, the potential for straw industrialization and the utilization of subsidies
for straw will be higher. In addition, with the increasing efforts of local governments to
ban straw burning and promote the comprehensive use of straw, farmers will be more
motivated to return straw to the field. This will lead to a reduction in the willingness of
farmers to burn straw.

4. Discussion

This study begins with a spatial and temporal analysis of straw burning in Hunan
Province from 2010 to 2020. In terms of time-varying characteristics, the number of straw
fire points in 2015 decreased by 73.61% compared to 2014. This may be attributed to
the ineffectiveness of the early Hunan provincial government’s advocacy for a complete
ban on straw burning, despite their active promotion of the implementation of the Air
Pollution Prevention and Control Action Plan in 2013. In 2015, the provincial agricultural
commission issued regulations specifically for a straw burning ban, titled “Notice on
Further Accelerating the Comprehensive Utilization of Crop Straw and Implementing a
Burning Ban”. This notice states that by 2020, the number of straw burning fire points
should be reduced by 5% compared to 2016. The number of fire points decreased by 59.67%
in 2020 compared to 2016, and by 55.83% compared to the previous year. Due to the
implementation of stricter management and regulations regarding the use of straws and
the prohibition of burning in cities and districts, there have been improvements in overall
management and notable outcomes.

In terms of seasonal distribution, Hunan Province is characterized by a predominant
occurrence of straw burning during the autumn and winter seasons [38–40]. This type of
straw burning mainly occurs from September to March, with two periods of high fire points,
January–February and October [23,38,41,42]. This difference may be due to the timing of
rice planting in Hunan. The province is characterized by hilly terrain and follows a biannual
cultivation system. Rice is planted in the spring and harvested in the summer, then planted
again in the summer and harvested in the autumn. There are two periods of straw burning
as a result. However, in recent years, industrialization and urbanization have led to the
non-agriculturalization of the rural labor force. This has resulted in other factors influencing
the transition from double-season rice cultivation to single-season rice cultivation in Hunan
Province. The time from sowing to harvesting was approximately between May and
October, and the harvested straw could be burned. To enhance soil fertility, particularly in
the first quarter of the upcoming year, there will be a relatively concentrated practice of
straw burning, which may increase fires between January and March [43].

Among the 14 cities, Yongzhou city has the highest number of hotspots, accounting for
17.72% of the total. Chenzhou and Hengyang cities follow closely behind, accounting for
14.65% and 14.63%, respectively. These three cities collectively account for 47% of the total
number of fire points in the province. Although the number of straw burning fire points in
these areas decreased significantly between 2015 and 2020, the overall count still remains high.
This may be attributed to the fact that straw utilization in this area is still in its early and
rudimentary stage, with limitations in the technical recycling system, farmers’ awareness, and
insufficient regulatory power [10,44]. Straw burning in this region has a significant impact
on the local air quality [16,44,45]. Therefore, it is crucial to focus on improving the level of
straw resource utilization and strengthening control measures in order to reduce the amount
of straw burning [46]. This indicates that there may be a lack of supervision and management
in the region. Moreover, there were several reasons for this spatial difference, which were not
solely attributed to variations in social and economic development [44,47]. Factors such as the
natural geographical environment, the scope of human activities, and the scale of crop planting
also played a significant role. Grasping its internal driving mechanism has strong practical
significance for effectively curbing the occurrence of fires and improving the quality of the
regional atmospheric environment [48–51].
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Because of the significant spatial differences and diverse causes of straw burning
in Hunan Province, it is necessary to further analyze the driving mechanisms in order
to effectively understand the causes and make reasonable suggestions. Therefore, the
GWR model is used to analyze the influence of each factor at the geospatial level, including
natural factors, socioeconomic factors, and human activity factors in Hunan. From a natural
perspective, the estimated coefficients associated with this aspect exhibit high variability.
They show a positive impact in regions with concentrated farmland and a negative impact
in regions with dispersed farmland. From a socioeconomic perspective, crop yields, which
serve as the raw material for straw combustion, generally have a positive impact on the
occurrence of fire points. Furthermore, the spatial heterogeneity of this effect decreases
over time. This result indirectly proves the effectiveness of promoting the comprehensive
utilization of straw in recent years [52]. Population, as an important influencing factor
of straw burning, can continuously affect the number and timing of fire points [53]. The
estimated coefficients associated with population density in the eastern Hunan region show
minimal changes, while those in the western Hunan region exhibit significant changes.
This difference may be attributed to the practice of straw return to fields in western Hunan
from 2015 to 2020.

From the estimated coefficients related to GDP in the two time periods, it can be
observed that the difference in estimated coefficients between adjacent cities is small. This
may be attributed to the fact that GDP is a crucial indicator of the level of economic de-
velopment, displaying significant spatial dependence characteristics. In addition, there is
generally a positive relationship between GDP and the number of fire points in Hunan
Province from 2010 to 2014 in most regions. However, from 2015 to 2020, this impact
became negative in all regions of Hunan Province. This situation aligns with the theory of
the Environmental Kuznets Curve [54]. When the economic level of a region is low, the
degree of environmental pollution is also low. As the economy gradually develops, the
degree of pollution increases. However, when economic development reaches a certain
inflection point, the degree of pollution starts to decrease. This phenomenon can be rep-
resented by an inverted “U” curve, which indicates the relationship between economic
development and environmental pollution [55,56]. At this stage, the peak of the curve in
Hunan Province has been surpassed, and the increasing GDP will discourage the burning
of straw. From the perspective of human activities, cities are the primary areas that require
technical support and policy implementation. There may be two reasons for this. Before
implementing any policies, it is important to consider the close relationship between agri-
cultural productivity and straw burning, as well as its impact. The increase in agricultural
productivity results in more crop straw and a higher carbon density per unit of production
(CDP). Due to insufficient management, more crop straw is likely to be burned, resulting in
consistently high emissions. The volume of emissions from straw burning during straw
return increases rapidly. Secondly, there is widespread advocacy for the prohibition of
straw burning during straw return and the promotion of commercial energy. After policy
implementation, strict prohibition policies and measures against straw burning during
straw return are gradually changing burning habits in rural areas [57]. The increase in
CDP also signifies the effective utilization of corn straw resources and commercial energy
under new economic policies [29]. Thus, the distribution of straw burning tends to become
denser as one moves away from city roads. It should be noted that the burning patterns
of straw in different regions are closely related to cropping schedules, types of crops,
and geographical characteristics. In managing straw burning, it is important to consider
the local population density, economic development, and topography [27,58–60]. This
includes strengthening the formulation of management rules and regulations, reinforcing
supervision at regional intersections, encouraging technological research and development,
promoting the comprehensive utilization of straw, and continuously enhancing public
awareness of environmental protection and legal compliance. These measures will help
reduce administrative costs and improve administrative efficiency [61,62]. From the imple-
mentation of the straw burning ban policy, increases in GDP and settlement density will
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have a dampening effect on straw burning in a region. Straw burning locations may shift
towards regions with relatively slow economic development.

5. Conclusions

The air pollution from straw burning cannot be ignored. Our study has used the
MODIS satellite data to explore the space-time changes and driving factors of straw burning
in Hunan Province, China, providing a theoretical reference for scientifically regulating
crop straw burning behavior and improving the efficiency of administrative supervision.
The specific conclusions are as follows: (1) From 2010 to 2020, the number of fire points in
Hunan Province decreased overall, but exhibited periodic changes. Specifically, the period
from 2010 to 2014 was a stage of rapid increase, while the period from 2015 to 2020 was
a fluctuating decrease stage. (2) Spatially, the areas with a high number of fire points are
primarily located in the border regions between Chenzhou, Yongzhou, Hengyang, and
Shaoyang cities. (3) The effects of variables, except for crop yield, vary from negative to
positive across the provincial regions. The comparative results for 2010 to 2014 and 2015 to
2020 reveal significant changes in the impacts of socioeconomic and human activity factors,
particularly GDP and distance from roads.

This study analyzes the spatial and temporal patterns of straw burning in Hunan
Province from 2010 to 2020. The number of straw fire points decreased significantly in 2015
compared to 2014, attributed to the implementation of regulations banning straw burning.
Stricter management and regulations have led to improvements in overall management and
notable outcomes. Straw burning mainly occurs during the autumn and winter seasons,
with two periods of high fire points in January–February and October. Industrialization
and urbanization have influenced the transition from double-season rice cultivation to
single-season rice cultivation, resulting in concentrated straw burning between January
and March. Some cities, such as Yongzhou, Chenzhou, and Hengyang, have a high number
of straw burning hotspots due to limitations in the technical recycling system, farmers’
awareness, and insufficient regulatory power. It is crucial to focus on improving straw
resource utilization and strengthening control measures to reduce straw burning.

The driving mechanisms of straw burning in Hunan Province are analyzed using
the Geographically Weighted Regression (GWR) model. Natural factors, socioeconomic
factors, and human activity factors are found to influence the occurrence of straw burning.
Farmland concentration and crop yields have a positive impact, while population density
and GDP show varying effects. Population, as an important factor influencing straw
burning, can continuously influence the number and timing of fire points. The results of
this study show that the estimated coefficients associated with population density in the
eastern Hunan region remained positive, while those in the western Hunan region shifted
from negative to positive. Additionally, there is a stronger positive correlation between
population density and straw burning in western Hunan than in eastern Hunan. These
results may be attributed to the impact of regional differences in regulatory efforts. The
western part of Hunan Province is characterized by mountainous hills, and government
oversight of straw burning was relatively lenient before 2015. Following the 2015 ban on
straw burning, the government imposed stricter penalties in western Hunan for this practice
than ever before and encouraged farmers to adopt alternative treatment methods, such
as returning straw to the fields. This policy adjustment resulted in a stronger correlation
between population density and straw burning fires in the western region. As the eastern
part of Hunan is more advanced in terms of economic development compared to the
western part of the country, agricultural production in this region may be more inclined to
use modern agricultural machinery and technology, such as mechanized harvesting and
straw utilization equipment. In contrast, the western region may have a lower level of
economic development, more traditional agricultural production methods, and a greater
reliance on burning for straw treatment. This speculation is consistent with the assumption
that an increase in GDP will discourage straw burning. GDP initially has a positive
relationship with the number of fire points but becomes negative after a certain inflection
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point, in line with the Environmental Kuznets Curve theory. From the implementation
of the straw burning ban policy, increases in GDP and settlement density will have a
dampening effect on straw burning in a region. The density of straw burning tends to
increase as urban roads move away from the area. Straw-burning sites may shift towards
regions with relatively slow economic development. Therefore, it should be noted that
straw burning patterns in different regions are closely related to cropping patterns, crop
types, and geographical characteristics. When managing straw burning, it is important
to take into account local population density, economic development, and topography.
Strengthening management rules and regulations, reinforcing supervision, promoting
technological research and development, and enhancing public awareness of environmental
protection and legal compliance are recommended measures to reduce straw burning.
There is spatial heterogeneity in the effects of factors on straw burning in urban areas.
This implies that managing straw combustion in the Hunan Province requires innovation
in regional cooperation and governance. The operation cannot be isolated in different
cities; instead, there is a need to establish a division of labor and cooperation among
various functional cities. This will help maximize resources and reduce straw burning. In
addition, it is necessary to optimize the allocation of resources. Neighboring cities should
also strengthen coordination and interaction in development planning, infrastructure,
environmental protection, and resource management to avoid wasting resources.

In addition, there are limitations in the data collection of this study, which leads to
uncertainties in the results of the study. This study is limited by the availability of data
and was conducted solely at the county level in Hunan Province from 2010 to 2020. For
example, the influence of cloud coverage would cause uncertainties in the MODIS-detected
fire points, and the uncertainties in the land-use data from remote sensing would cause
uncertainties in the extraction of straw burning fire points. Furthermore, the selection of
factors in this study is not enough; straw burning obviously has a certain seasonality, and
the related factors of seasonality need further investigation and research. In the future,
studies at finer scales will be conducted based on long time series of harmonized standard
data as the accumulation of information continues. We will focus on extracting straw
burning fire points with more accurate image data and consider additional factors to obtain
reasonable analysis results.
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Table A1. Variable list with VIF values.

Variable Model 1
(2010–2014)

Model 2
(2015–2020)

Natural factors
Elevation 7.488 6.118

Slope 12.819 10.902
Aspect 1.313 1.314

Socioeconomic factors
Crop yield 7.000 8.412

Crop-sown area 13.566 19.009
Population density 3.947 2.961

GDP 1.621 1.924
Human activity factors

Road density 2.957 2.442
Settlement density 2.015 2.947
Distance from road 1.656 1.274

References
1. Rohde, R.A.; Muller, R.A. Air pollution in China: Mapping of concentrations and sources. PLoS ONE 2015, 10, e0135749.

[CrossRef]
2. Yang, G.; Wang, Y.; Zeng, Y.; Gao, G.F.; Liang, X.; Zhou, M.; Wan, X.; Yu, S.; Jiang, Y.; Naghavi, M. Rapid health transition in

China, 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 381, 1987–2015. [CrossRef]
3. Li, H.; Wang, Q.G.; Yang, M.; Li, F.; Wang, J.; Sun, Y.; Wang, C.; Wu, H.; Qian, X. Chemical characterization and source

apportionment of PM2. 5 aerosols in a megacity of Southeast China. Atmos. Res. 2016, 181, 288–299. [CrossRef]
4. Tao, J.; Zhang, L.; Ho, K.; Zhang, R.; Lin, Z.; Zhang, Z.; Lin, M.; Cao, J.; Liu, S.; Wang, G. Impact of PM2. 5 chemical compositions

on aerosol light scattering in Guangzhou—The largest megacity in South China. Atmos. Res. 2014, 135, 48–58. [CrossRef]
5. Tao, J.; Gao, J.; Zhang, L.; Wang, H.; Qiu, X.; Zhang, Z.; Wu, Y.; Chai, F.; Wang, S. Chemical and optical characteristics of

atmospheric aerosols in Beijing during the Asia-Pacific Economic Cooperation China 2014. Atmos. Environ. 2016, 144, 8–16.
[CrossRef]

6. Zhao, H.; Yang, G.; Tong, D.Q.; Zhang, X.; Xiu, A.; Zhang, S. Interannual and seasonal variability of greenhouse gases and
aerosol emissions from biomass burning in Northeastern China constrained by satellite observations. Remote Sens. 2021, 13, 1005.
[CrossRef]

7. Jenkins, B.; Turn, S.; Williams, R. Atmospheric emissions from agricultural burning in California: Determination of burn fractions,
distribution factors, and crop-specific contributions. Agric. Ecosyst. Environ. 1992, 38, 313–330. [CrossRef]

8. Tao, J.; Zhang, L.; Cao, J.; Zhang, R. A review of current knowledge concerning PM 2. 5 chemical composition, aerosol optical
properties and their relationships across China. Atmos. Chem. Phys. 2017, 17, 9485–9518. [CrossRef]

9. Zhang, T.; Claeys, M.; Cachier, H.; Dong, S.; Wang, W.; Maenhaut, W.; Liu, X. Identification and estimation of the biomass burning
contribution to Beijing aerosol using levoglucosan as a molecular marker. Atmos. Environ. 2008, 42, 7013–7021. [CrossRef]

10. Mehmood, K.; Chang, S.; Yu, S.; Wang, L.; Li, P.; Li, Z.; Liu, W.; Rosenfeld, D.; Seinfeld, J.H. Spatial and temporal distributions
of air pollutant emissions from open crop straw and biomass burnings in China from 2002 to 2016. Environ. Chem. Lett. 2018,
16, 301–309. [CrossRef]

11. Oanh, N.T.K.; Permadi, D.A.; Hopke, P.K.; Smith, K.R.; Dong, N.P.; Dang, A.N. Annual emissions of air toxics emitted from crop
residue open burning in Southeast Asia over the period of 2010–2015. Atmos. Environ. 2018, 187, 163–173. [CrossRef]

12. De Zárate, I.O.; Ezcurra, A.; Lacaux, J.; Van Dinh, P. Emission factor estimates of cereal waste burning in Spain. Atmos. Environ.
2000, 34, 3183–3193. [CrossRef]

13. Shen, Y.; Jiang, C.; Chan, K.L.; Hu, C.; Yao, L. Estimation of field-level NOx emissions from crop residue burning using remote
sensing data: A case study in Hubei, China. Remote Sens. 2021, 13, 404. [CrossRef]

14. Li, R.; He, X.; Wang, H.; Wang, Y.; Zhang, M.; Mei, X.; Zhang, F.; Chen, L. Estimating Emissions from Crop Residue Open Burning
in Central China from 2012 to 2020 Using Statistical Models Combined with Satellite Observations. Remote Sens. 2022, 14, 3682.
[CrossRef]

15. Zhang, Y.; Shao, M.; Lin, Y.; Luan, S.; Mao, N.; Chen, W.; Wang, M. Emission inventory of carbonaceous pollutants from biomass
burning in the Pearl River Delta Region, China. Atmos. Environ. 2013, 76, 189–199. [CrossRef]

16. Zhang, Y.; Liu, T.; Li, B.; Cheng, Y.; Wang, L.; Guo, Y.; Wu, X.; He, J. Monitoring of autumn crop straw burning fire points in
Henan province based on MODIS data. J. Henan Agric. Sci. 2016, 45, 149–154.

17. Mao, H.; Zhang, L.; Li, Q.; Zhang, L.; Zhang, Y.; Chen, H.; Weng, G. Study on open burning of crop residues and its emissions of
PM2.5 in northeast China based on satellite remote sensing. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 59–66.

18. McCarty, J.L.; Korontzi, S.; Justice, C.O.; Loboda, T. The spatial and temporal distribution of crop residue burning in the contiguous
United States. Sci. Total Environ. 2009, 407, 5701–5712. [CrossRef] [PubMed]

https://doi.org/10.1371/journal.pone.0135749
https://doi.org/10.1016/S0140-6736(13)61097-1
https://doi.org/10.1016/j.atmosres.2016.07.005
https://doi.org/10.1016/j.atmosres.2013.08.015
https://doi.org/10.1016/j.atmosenv.2016.08.067
https://doi.org/10.3390/rs13051005
https://doi.org/10.1016/0167-8809(92)90153-3
https://doi.org/10.5194/acp-17-9485-2017
https://doi.org/10.1016/j.atmosenv.2008.04.050
https://doi.org/10.1007/s10311-017-0675-6
https://doi.org/10.1016/j.atmosenv.2018.05.061
https://doi.org/10.1016/S1352-2310(99)00254-X
https://doi.org/10.3390/rs13030404
https://doi.org/10.3390/rs14153682
https://doi.org/10.1016/j.atmosenv.2012.05.055
https://doi.org/10.1016/j.scitotenv.2009.07.009
https://www.ncbi.nlm.nih.gov/pubmed/19647857


Remote Sens. 2024, 16, 1438 22 of 23

19. Li, J.; Li, S.; Duan, P.; Zhang, C. Remote sensing monitoring and analysis of straw burning in Henan Province based on MODIS.
Eng. Surv. Mapp. 2018, 27, 42–46.

20. Zhuang, Y.; Li, R.; Yang, H.; Chen, D.; Chen, Z.; Gao, B.; He, B. Understanding temporal and spatial distribution of crop residue
burning in China from 2003 to 2017 using MODIS data. Remote Sens. 2018, 10, 390. [CrossRef]

21. Fu, J.; Song, S.; Guo, L.; Chen, W.; Wang, P.; Duanmu, L.; Shang, Y.; Shi, B.; He, L. Interprovincial joint prevention and control of
open straw burning in Northeast China: Implications for atmospheric environment management. Remote Sens. 2022, 14, 2528.
[CrossRef]

22. Verma, S.; Dar, J.A.; Malasiya, D.; Khare, P.K.; Dayanandan, S.; Khan, M.L. A MODIS-based spatiotemporal assessment of
agricultural residue burning in Madhya Pradesh, India. Ecol. Indic. 2019, 105, 496–504. [CrossRef]

23. Zhang, J.; Yang, X.; Tu, X.; Ning, K.; Luan, X. Spatio-temporal change of straw burning fire points in field of China from 2014 to
2018. Trans. Chin. Soc. Agric. Eng. 2019, 35, 191–199.

24. Lian, C.; Xiao, C.; Feng, Z. Spatiotemporal Characteristics and Regional Variations of Active Fires in China since 2001. Remote
Sens. 2022, 15, 54. [CrossRef]

25. Peng, L.; Zhang, Q.; He, K. Emissions inventory of atmospheric pollutants from open burning of crop residues in China based on
a national questionnaire. Res. Environ. Sci. 2016, 29, 1109–1118.

26. Xu, Y.; Huang, Z.; Jia, G.; Fan, M.; Cheng, L.; Chen, L.; Shao, M.; Zheng, J. Regional discrepancies in spatiotemporal variations
and driving forces of open crop residue burning emissions in China. Sci. Total Environ. 2019, 671, 536–547. [CrossRef] [PubMed]

27. Cui, S.; Song, Z.; Zhang, L.; Shen, Z.; Hough, R.; Zhang, Z.; An, L.; Fu, Q.; Zhao, Y.; Jia, Z. Spatial and temporal variations of open
straw burning based on fire spots in northeast China from 2013 to 2017. Atmos. Environ. 2021, 244, 117962. [CrossRef]

28. Wang, J.; Wang, X. A triumph of reducing carbon emission by banning open straw burning. Sci. Bull. 2023, 68, 18–20. [CrossRef]
[PubMed]

29. Wu, J.; Kong, S.; Wu, F.; Cheng, Y.; Zheng, S.; Qin, S.; Liu, X.; Yan, Q.; Zheng, H.; Zheng, M. The moving of high emission for
biomass burning in China: View from multi-year emission estimation and human-driven forces. Environ. Int. 2020, 142, 105812.
[CrossRef] [PubMed]

30. Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 1065–1076. [CrossRef]
31. Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. Modeling spatial patterns of fire occurrence in Mediterranean

Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [CrossRef]
32. Chang, Y.; Zhu, Z.; Bu, R.; Chen, H.; Feng, Y.; Li, Y.; Hu, Y.; Wang, Z. Predicting fire occurrence patterns with logistic regression in

Heilongjiang Province, China. Landsc. Ecol. 2013, 28, 1989–2004. [CrossRef]
33. Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonsta-

tionarity. Geogr. Anal. 1996, 28, 281–298. [CrossRef]
34. Tang, J.; Gao, F.; Han, C.; Cen, X.; Li, Z. Uncovering the spatially heterogeneous effects of shared mobility on public transit and

taxi. J. Transp. Geogr. 2021, 95, 103134. [CrossRef]
35. Nakaya, T.; Fotheringham, S.; Charlton, M.; Brunsdon, C. Semiparametric Geographically Weighted Generalised Linear Modelling in

GWR 4.0; University of Leeds: Leeds, UK, 2009.
36. Sheather, S. A Modern Approach to Regression with R; Springer Science & Business Media: Berlin, Germany, 2009.
37. Tu, W.; Cao, R.; Yue, Y.; Zhou, B.; Li, Q.; Li, Q. Spatial variations in urban public ridership derived from GPS trajectories and

smart card data. J. Transp. Geogr. 2018, 69, 45–57. [CrossRef]
38. Cao, G.; Zhang, X.; Gong, S.; Zheng, F. Investigation on emission factors of particulate matter and gaseous pollutants from crop

residue burning. J. Environ. Sci. 2008, 20, 50–55. [CrossRef] [PubMed]
39. Li, J.; Hu, R.; Song, Y.; Shi, J.; Bhattacharya, S.C.; Bhattacharya, S.C. Assessment of sustainable energy potential of non-plantation

biomass resources in China. Biomass Bioenergy 2005, 29, 167–177.
40. Li, X.; Wang, S.; Duan, L.; Hao, J.; Li, C.; Chen, Y.; Yang, L. Particulate and trace gas emissions from open burning of wheat straw

and corn stover in China. Environ. Sci. Technol. 2007, 41, 6052–6058. [CrossRef] [PubMed]
41. Zhang, H.; Hu, J.; Qi, Y.; Li, C.; Chen, J.; Wang, X.; He, J.; Wang, S.; Hao, J.; Zhang, L. Emission characterization, environmental

impact, and control measure of PM2. 5 emitted from agricultural crop residue burning in China. J. Clean. Prod. 2017, 149, 629–635.
[CrossRef]

42. Zhou, Y.; Xing, X.; Lang, J.; Chen, D.; Cheng, S.; Wei, L.; Wei, X.; Liu, C. A comprehensive biomass burning emission inventory
with high spatial and temporal resolution in China. Atmos. Chem. Phys. 2017, 17, 2839–2864. [CrossRef]

43. Tang, X.-B.; Huang, C.; Lou, S.-R.; Qiao, L.-P.; Wang, H.-L.; Zhou, M.; Chen, M.; Chen, C.-H.; Wang, Q.; Li, G.-L. Emission factors
and PM chemical composition study of biomass burning in the Yangtze River Delta region. Huan Jing Ke Xue Huanjing Kexue 2014,
35, 1623–1632.

44. Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C. A review of biomass burning:
Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [CrossRef] [PubMed]

45. Deng, J.; Wang, T.; Jiang, Z.; Xie, M.; Zhang, R.; Huang, X.; Zhu, J. Characterization of visibility and its affecting factors over
Nanjing, China. Atmos. Res. 2011, 101, 681–691. [CrossRef]

46. Wang, Q.; Huang, X.; Chen, Z.; Tan, D.; Chuai, X. Movement of the gravity of carbon emissions per capita and analysis of causes.
J. Nat. Resour. 2009, 24, 833–841.

https://doi.org/10.3390/rs10030390
https://doi.org/10.3390/rs14112528
https://doi.org/10.1016/j.ecolind.2018.04.042
https://doi.org/10.3390/rs15010054
https://doi.org/10.1016/j.scitotenv.2019.03.199
https://www.ncbi.nlm.nih.gov/pubmed/30933809
https://doi.org/10.1016/j.atmosenv.2020.117962
https://doi.org/10.1016/j.scib.2022.12.029
https://www.ncbi.nlm.nih.gov/pubmed/36621434
https://doi.org/10.1016/j.envint.2020.105812
https://www.ncbi.nlm.nih.gov/pubmed/32497934
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1016/j.foreco.2012.03.003
https://doi.org/10.1007/s10980-013-9935-4
https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
https://doi.org/10.1016/j.jtrangeo.2021.103134
https://doi.org/10.1016/j.jtrangeo.2018.04.013
https://doi.org/10.1016/S1001-0742(08)60007-8
https://www.ncbi.nlm.nih.gov/pubmed/18572522
https://doi.org/10.1021/es0705137
https://www.ncbi.nlm.nih.gov/pubmed/17937281
https://doi.org/10.1016/j.jclepro.2017.02.092
https://doi.org/10.5194/acp-17-2839-2017
https://doi.org/10.1016/j.scitotenv.2016.11.025
https://www.ncbi.nlm.nih.gov/pubmed/27908624
https://doi.org/10.1016/j.atmosres.2011.04.016


Remote Sens. 2024, 16, 1438 23 of 23

47. Zhang, Y.; Tang, L.; Wang, Z.; Yu, H.; Sun, Y.; Liu, D.; Qin, W.; Canonaco, F.; Prévôt, A.S.; Zhang, H. Insights into characteristics,
sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmos. Chem. Phys.
2015, 15, 1331–1349. [CrossRef]

48. Li, R.; Cui, L.; Li, J.; Zhao, A.; Fu, H.; Wu, Y.; Zhang, L.; Kong, L.; Chen, J. Spatial and temporal variation of particulate matter and
gaseous pollutants in China during 2014–2016. Atmos. Environ. 2017, 161, 235–246. [CrossRef]

49. Streets, D.; Yarber, K.; Woo, J.H.; Carmichael, G. Biomass burning in Asia: Annual and seasonal estimates and atmospheric
emissions. Glob. Biogeochem. Cycles 2003, 17. [CrossRef]

50. Wang, M.; Shao, M.; Chen, W.; Yuan, B.; Lu, S.; Zhang, Q.; Zeng, L.; Wang, Q. A temporally and spatially resolved validation
of emission inventories by measurements of ambient volatile organic compounds in Beijing, China. Atmos. Chem. Phys. 2014,
14, 5871–5891. [CrossRef]

51. Zhao, S.; Yu, Y.; Yin, D.; He, J.; Liu, N.; Qu, J.; Xiao, J. Annual and diurnal variations of gaseous and particulate pollutants in
31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center.
Environ. Int. 2016, 86, 92–106. [CrossRef] [PubMed]

52. Ren, J.; Yu, P.; Xu, X. Straw utilization in China—Status and recommendations. Sustainability 2019, 11, 1762. [CrossRef]
53. Lu, H.; Hu, L.; Zheng, W.; Yao, S.; Qian, L. Impact of household land endowment and environmental cognition on the willingness

to implement straw incorporation in China. J. Clean. Prod. 2020, 262, 121479. [CrossRef]
54. Harbaugh, W.T.; Levinson, A.; Wilson, D.M. Reexamining the empirical evidence for an environmental Kuznets curve. Rev. Econ.

Stat. 2002, 84, 541–551. [CrossRef]
55. Flores, C.A.; Flores-Lagunes, A.; Kapetanakis, D. Lessons from quantile panel estimation of the environmental Kuznets curve.

Econom. Rev. 2014, 33, 815–853. [CrossRef]
56. Onafowora, O.A.; Owoye, O. Bounds testing approach to analysis of the environment Kuznets curve hypothesis. Energy Econ.

2014, 44, 47–62. [CrossRef]
57. Wu, J.; Kong, S.; Wu, F.; Cheng, Y.; Zheng, S.; Yan, Q.; Zheng, H.; Yang, G.; Zheng, M.; Liu, D. Estimating the open biomass

burning emissions in central and eastern China from 2003 to 2015 based on satellite observation. Atmos. Chem. Phys. 2018,
18, 11623–11646. [CrossRef]

58. Meng, F.; Dungait, J.A.; Xu, X.; Bol, R.; Zhang, X.; Wu, W. Coupled incorporation of maize (Zea mays L.) straw with nitrogen
fertilizer increased soil organic carbon in Fluvic Cambisol. Geoderma 2017, 304, 19–27. [CrossRef]

59. Han, X.; Xu, C.; Dungait, J.A.; Bol, R.; Wang, X.; Wu, W.; Meng, F. Straw incorporation increases crop yield and soil organic carbon
sequestration but varies under different natural conditions and farming practices in China: A system analysis. Biogeosciences 2018,
15, 1933–1946. [CrossRef]

60. Xu, J.; Jiang, H.; Mei, Z. Policies for straw stalks comprehensive use and long-term management recommendations. China Biogas
2019, 37, 87–90.

61. Diehlmann, F.; Zimmer, T.; Glöser-Chahoud, S.; Wiens, M.; Schultmann, F. Techno-economic assessment of utilization pathways
for rice straw: A simulation-optimization approach. J. Clean. Prod. 2019, 230, 1329–1343. [CrossRef]

62. Sun, J.; Shen, Z.; Cao, J.; Zhang, L.; Wu, T.; Zhang, Q.; Yin, X.; Lei, Y.; Huang, Y.; Huang, R. Particulate matters emitted from
maize straw burning for winter heating in rural areas in Guanzhong Plain, China: Current emission and future reduction. Atmos.
Res. 2017, 184, 66–76. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5194/acp-15-1331-2015
https://doi.org/10.1016/j.atmosenv.2017.05.008
https://doi.org/10.1029/2003GB002040
https://doi.org/10.5194/acp-14-5871-2014
https://doi.org/10.1016/j.envint.2015.11.003
https://www.ncbi.nlm.nih.gov/pubmed/26562560
https://doi.org/10.3390/su11061762
https://doi.org/10.1016/j.jclepro.2020.121479
https://doi.org/10.1162/003465302320259538
https://doi.org/10.1080/07474938.2013.806148
https://doi.org/10.1016/j.eneco.2014.03.025
https://doi.org/10.5194/acp-18-11623-2018
https://doi.org/10.1016/j.geoderma.2016.09.010
https://doi.org/10.5194/bg-15-1933-2018
https://doi.org/10.1016/j.jclepro.2019.04.369
https://doi.org/10.1016/j.atmosres.2016.10.006

	Introduction 
	Materials and Methods 
	Study Area and Straw Burning Data 
	Kernel Density Estimation 
	Geographically Weighted Regression Models 

	Results 
	Temporal Variations of Straw Burning in Hunan Province 
	Spatial Distribution of Straw Burning 
	Spatial and Temporal Variations of Driving Forces 
	Annual Change Rate 
	Geographical Variability Test and Model Evaluation 
	Spatially Heterogeneous Effects Analysis 


	Discussion 
	Conclusions 
	Appendix A
	References

