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Abstract: With the growing use of hyperspectral remote sensing payloads, there has been a significant
increase in the number of hyperspectral remote sensing image archives, leading to a massive amount
of collected data. This highlights the need for an efficient content-based hyperspectral image retrieval
(CBHIR) system to manage and enable better use of hyperspectral remote-sensing image archives.
Conventional CBHIR systems characterize each image by a set of endmembers and then perform
image retrieval based on pairwise distance measures. Such an approach significantly increases the
computational complexity of the retrieval, mainly when the diversity of materials is high. Those
systems also have difficulties in retrieving images containing particular materials with extremely
low abundance compared to other materials, which leads to describing image content with inappro-
priate and/or insufficient spectral features. In this article, a novel CBHIR system to define global
hyperspectral image representations based on a semantic approach to differentiate foreground and
background image content for different retrieval scenarios is introduced to address these issues. The
experiments conducted on a new benchmark archive of multi-label hyperspectral images, which
is first introduced in this study, validate the retrieval accuracy and effectiveness of the proposed
system. Comparative performance analysis with the state-of-the-art CBHIR systems demonstrates
that modeling hyperspectral image content with foreground and background vocabularies has a
positive effect on retrieval performance.

Keywords: content-based hyperspectral image retrieval; hyperspectral imaging; remote sensing;
semantic retrieval

1. Introduction

Hyperspectral images consist of many (hundreds in some cases) observation chan-
nels acquired at consecutive wavelengths. This virtue of hyperspectral imaging enables
precise recognition and discrimination of matter in a scene. As such, hyperspectral imag-
ing has become a prominent passive optical remote sensing technology utilized to solve
various problems in diverse fields ranging from environmental monitoring to precision
agriculture [1–3]. Consequently, a continuous increase in the deployment of hyperspectral
imaging systems leads to a significant growth in the diversity and volume of hyperspectral
remote sensing image collections. Furthermore, dense spectral information provided in
hyperspectral imagery results in more data being processed than other optical imaging
techniques [4]. Hence, the excessive amount of data emerging in imaging campaigns
complicates the interpretation and management of the hyperspectral images. Accordingly,
one of the critical tasks in remote sensing is the accurate and fast retrieval of hyperspectral
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images from image collections in the context of spectral properties of the matter. Since
spectral information provided in hyperspectral imagery leads to a very high capability for
the identification and discrimination of the objects [5], content-based hyperspectral image
retrieval (CBHIR) is the process of querying hyperspectral image collections in the context
of matter through the dense information in the spectral domain.

Hyperspectral imaging is utilized in various fields to identify the composition of a
scene through the exceptional spectral information provided. Thus, a proper CBHIR system
should allow accurate access to desired hyperspectral imagery in an archive using a query
that embodies/represents spectral features of similar content. In this context, accessing
hyperspectral images with critical content requires fast and accurate retrieval in some
applications. For instance, given the large expanse of land covered in a hyperspectral image
archive, a precise CBHIR system can potentially enhance the effectiveness of hyperspectral
imagery in various fields such as precision agriculture, forestry, mining, and defense. It can
be beneficial in detecting and locating infected plants, specific types of trees, minerals, or
targets that exhibit similar spectral characteristics in a given query image.

This study addresses content-based retrieval of hyperspectral imagery from different
perspectives and proposes a promising semantic retrieval system, which is established on
novel hyperspectral image descriptors that achieve both high accuracy and low computa-
tional complexity.

This article is organized as follows. In Section 2, a comprehensive literature review of
CBHIR systems is presented. Section 3 explains the problem formulation and elaborates
on the proposed system. Section 4 introduces the multi-label hyperspectral image archive
used in the experiments. Section 5 elaborates on the experimental setup. In Section 6,
comparative performance results are discussed. Finally, Section 7 concludes the study and
criticizes the proposed CBHIR system.

2. Related Literature

Hyperspectral remote sensing imagery contains highly redundant information, and
extracting proper features to model the image content sufficiently requires dedicated
methods. CBHIR systems proposed in the literature, except [6], adopt endmember-based
strategies to model hyperspectral images for two primary purposes: (1) to reveal spectral
characteristics of the matter that constitute the scene and (2) to eliminate information
redundancy in the hyperspectral imagery.

Spectral unmixing is a common and very crucial step for CBHIR systems available in
the literature. It aims to find pure spectral signatures of the matter, so-called endmembers,
in an image and decompose mixed pixel signatures, considering endmembers to calculate
the abundances of those matter at a given pixel. Linear unmixing methods assume that
mixed pixel signatures measured by hyperspectral imaging systems are composed of (i) a
combination of pure material signatures (endmembers) in proportion to their abundances
in a pixel and (ii) additive noise at each spectral band. On the other hand, since pure
endmembers may not exist in a hyperspectral image due to insufficient spatial resolution of
the imaging system or any other reason, specific linear unmixing methods utilize auxiliary
endmember signature archives during the unmixing process.

CBHIR systems proposed in [7–9] model hyperspectral images with endmembers
obtained via Pixel Purity Index (PPI), N-FINDR, and Automatic Pixel Purity Index (A-PPI)
linear unmixing algorithms, respectively. In the retrieval phase, all three systems utilize a
one-to-one endmember matching-based Spectral Signature Matching Algorithm (SSMA) to
assess the similarity between the hyperspectral images. Unlike [7,8], the CBHIR system
proposed in [9] employs the SSMA with Spectral Information Divergence-Spectral Angular
Distance (SID-SAD)-based hybrid distance. In [10], an updated version the CBHIR system
proposed in [7] is introduced that implements a distributed hyperspectral imaging reposi-
tory on a cloud computing platform. In [11], an endmember matching-based distance for
content-based hyperspectral image retrieval is proposed. This distance metric mutually
maps each individual endmember that belongs to one image to an endmember of the other



Remote Sens. 2024, 16, 1462 3 of 24

image by considering SAD between them. Finally, the sum of the L-2 norm of vectors
arising from minimum SAD between matched endmember pairs gives the Grana Distance
between two hyperspectral images. The study evaluates the proposed hyperspectral image
distance retrieval performance with the Endmember Induction Heuristic Algorithm (EIHA)
and N-FINDR linear unmixing algorithms. In [12], the same research group introduces an
alternative CBHIR system that utilizes both endmembers and their abundances. The pro-
posed system assesses the similarity of two hyperspectral images by calculating the sum of
SAD between each endmember pair arising from the Cartesian product of two endmember
sets. In [6], yet another CBHIR approach is proposed that copes with spectral and spatial
information redundancy in hyperspectral imagery with a data compression strategy. To this
end, each hyperspectral image is converted to a text stream (either pixel-wise or band-wise)
and then encoded with the Lempel–Ziv–Welch (LZW) algorithm to obtain a dictionary that
models the image. In the retrieval phase, the level of similarity between two hyperspectral
images is assessed by the dictionary distances that consider common and independent
elements in the corresponding dictionaries. In [13], a hyperspectral image repository with
retrieval functionality is introduced. The repository catalogs the hyperspectral images with
endmembers obtained via either N-FINDR or Orthagonal Subspace Projection (OSP) linear
unmixing algorithms in conjunction with their abundances. The user interacts with the
system by choosing one or more spectral signatures from the library, already available
in the repository, as a query. In the retrieval phase, the repository evaluates the level of
similarity between query endmember(s) and cataloged image endmembers, considering
the SAD. The CBHIR system proposed in [14] constructs a feature extraction strategy on
sparse linear unmixing. This approach, which utilizes the SunSAL algorithm, aims to obtain
image endmembers through spectral signatures already available in a library within the
system. However, this CBHIR approach requires a large built-in library that accommodates
spectral signatures of all possible materials for a proper feature extraction phase. In the
retrieval phase, the proposed system evaluates the similarity of two images considering
the SAD between image endmembers. In [15], hyperspectral images are characterized with
two descriptors. The spectral descriptors corresponding to endmembers are obtained via
N-FINDR algorithm. In addition, the proposed system uses Gabor filters to compute a
texture descriptor to model the image. In the retrieval phase, the system considers the sum
of spectral and texture descriptor distances to assess the similarity between two hyper-
spectral images. To this end, the distance between spectral and textural descriptors of two
images is calculated by adopting the Significance Credit Assessment method introduced
in [12] and squared Euclidean distance between Gabor filter vectors, respectively. Similar
to [15], the CBHIR system proposed in [16] characterizes hyperspectral images with two
descriptors: spatial and spectral. The spatial descriptor is computed with a saliency map
that combines four features: the first component of the PCA, orientation, spectral angle,
and visible spectral band opponent. On the other hand, the spectral descriptor corresponds
to a histogram of spectral words obtained by clustering endmembers extracted from all
the images in the archive. In the retrieval phase, the similarity between feature descrip-
tors is calculated with squared Euclidean distance to assess the similarity between two
images. In [17], a CBHIR system is proposed to secure hyperspectral imagery retrieval by
encrypting the image descriptors. The system characterizes hyperspectral images with
spectral and texture descriptors. To obtain the spectral descriptor, Scale-Invariant Feature
Transform (SIFT) key-point descriptors of the RGB representation of the image and the
endmembers extracted by the A-PPI linear unmixing algorithm are clustered with the
k-means algorithm. This step defines spectral words that correspond to cluster centers.
The proposed system employs the GLCM method to compute the texture descriptor to
obtain contrast, correlation, energy, and entropy values. In the retrieval phase, these two
descriptors are combined to model the images, and the Jaccard distance is used to assess
the similarity between two images. Yet another CBHIR system that models the images
with spectral and texture descriptors is introduced in [18]. The system obtains the spectral
descriptors with endmembers extracted with the A-PPI unmixing algorithm. The system
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adopts the GLCM-based method introduced in [17] to obtain the texture descriptors. In the
retrieval phase, the proposed system uses SID-SAM-based distance and Image Euclidean
Distance to evaluate the similarity of spectral and texture descriptors, respectively. A
bag-of-endmembers-based strategy for CBHIR is proposed in [19]. The proposed strategy
aims to represent hyperspectral image content with a global spectral vocabulary obtained
by clustering bag-of-endmembers from all endmembers extracted from the archive. In
addition to the methods mentioned above, there is also a method that utilizes artificial
neural networks. The method proposed in [20] suggests a model that provides pixel-based
retrieval using a Deep Convolutional Generative Adversarial Network (DCGAN). For
this purpose, an artificial neural network model is trained with a combination of spec-
tral and spatial vectors obtained using manually selected pure material signatures from
hyperspectral images and neighboring pixel signatures.

3. Proposed CHBIR System

Unlike the existing CBHIRs reviewed in Section 2, which dominantly measure the
similarity between two hyperspectral images by employing endmember matching-based
methods, the system proposed in this study addresses content-based hyperspectral image
retrieval with a semantic approach. The proposed system assumes that a hyperspectral remote
sensing image archive comprises two types of content: (i) foreground and (ii) background.

It is worth noting that, to avoid terminological confusion, two definitions are used
within the scope of this article: hyperspectral remote sensing payload data product and
hyperspectral image. The hyperspectral remote sensing data product represents hyper-
spectral data obtained by the payload on the air or space platform covering an area on the
Earth, and the hyperspectral image represents the patches that form the benchmark archive
by dividing the data product into manageable small pieces.

The claim being made in this article is that when modeling hyperspectral remote
sensing images, it is important to consider the varying prevalence of different types of
materials that make up the land cover in a territory covered by the data product. Specifically,
certain types of materials are much more common than others. These include cultivated
or uncultivated lands, terrestrial barren lands, and water bodies. In contrast, material
classes such as artificial surfaces, urban areas, mining areas, and areas of materials with
semantically remarkable spectral features are less prevalent (see Figure 1). Failing to
consider the prevalence of these material classes when creating content-based models for
hyperspectral remote sensing images can have significant consequences. For example, it
can result in errors in accurately modeling certain content types that are relatively less
common. This fact also makes it challenging to access related images due to the limitations
of the models that are being used. Therefore, it is crucial to consider the prevalence of
different material classes when modeling hyperspectral remote sensing images to ensure
accurate and reliable results.

Figure 1. Pseudo-color representation of a remote sensing hyperspectral image X1323 (a), illustration
of foreground (b) and background (c) image contents.

The proposed method is constructed on this semantic approach to overcome the
following shortcomings of existing CBHIR methods in the literature.

1. Poor retrieval performance issues caused by spectral information redundancy due to
the relatively high abundance of background content in the archive images.

2. CBHIR methods that model hyperspectral images by only endmembers may not
accurately extract the endmembers from the images, or pure material signatures
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may not exist in the scene. These issues may lead to describing image content with
inappropriate and/or insufficient spectral features.

3. Strategies that combine and cluster all endmembers to generate a global spectral vo-
cabulary to model hyperspectral images may ignore spectral signatures (endmember)
of rarely seen content in the cases of using an inappropriate clustering method or
setting parameters of clustering method inaccurately.

3.1. Problem Formulation and Notation

Let X = {X1, X2, . . . , XN} be an archive of N hyperspectral images, where Xn is the
n-th image in the archive. The proposed CBHIR system aims at efficiently retrieving a set
XR ⊂ X of R hyperspectral images that contain similar content depicted by a query image
Xq provided by the user. (A list of all mathematical symbols used throughout the article is
given in Appendix A.)

The proposed CBHIR system has two main modules: (1) an offline module to represent
hyperspectral images with low-dimensional descriptors and (2) an online module to retrieve
hyperspectral images using a computationally efficient hierarchical algorithm.

As illustrated in Figure 2, the proposed CBHIR system performs semantic feature
extraction and representation of hyperspectral images with low-dimensional descriptors
in the background offline. In contrast to existing CBHIR systems in the literature, the
proposed CBHIR system allows for online retrieval of hyperspectral images through the
low-dimensional descriptors obtained in this offline module. These novel feature represen-
tation and retrieval approaches are elaborated in the following subsections.
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Figure 2. Block diagram of the proposed CBHIR system: green dashed lines represent offline processes
that run in the background, while red dashed lines represent online processes.
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3.2. Building Spectral Vocabularies

Spectral vocabulary generation and representing hyperspectral images with low-
dimensional descriptors steps of the proposed CBHIR system aim at representing each
hyperspectral image Xn in X with four low-dimensional descriptor vectors: two binary
spectral descriptors ϕ

f
n and ϕb

n to represent the spectral characteristics of foreground
and background content, respectively, and two abundance descriptors α

f
n and αb

n to hold
fractional abundance of corresponding content in the image Xn. In addition to ϕ

f
n and

ϕb
n, the proposed system uses descriptor ϕn = (ϕ

f
n, ϕb

n) to represent spectral features of
overall image content. Similarly, descriptor αn = (α

f
n, αb

n) represents fractional abundance
of corresponding content in the image Xn. A new unsupervised spectral vocabulary
generation method is introduced to calculate these descriptors.

3.2.1. Superpixel-Based Content Segmentation

The proposed CBHIR system benefits from spectral content vocabularies to retrieve
hyperspectral images from the archive effectively in an online manner. Accordingly, discov-
ering material diversity in the archive to generate the foreground and background content
vocabularies is a crucial step for the proposed CBHIR system. To this end, a superpixel-
based segmentation is performed on each hyperspectral image Xn in X to group image
pixels with similar spectral features and spatial relations that belong to a phenomenon in
the scene. However, an effective method is required to perform such a segmentation that
can handle high-dimensional spectral information with low computational complexity.

To overcome this, the proposed CBHIR system benefits from a novel superpixel-based
segmentation algorithm dedicated to hyperspectral imagery [21], which is a derivative
of the Simple Linear Iterative Clustering (SLIC) method [22]. This superpixel-based seg-
mentation algorithm, namely hyperSLIC in this study, is designed to cluster pixels in local
regions rather than globally, which means that spatial correlation and spectral similarity
are naturally considered during the segmentation process. There are three main reasons
for using the hyperSLIC method in the proposed system. The first is the combined use of
spectral and spatial relationships in segmentation. The second reason is the low complexity
of segmentation performed in local regions. The third reason is the adaptability of the local
neighborhood parameter to the spatial resolution of remote sensing images. Details of the
hyperSLIC algorithm are given below.

The hyperSLIC algorithm begins by assigning a pre-defined number of superpixel
centers at equal distances. To streamline the clustering search process, hyperSLIC sets
a defined local neighborhood around each cluster center. This neighborhood takes the
shape of a rectangular region with a width of w and a height of h. Limiting the search
to only the surrounding w × h pixels for each cluster center significantly reduces the
computational complexity compared to traditional clustering algorithms. During the main
loop step, the algorithm employs the SID-SAM and Euclidean spectral and spatial distance
criteria, respectively, to cluster each pixel in the local neighborhood for every cluster center.
Following each iteration of the clustering algorithm, the cluster centers are updated to
enhance the accuracy of subsequent iterations.

The sample image presented in Figure 3 was selected from the dataset described
in Section 4. This image has undergone a segmentation process using the hyperSLIC
algorithm. The minimum segment size for this process was set to 4 × 4 pixels, meaning that
the image was divided into smaller segments, with each segment being at least 4 × 4 pixels.
This step helps to identify the content segments within the image, which will be further
analyzed in the feature extraction process.
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(a) (b)

X2717

Figure 3. Sample superpixel-based content segmentation with hyperSLIC. (a) False-color original
image. (b) False-color segmented image.

3.2.2. Background Suppression

Segmentation of hyperspectral imagery with a proper algorithm (i.e., hyperSLIC)
results in identifying semantically (both spectral and spatial) related content pixels. This
is a helpful step in dealing with highly redundant spectral information in hyperspectral
imagery. On the other hand, the relatively high proportion of background content in the
discovered segments poses a problem for efficient and quick retrieval of desired content.
To overcome this problem, the proposed CBHIR system introduces a novel background
suppression-based method to make foreground content more easily identifiable. This
method examines each content segment in the images concerning spectral features of
the territorial background content and identifies each segment’s dissimilarity to spectral
features of the territorial background regions.

Discovering Spectral Diversity of Candidate Territorial Background Content

The proposed CBHIR system benefits from two spectral diversity to identify territorial
background regions in the data products to use these regions in the background suppression
process. Hyperspectral images with relatively smaller intra-spectral diversity are more
capable of representing background and can be used as reference background imagery for a
territory as depicted in Figure 4. In the first step of the background suppression algorithm,
spectral diversity σXn for each individual hyperspectral image that has been created from
the same hyperspectral remote sensing data product, which covers a specific region on
the Earth, is calculated. The reason for adopting a regional approach in determining
background contents is that hyperspectral images, which are spatially close to each other,
tend to have similar hyperspectral background contents.

Figure 4. Sample hyperspectral images with low and high spectral diversity.
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σXn =
1

P2

P

∑
i=1

P

∑
j=1

cos−1

(
xi

n · xj
n

∥xi
n∥∥xj

n∥

)
(1)

where P is the total number of pixels in image xn. xi
n and xj

n represent i-th and j-th pixels of
xn. Equation (1) was inspired by Spectral Angular Mapper (SAM) [23], and the non-linearity
of the equation in calculating the dissimilarity of two spectral signatures enables better
discrimination of low and high spectral diversity in image content.

Discovering Spectral Diversity of Candidate Territorial Background Content

After calculating intra-spectral diversity for each image created from the same data
product covering a specific region on the Earth, a specific number of hyperspectral images
are identified as reference background images in this step. To this end, hyperspectral
image Xn in the archive with minimum intra-spectral diversity is identified as the first
reference background image. Later on, the next hyperspectral image with minimum intra-
spectral diversity is chosen as a candidate reference background image. A hyperspectral
image is labeled as a reference background image if the spectral dissimilarity between the
mean spectral signature of this image and the previously identified background images
is bigger than a threshold defined by the user. This process is terminated if the desired
number of hyperspectral images are identified as reference background images. In this
way, the proposed system scans through the images created from the same hyperspectral
remote sensing data product and prevents identifying similar reference background images
to model the background content better. Figure 5 demonstrates hyperspectral images
identified as reference background images for each hyperspectral remote sensing data
product introduced in Section 4.

Identifying Foreground–Background Content Segments

As illustrated in the block diagram of the proposed CBHIR system (please see Figure 2),
foreground and background content in a hyperspectral image are discriminated based on a
background suppression-based approach. Thus, this method requires a reliable method
to distinguish foreground and background contents using the reference hyperspectral
images with materials representing the regional spectral features of the background for
that specific territory.

Mahalanobis distance is a measure used to quantify the dissimilarity between a sample
and a distribution. It considers the correlations between variables, making it particularly
useful when dealing with multivariate data such as hyperspectral imagery.

The proposed method calculates how closely a content segment resembles the spectral
characteristics of reference background image contents using the Mahalanobis distance-
based scoring approach. In other words, to determine whether a content segment belongs
to the foreground or background class, the spectral signature of the segment is compared
against a set of pre-defined reference background images. If the spectral features of the
segment/pixel noticeably deviate from the spectral features of all the background images,
it is classified as foreground content.

The Mahalanobis distance between a segment spectral signature and a distribution is
defined as follows:

δ(xs
n) = (xs

n − µB)
T

Γ−1
B (xs

n − µB) (2)

where xs
n, µB, and Γ−1

B represent mean spectral signature vector of s-th content segment
in image Xn, sample mean, and sample covariance matrix of territorial background im-
age B that is a combination of reference background images identified for that specific
geographical region, respectively.
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Figure 5. Background content regions designated by the proposed CBHIR system for hyperspectral
remote sensing payload products.
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As a result, the similarities of content segments to the background within archive
images can be measured unsupervised, as depicted in Figure 6.

X1480

(a) (b) (c) (d)

Figure 6. Foreground–background content segment classification. (a) False-color original image,
(b) segmented image, (c) Mahalanobis score map, (d) foreground–background segment classifica-
tion map.

Identifying Spectral Terms

Two distinct methods are used to create foreground and background content vocabu-
laries to enhance the semantic significance of emphasized foreground contents in the study
and minimize the redundant spectral information related to the background content. The
foreground content vocabulary includes the spectral signatures of previously identified
foreground content segments as is, while a clustering-based approach is used to create
the background content vocabulary. This approach helps reduce the density of repeated
background content information. By differentiating between foreground and background
contents in the images within the archive, dedicated vocabularies related to each content
type can be generated.

Creating the background content vocabulary through the clustering process is a meticu-
lous procedure. Research conducted in the context of the article has revealed the advantages
of utilizing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [24]
clustering method over other methods, including k-means and kernel k-means. DBSCAN
offers the advantages of automatically detecting clusters of arbitrary shapes while being
robust to noise (rarely seen material signatures), requiring minimal parameter tuning, and
not being sensitive to initialization.

3.3. Representing Hyperspectral Images with Low-Dimensional Descriptors

The proposed CBHIR system represents each hyperspectral image Xn in X by four
low-dimensional descriptor vectors: two binary partial spectral descriptors ϕ

f
n and ϕb

n to
represent the spectral characteristics of foreground and background content, respectively,
and two partial abundance descriptors α

f
n and αb

n to hold fractional abundance of corre-
sponding content in the image Xn as depicted in Figure 7. In addition to ϕ

f
n and ϕb

n , the
proposed system uses the overall descriptor ϕn = (ϕ

f
n , ϕb

n) to represent spectral features of
overall image content. Similarly, descriptor αn = (α

f
n, αb

n) represents fractional abundance
of corresponding content in the image Xn as depicted in Figure 8.

Figure 7. Illustration of low-dimensional foreground and background content descriptors (where∣∣∣V f
∣∣∣ = 8 and

∣∣∣Vb
∣∣∣ = 8).
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At this point, it is essential to underline that while the first part of the low-dimensional
descriptors describes the image content that defines materials having a significant dif-
ference compared to the background in terms of spectral characteristics (e.g., artificial
materials, anomalies), the second part defines the background content commonly seen in
archive images.

Figure 8. Illustration of low-dimensional overall content descriptors (where
∣∣∣V f

∣∣∣ = 8 and
∣∣∣Vb
∣∣∣ = 8).

To compute foreground spectral image descriptors, initially a spectral distance matrix
D

ϕ
f
n ,V f =

[
ds,ψ; s = 1, . . . , S; ψ = 1, . . . , Ψ

]
is constructed, where ds,ψ denotes a spectral

distance estimated between s-th foreground segment mean signature extracted from the
image Xn and ψ-th spectral term in foreground content vocabulary V f . Any distance
measure can estimate this, whereas in this study, the well-known spectral angular distance
is considered. Then, the distance matrix D

ϕ
f
n ,V f is quantized by setting the minimum

element of each row to 1 and the remaining elements to 0. In this way, each image
foreground segment mean signature is associated with a spectral term in the vocabulary V f

considering the degree of spectral similarity. Then, D
ϕ

f
n ,V f is compressed into a fixed-size

binary descriptor to obtain ϕ
f
n by applying the Boolean OR operator along each column.

Similarly, a distance matrix Dϕb
n ,Vb = [ds,ω; s = 1, . . . , S; ω = 1, . . . , Ω] is constructed,

where ds,ω denotes a spectral distance estimated between s-th background segment’s mean
signature extracted from the image Xn and ω-th spectral term in background content
vocabulary Vb. Then, the distance matrix Dϕb

n ,Vb is quantized in the same way to obtain

fixed-size descriptor ϕb
n.

Accordingly, ϕ
f
n =

[
ϕ

f1
n , . . . , ϕ

fΨ
n

]
and ϕb

n =
[
ϕb1

n , . . . , ϕ
bΩ
n

]
are defined as Ψ and Ω

dimensional binary spectral descriptors, where each element of the vector (i.e., descriptor)
indicates existence of a unique material in hyperspectral image represented by the ψ-th
and ω-th spectral term in the spectral vocabularies V f and Vb, respectively. Obtained
binary spectral descriptors have two main advantages: (1) they enable real-time search
and accurate retrieval, and (2) they reduce the memory required for storing hyperspectral
image descriptors in the archives.

To calculate the foreground abundance descriptor α
f
n for Xn, normalized fractional

abundance of each foreground spectral term in V f is computed as given in Equation (3).

α
V f

ψ
n =

c
V f

ψ
n
P

(3)

where c
V f

ψ
n and P correspond to the cumulative number of pixels in the segments labeled as

ψ-th spectral term in foreground content vocabulary V f and the total number of pixels in
Xn, respectively. Similarly, for the background abundance descriptor αb

n for Xn, normalized
fractional abundance of each foreground spectral term in Vb is computed as given in
Equation (4).

α
Vb

ω
n =

cVb
ω

n
P

(4)

In addition to ϕ
f
n and ϕb

n, the proposed system uses descriptor ϕn = (ϕ
f
n , ϕb

n) (or ϕq) to

represent spectral features of overall image content. Similarly, descriptor αn = (α
f
n, αb

n) (or
αq) represents fractional abundance of corresponding content in the image Xn as depicted
in Figure 8.
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3.4. Retrieving Hyperspectral Images with Low-Dimensional Feature Descriptors

The proposed novel CBHIR system allows users to perform hyperspectral retrieval
with a hierarchical algorithm. Furthermore, the proposed hierarchical algorithm signifi-
cantly reduces the image retrieval time since (1) it filters out a high number of irrelevant
images (with respect to the spectral characteristics of distinct materials present in the query
image) at the first step by considering simple bitwise operations on low-dimensional spec-
tral descriptors, and (2) in the second step the reduced set XH of images is queried only to
retrieve the set XR ⊂ XH of images with the highest similarities in terms of spectral charac-
teristics of distinct materials and their fractional abundances present in the query image. It
is worth noting that due to the considered two-step strategy, the proposed algorithm can
be performed by either considering or neglecting the evaluation of the similarities among
the abundances of materials. Accordingly, the proposed strategy meets the diverse needs
of different types of CBHIR applications.

3.4.1. Retrieving Hyperspectral Images Based on Overall Content Similarity

In this retrieval scenario, the user benefits from the proposed system to retrieve hyper-
spectral images concerning overall content similarity by utilizing spectral and abundance
descriptors of foreground and background contents. To this end, concatenated spectral
and abundance descriptors calculated for foreground and background content of each
hyperspectral image Xn in the archive and spectral and abundance descriptors calculated
query image Xq are employed to perform multiple material-based retrieval.

In the first step, the similarity between Xq and Xn is computed concerning the binary

spectral descriptors ϕn = (ϕ
f
n, ϕb

n) and ϕq by estimating the Hamming distance between
them. Then, a set XH of H ≤ R images having the lowest Hamming distances are selected,
while the remaining images in the archive are filtered out. In the case of considering
only spectral descriptor-based similarity between hyperspectral images for retrieval, XH is
considered as the final set of retrieved images (i.e., XH = XR) and the algorithm stops at this
step. If the abundance of materials is also considered for retrieval, XH is forwarded to the
second step. In the second step, the similarity between abundance descriptor αn = (α

f
n, αb

n)
of each image in XH and αq of the query image is estimated by considering the Euclidean
distance measure. Then, the set XR ⊂ XH of R images that have the highest similarity to
the query image Xq in terms of the fractional abundance of materials defined in abundance
descriptors are chosen.

3.4.2. Retrieving Hyperspectral Images Based on Foreground Content Similarity

Since the proposed system independently models foreground and background content,
in this scenario, the user can configure the retrieval process by forcing the system to focus
only on foreground content. To this end, spectral and abundance descriptors calculated
for foreground content of each hyperspectral image Xn in the archive and overall spectral
and abundance descriptors calculated query image Xq are employed to perform multiple
material-based retrieval. It is critical to note that, in this retrieval scenario, overall spectral
and abundance descriptors of Xn are modified such that portions of the descriptors related
to background content are discarded (set to zero) to perform the retrieval by focusing on
foreground content only.

In the first step, the similarity between Xq and Xn is computed concerning the binary
spectral descriptors, modified ϕn and ϕq, only by estimating the Hamming distance between
them. Then, a set XH of H ≤ R images having the lowest Hamming distances are selected,
while the remaining images in the archive are filtered out. In the case of considering
only spectral descriptor-based similarity between hyperspectral images for retrieval, XH is
considered as the final set of retrieved images (i.e., XH = XR) and the algorithm stops at
this step. If the abundance of materials is also considered for retrieval, XH is forwarded to
the second step. In the second step, the similarity between modified abundance descriptor
αn of each image in XH and αq of the query image is estimated by considering the Euclidean
distance measure. Then, the set XR ⊂ XH of R images that have the highest similarity to
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the query image Xq in terms of the fractional abundance of materials defined in abundance
descriptors are chosen.

3.4.3. Retrieving Hyperspectral Images Based on Background Content Similarity

Similar to retrieving hyperspectral images concerning foreground content similarity,
the proposed CBHIR system allows the user to query hyperspectral images by only consid-
ering the background content similarity. In contrast to foreground content-based retrieval,
in this retrieval scenario, overall spectral and abundance descriptors of Xn are modified
such that portions of the descriptors related to foreground content are discarded (set to
zero) to perform the retrieval by focusing on background content only.

4. Dataset Description
4.1. Data Source

To evaluate the retrieval performance of the proposed CBHIR system and compare
it with the state-of-the-art systems available in the literature, a multi-label benchmark
hyperspectral image archive was created from very high-resolution hyperspectral imagery.
The hyperspectral images used during archive generation were acquired over a flight line
covering Yenice and Yeşilkaya towns (which are located on the border of the cities Eskişehir
and Ankara in Turkey) by VNIR hyperspectral imager of a multimodal imaging system
(see Figure 9).

Figure 9. Fingerprint of the area imaged during flight and used in benchmark archive generation.

The sensor components of the multimodal imaging system are composed of two co-
aligned very high-resolution hyperspectral (VNIR + SWIR) imagers, one RGB multispectral
imager, and one Fiber Optic Downwelling Irradiance Sensor (FODIS) to simultaneously
measure the power of incident light during flight for atmospheric correction of VNIR
hyperspectral images. The data acquisition flight was performed with a Cessna 206 aircraft
on 4 May 2019. Details of flight parameters and corresponding ground resolution obtained
with each sensor are given in Table 1.

Table 1. Fight parameters and corresponding ground resolutions obtained with the sensors.

Aircraft Cessna 206
Flight Altitude (m) ∼3000 (AGL)/∼3815 (ASL)

Flight Speed (knots) ∼90
Flight Polygon Size (m) 8000 × 790

VNIR HS SWIR HS RGB MS
FOV (m) 445.17 276.48 1696.00 × 1356.80

GSD (cm) 27.86 72 1.32 × 1.32



Remote Sens. 2024, 16, 1462 14 of 24

4.2. Data Pre-Processing

A set of pre-processing tasks was performed on the raw data to generate a coherent
benchmark archive from large consecutive images acquired during the mission and prepare
the patches for the labeling phase. The data pre-processing step consists of the following
tasks: (1) digital number (raw image) to radiance conversion, (2) radiance to reflectance
conversion, and (3) slicing images to obtain patches to be labeled. The first and second tasks
were performed using commercial Headwall SpectralView (v3.2.0) software. In the last step
of data pre-processing, twelve reflectance hyperspectral images with 2000 × 1600 pixels
were equally sliced into 100 × 100 pixel square patches. By the end of this step, 3840 patches,
each of which approximately covered 7.8 km2 on the ground, were obtained.

4.3. Data Labeling

Accurate labeling of samples in any benchmark archive is a crucial task that explicitly
affects performance analysis. Thus, the labeling of patches in the benchmark archive was
performed through auxiliary VHR multispectral imagery, which provides a 1.32 cm ground
sampling distance, which was acquired during the same flight. (see Figure 10).

Figure 10. Utilizing VHR imagery for identifying hyperspectral image labels precisely; (a) a data
product sliced to obtain hyperspectral images for benchmark archive, (b) corresponding VHR multi-
spectral image section acquired during the same flight.

In addition to labeling each sample in the benchmark archive with VHR multispectral
imagery, fieldwork was also performed on 31 October 2021 along the flight path to enhance
the quality of labeling. In this fieldwork, objects in the hyperspectral image archive were
photographed from the ground to obtain more information about them (see Figure 11).

Figure 11. Fieldwork to enhance the accuracy of the content labeling phase. The blue circle indicates
the location where the ground-truth picture was taken.
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Taxonomy of the benchmark hyperspectral image archive is presented in Figure 12.

Object / 
Material 
Labels

Vegetation

Natural 
Vegetation

Tree

Type-1

(224)

Type-2

(566)

Type-3

(69)

Type-4

(192)

Type-5

(9)

Field

Type-1

(384)

Type-2

(46)

Type-3

(35)

Type-4

(81)

Type-5

(351)

Type-6

(19)

Type-7

(108)

Type-8

(45)

Type-9

(143)

Bare Soil
Man-made 

Objects

Road

Asphalt

(124)

Gravel

(285)
Railway

Track Ballast

(80)

Rail

(78)

Concrete 
Sleeper

(78)

Building

Red Roof Tile

(327)

Metal Tile

(71)

Concrete Tile

(7)

White Tile

(47)

Painted / 
Unpainted 

Object

Red

(88)

Blue

(124)

Yellow

(36)

Green

(13)

White

(217)

Black

(29)

Metal

(179)

Concrete

(74)

Water Bodies

Stream

(184)

Figure 12. Taxonomy of content labels and the corresponding number of images labeled under each
individual sub-category.

5. Experimental Setup

This section of the article elaborates on the experimental setup designed for performing
objective and comparative performance analysis between the proposed and other CBHIR
systems available in the literature.

A series of experiments was conducted to assess the proposed CBHIR system’s perfor-
mance compared to other CBHIR systems in the literature. To this end, it is necessary to
set specific variables and methods to perform the experiments presented in this section,
including the proposed CBHIR system and other CBHIR systems from the literature. These
parameters are essential for obtaining accurate experimental results. Therefore, preliminary
experiments were conducted to determine the best values for these parameters. This sec-
tion gives a detailed explanation of the values determined as a result of these preliminary
experiments. First, the experimental setup of the CBHIR system proposed in this study and
other studies in the literature are given.

Within the scope of the study, spectral–spatial segmentation is performed on hyper-
spectral images using the proposed system. In this segmentation step with the hyperSLIC
algorithm, the local neighborhood parameter is set to 4 × 4 pixels corresponding to an area
of ∼1 m2 on the ground. Such an area is clear enough to observe spectral features of matter
in the scene for the spatial resolution of the imager at the given flight altitude in Table 1.

Another parameter the proposed method requires is the maximum number of reference
background images to be determined for each hyperspectral remote sensing data product.
When examining the hyperspectral remote sensing data products that comprise the archive,
this number was determined to be five. When determining reference background images,
it has been observed that selecting the average spectral angular distance between images
as 0.25 radians is suitable for different background image sets. The proposed CBHIR
system uses Mahalanobis distance to regional reference background images to classify
foreground and background content segments. At this stage, the threshold value is the
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highest Mahalanobis distance to the regional background image pixels created by merging
reference background images.

During the vocabulary creation stage, the spectral angular distance for foreground
content dictionaries is set to 0.10 radians to eliminate the existence of repetition for the
same material signature. To evaluate the performance of the proposed system, three state-
of-the-art methods for comparison were considered: (1) the bag-of-endmember-based
method (denoted as BoE), (2) the endmember matching algorithm based on the Grana
Distance (denoted as EM-Grana), and (3) the endmember matching algorithm that weights
the distances estimated by the SAD between each endmember pair by their abundances
(denotes as EM-WSAD). Vertex Components Analysis (VCA) was used in the experiments
for endmember-based methods to obtain the endmembers. HySime [25] was used in the
experiments to estimate the number of endmembers.

In all experiments, CBHIR systems are requested to retrieve the 10 most similar
images to a given query image, and each hyperspectral image in the benchmark archive is
used as a query image. Beyond each system’s retrieval performance, the retrieval time is
also measured.

5.1. Computational Environment

The experiments were conducted in MATLAB R2023b environment installed on a
Microsoft Windows 10 operating system computer with 3.6 GHz Intel® i7-9750H processor
2.6 GHz and 32 GB RAM.

5.2. Performance Metrics

Since this study performs performance evaluation on a multi-label benchmark archive,
four compatible multi-label performance metrics were used: (i) accuracy, (ii) precision,
(iii) recall, and (iv) Hamming Loss. Let LXq and LXr be the label sets for the query image Xq

and any particular image Xr in the corresponding set of retrieved images XR, respectively.
Accuracy is the fraction of identical content labels of the query and retrieved images

in the union of label sets of two images and is defined as:

Accuracy =

∣∣∣LXq

⋂
LXr

∣∣∣∣∣∣LXq

⋃
LXr

∣∣∣ (5)

Thus, accuracy is directly proportional to the cardinality of the intersection of label
sets of query and retrieved images. The retrieval performance increases when accuracy
approaches 1. Precision is the fraction of identical content labels of query and retrieved
images in the content label set of the retrieved image and is defined as:

Precision =

∣∣∣LXq

⋂
LXr

∣∣∣
|LXr |

(6)

In comparison with accuracy, precision evaluates the retrieval performance of the
system by mainly focusing on the content labels of the retrieved image. Accordingly, the
content labels of the query image apart from the matched ones are ignored. The retrieval
performance increases when precision approaches 1. Unlike precision, recall is the fraction
of identical content labels of query and retrieved images in the content labels of the query
image and is defined as:

Recall =

∣∣∣LXq

⋂
LXr

∣∣∣∣∣∣LXq

∣∣∣ (7)

Thus, the content labels of the retrieved image, apart from those of the matched
ones, are ignored. The retrieval performance increases when precision approaches 1.



Remote Sens. 2024, 16, 1462 17 of 24

Hamming Loss evaluates the retrieval performance by calculating the symmetric difference
(∆) between two content label sets and is defined as:

Hamming Loss =

∣∣∣LXq ∆LXr

∣∣∣∣∣∣LXq

∣∣∣ (8)

According to Hamming Loss, the system is penalized for each item that is not in the
intersection of query and retrieved image content label sets. The retrieval performance
increases when Hamming Loss approaches zero.

6. Experimental Results

In this section, the retrieval performance of the proposed CBHIR system is compared
with state-of-the-art systems available in the literature detailed in Section 2.

6.1. Sample Retrieval Results for the Proposed CBHIR System

In this subsection, the retrieval performance of the proposed CBHIR system within
the scope of the article is demonstrated with visual examples using different query images.
For this purpose, query hyperspectral images are selected from different regions of the
hyperspectral image archive used in the study.

The retrieval results presented in Figure 13 consist of content predominantly related
to railway ballast material, steel rail, natural vegetation cover, and stabilized road, using
a query image. The proposed system has successfully retrieved other images from the
archive containing materials with similar spectral characteristics. For the retrieval results
presented in Figure 14, a query image was used with content primarily focused on a red-
tiled roof, metal sheet roof, natural vegetation cover, and stabilized road. The proposed
system retrieves other hyperspectral images from the archive containing materials with
similar spectral characteristics. In Figure 15, retrieval results for a query hyperspectral
image specifically containing white tent tarpaulin observed in rural regions are shown.
Figure 16 presents the retrieval results of a query hyperspectral image that is dominantly
composed of bare soil and a specific tree type.

Query
X125

(1) - X174
d( q, n):14

d( q, n): 0.101

(2) - X141
d( q, n):17

d( q, n): 0.118

(3) - X851
d( q, n):16

d( q, n): 0.135

(4) - X60
d( q, n):15

d( q, n): 0.138

(5) - X932
d( q, n):16

d( q, n): 0.146

(6) - X900
d( q, n):16

d( q, n): 0.161

(7) - X933
d( q, n):15

d( q, n): 0.164

(8) - X109
d( q, n):17

d( q, n): 0.176

(9) - X802
d( q, n):15

d( q, n): 0.181

(10) - X407
d( q, n):13

d( q, n): 0.19

Figure 13. Content-based retrieval results of the proposed CBHIR system, Xq = X125. Content labels
of each image are given in Table 2.
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Query
X1211

(1) - X1245
d( q, n):55

d( q, n): 0.115

(2) - X1212
d( q, n):44

d( q, n): 0.153

(3) - X1100
d( q, n):58

d( q, n): 0.165

(4) - X1142
d( q, n):48

d( q, n): 0.17

(5) - X2724
d( q, n):57

d( q, n): 0.191

(6) - X2758
d( q, n):56
d( q, n): 0.2

(7) - X2769
d( q, n):58

d( q, n): 0.202

(8) - X1159
d( q, n):54

d( q, n): 0.231

(9) - X1153
d( q, n):54

d( q, n): 0.235

(10) - X1143
d( q, n):51

d( q, n): 0.258

Figure 14. Content-based retrieval results of the proposed CBHIR system, Xq = X1211. Content labels
of each image are given in Table 3.

Query
X1914

(1) - X1915
d( q, n):37

d( q, n): 0.0937

(2) - X1846
d( q, n):43

d( q, n): 0.0969

(3) - X1290
d( q, n):42

d( q, n): 0.0984

(4) - X1882
d( q, n):43

d( q, n): 0.132

(5) - X1862
d( q, n):39

d( q, n): 0.134

(6) - X1799
d( q, n):44

d( q, n): 0.151

(7) - X2766
d( q, n):42

d( q, n): 0.156

(8) - X1780
d( q, n):43

d( q, n): 0.16

(9) - X3376
d( q, n):44

d( q, n): 0.18

(10) - X1291
d( q, n):36

d( q, n): 0.183

Figure 15. Content-based retrieval results of the proposed CBHIR system, Xq = X1914. Content labels
of each image are given in Table 4.
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Query
X2440

(1) - X2456
d( q, n):17

d( q, n): 0.11

(2) - X2441
d( q, n):20

d( q, n): 0.117

(3) - X2454
d( q, n):18

d( q, n): 0.123

(4) - X2455
d( q, n):19

d( q, n): 0.139

(5) - X2453
d( q, n):18

d( q, n): 0.148

(6) - X2438
d( q, n):20

d( q, n): 0.157

(7) - X2425
d( q, n):17

d( q, n): 0.167

(8) - X992
d( q, n):17

d( q, n): 0.182

(9) - X2486
d( q, n):16

d( q, n): 0.183

(10) - X2424
d( q, n):19

d( q, n): 0.186

Figure 16. Content-based retrieval results of the proposed CBHIR system, Xq = X2440. Content labels
of each image are given in Table 5.

Table 2. Content labels for retrieval results, Xq = X125.

Xq 1 2 3 4 5 6 7 8 9 10

X125 X174 X141 X851 X60 X932 X900 X933 X109 X802 X407

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

track
ballast

rail rail rail rail rail rail rail rail rail rail rail

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

concrete
sleeper

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

Table 3. Content labels for retrieval results, Xq = X1211.

Xq 1 2 3 4 5 6 7 8 9 10

X1211 X1245 X1212 X1100 X1142 X2724 X2758 X2769 X1159 X1153 X1143

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

gravel
road

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

metal
sheet

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

metal
sheet

red
roof tile

red
roof tile

red
roof tile

red
roof tile

red
roof tile

red
roof tile

red
roof tile

red
roof tile

red
roof tile

red
roof tile

red
roof tile
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Table 4. Content labels for retrieval results, Xq = X1914.

Xq 1 2 3 4 5 6 7 8 9 10

X1914 X1245 X1212 X1100 X1142 X2724 X2758 X2769 X1159 X1153 X1143

white
tent

white
tent

white
tent

white
tent

white
tent

white
tent

white
tent

white
tent

white
tent

white
tent

water
stream

metal
sheet

metal
sheet

metal
sheet

metal
sheet

gravel
road

metal
sheet

blue
painted
object

blue
painted
object

tree
(Type-

1)

bare
soil

bare
soil

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

natural
vegeta-

tion

natural
vegeta-

tion

Table 5. Content labels for retrieval results, Xq = X2440.

Xq 1 2 3 4 5 6 7 8 9 10

X2440 X2456 X2441 X2454 X2455 X2453 X2438 X2425 X992 X2486 X2424

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

tree
(Type-

3)

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

bare
soil

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-

tion

natural
vegeta-
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6.2. Comparative Performace Analysis

The retrieval performance of the proposed CBHIR system is compared with three
state-of-the-art systems available in the literature: (1) the bag-of-endmember-based method
(denoted as BoE) [19], (2) the endmember matching algorithm based on the Grana Distance
(denoted as EM-Grana) [11], and (3) the endmember matching algorithm that weights
the distances estimated by the SAD between each endmember pair by their abundances
(denoted as EM-WSAD) [12].

In the experiments, the proposed CBHIR system and BoE were examined in both
retrieval scenarios defined in Section 3. When only spectral similarity is considered, single-
stage retrieval (SSR) is applied to the images represented by the binary spectral content
descriptors (BSDs). In the case of both spectral similarity and abundance of corresponding
materials considered (BSAD), both spectral and abundance descriptors are considered with
two-stage hierarchical retrieval (TSHR).

To measure the retrieval performance of the system in this regard, each hyperspectral
image Xn in X was used as the query hyperspectral image to retrieve 10 hyperspectral
images that contain similar materials. It is worth noting that while the proposed system
performs retrieval based on overall content, other CBHIR systems perform retrieval based
on the strategy they built on.

Comparative performance results given in Table 6 show that the proposed system
performs the retrieval with the highest accuracy (82.20%) in cases where both spectral and
abundance descriptors are utilized by considering overall image content. Likewise, the
proposed system has the highest precision (84.28%) and recall (85.54%) values. Similarly,
the lowest Hamming Loss score also belongs to the proposed algorithm when the retrieval
is performed concerning the spectral descriptor only.



Remote Sens. 2024, 16, 1462 21 of 24

Table 6. Performance evaluation of CBHIR systems.

CBHIR
SYSTEM Method Accuracy (%) Precision (%) Recall (%) Hamming

Loss
Retrieval
Time (ms)

BoE
BSD-SSR 64.82 76.03 74.17 6.02 0.114

BSAD-TSHR 66.43 63.22 73.48 6.21 0.129

Proposed
System

Overall-SSR 76.65 84.28 85.54 4.48 0.146

Overall-TSHR 82.20 83.25 82.43 5.21 0.159

EM-Grana 58.47 61.26 64.25 7.03 83.442

EM-WSAD 51.47 54.18 57.18 9.44 18756.36

On the other hand, it has been observed that the proposed CBHIR system exhibits an
increase in retrieval time compared to the previously suggested bag-of-endmember-based
CBHIR system. This is because the descriptor vector lengths in the proposed CBHIR system
are longer than those calculated in the previously suggested bag-of-endmember-based
CBHIR system.

In observations made with different query images within the archive, it has been
observed that in some cases, the results retrieved for images containing much more diverse
and less prominent foreground material (e.g., urban areas) are negatively affected by this
diversity compared to others. This phenomenon has been attributed to the Hamming
distance criterion used in the first stage of the image retrieval process. Although Hamming
distance significantly reduces computational complexity in the retrieval process with binary
vectors, spectral differences within the same type of foreground content have been observed
to lead to such results.

7. Conclusions and Future Work

This study proposes a novel content-based hyperspectral image retrieval (CBHIR)
system to define global hyperspectral image representations based on a semantic approach
to differentiate foreground and background image content. This approach significantly im-
proves the performance at the expense of slightly increasing the retrieval time compared to
the bag-of-endmembers method, whereas it is superior to the other methods in both aspects.
It offers several advantages over the conventional approach of using only endmembers to
retrieve hyperspectral images from an archive. The proposed system considers spatial and
spectral relationships through obtained content segments, which enables more accurate
modeling of content in hyperspectral imagery. It categorizes the content of hyperspectral
images into two classes—foreground and background—and defines the content belonging
to these two classes with different spectral vocabularies. This allows for considering less
common materials than those typically seen in hyperspectral image archives during the
modeling phase of images. Thus, the proposed CBHIR system enables accurate retrieval
of hyperspectral imagery from an archive using a query representing spectral features of
similar content, including rarely seen materials. This could be advantageous in various
applications such as, but not limited to, precision agriculture, forestry, mining, and defense
to detect and locate less abundant materials in an archive. Furthermore, the system allows
hyperspectral images to be retrieved online by characterizing the hyperspectral image con-
tent using four low-dimensional global feature descriptors in the background. Therefore, it
is a more effective and sophisticated approach to accessing hyperspectral images in remote
sensing archives.

A multi-label benchmark hyperspectral image archive was created from high-resolution
airborne hyperspectral remote sensing data products to evaluate the retrieval performance
of the proposed CBHIR system and compare it with the state-of-the-art systems available
in the literature. The experiments conducted on this benchmark archive of hyperspectral
images demonstrate the effectiveness of the proposed system in terms of retrieval accuracy
and time.

Although the proposed CBHIR system exhibits higher retrieval performance compared
to other systems during the experimental process, it also has certain shortcomings observed.
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The first of these is the input requirement from the user in modeling background content,
even though this process is carried out semi-supervised. It is believed that fully unsuper-
vised decomposition of foreground and background content would positively impact the
system’s performance. In future work, alternative methods, e.g., a neural network-based
model, to decompose image content in an unsupervised manner will be taken.

Another observed limitation is the use of Hamming distance in comparing spectral
descriptors. Hamming distance evaluates two spectral descriptor vectors in a binary
manner, assigning a penalty score for each spectral term that is not common between the
two vectors. As a future work, a weighted distance measure for descriptors considering
spectral features of the terms could be developed.
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Abbreviations

A-PPI Automatic Pixel Purity Index
AGL Above Ground Level
ASL Above Sea Level
BoE Bag-of-Endmembers-Based Method Proposed in [19]
BSAD Binary Spectral and Abundance Descriptors
BSD Binary Spectral Descriptors
CBHIR Content-Based Hyperspectral Image Retrieval
DBSCAN Density-Based Spatial Clustering of Applications with Noise
EIHA Endmember Induction Heuristic Algorithm
EM-Grana Grana Distance Proposed in [11]
EM-WSAD Endmember Matching-Based Algorithm Proposed in [12]
FODIS Fiber Optic Downwelling Irradiance Sensor
GLCM Gray Level Co-occurrence Matrix
hyperSLIC Hyperspectral Simple Linear Iterative Clustering
LZW Lempel–Ziv–Welch
OSP Orthogonal Subspace Projection
PPI Pixel Purity Index
RGB Red–Green–Blue
SAD Spectral Angular Distance
SAM Spectral Angle Mapper
SID-SAD Spectral Information Divergence–Spectral Angular Distance
SIFT Scale Invariant Feature Transform
SLIC Simple Linear Iterative Clustering
SSMA Spectral Signature Matching Algorithm

https://www.doi.org/10.17605/OSF.IO/H2T8U
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SSR Single-Stage Retrieval
SWIR Shortwave Infrared
TSHR Two-Stage Hierarchical Retrieval
VCA Vertex Component Analysis
VHR Very High Resolution
VNIR Visible–Near Infrared

Appendix A

Table A1. Symbols and Their Descriptions

Symbol Description

X = {Xn}N
n=1 Archive of N hyperspectral images

Xn n-th hyperspectral image in X
Xq Query hyperspectral image

XR The ranked set of R retrieved images that are
most similar to Xq

Xr r-th retrieved hyperspectral image in XR

W Number of spectral bands
P Number of pixels

xp
n ∈ RW Spectral signature vector of p-th spatial pixel in

Xn, where 1 ≤ p ≤ P

V f =
[
v f

1 , . . . , v f
Ψ

] Foreground content spectral vocabulary, where
vψ ∈ RW and ψ = 1, 2, . . . , Ψ

Vb =
[
vb

1, . . . , vb
Ω

] Background content spectral vocabulary, where
vω ∈ RW and ω = 1, 2, . . . , Ω

ϕ
f
n Foreground content spectral descriptor of Xn

ϕb
n Background content spectral descriptor of Xn

ϕn Overall content spectral descriptor of Xn
ϕq Overall content spectral descriptor of Xq

α
f
n

Foreground content abundance descriptor of
Xn

αb
n

Background content abundance descriptor of
Xn

αn Overall content abundance descriptor of Xn
αq Overall content abundance descriptor of Xq

σXn Spectral diversity of Xn
S Number of content segments extracted from Xn
s s-th content segment extracted from Xn

xs
n

Spectral signature representing s-th segment
extracted from Xn

µB Sample mean for territory background image B
B Territorial background image

Γ−1
B

Covariance matrix for territorial background
image

LX Set of associated category labels with archive X
LXq Set of associated category labels with Xq
LXr Set of associated category labels with Xr
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