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Abstract: It is a challenging task to accurately segment damaged road markings from images, mainly
due to their fragmented, dense, small-scale, and blurry nature. This study proposes a multi-scale spatial
kernel selection net named M-SKSNet, a novel model that integrates a transformer and a multi-dilated
large kernel convolutional neural network (MLKC) block to address these issues. Through integrating
multiple scales of information, the model can extract high-quality and semantically rich features
while generating damage-specific representations. This is achieved by leveraging both the local and
global contexts, as well as self-attention mechanisms. The performance of M-SKSNet is evaluated
both quantitatively and qualitatively, and the results show that M-SKSNet achieved the highest
improvement in F1 by 3.77% and in IOU by 4.6%, when compared to existing models. Additionally,
the effectiveness of M-SKSNet in accurately extracting damaged road markings from images in various
complex scenarios (including city roads and highways) is demonstrated. Furthermore, M-SKSNet is
found to outperform existing alternatives in terms of both robustness and accuracy.

Keywords: remote sensing; damaged road marking; semantic segmentation; deep learning

1. Introduction

Road markings play a crucial role in road traffic, conveying information about the
road structure, direction, restrictions, and warnings to drivers and pedestrians. However,
they are prone to damage over time, resulting in reduced visibility and recognizability,
which can adversely affect road safety and smoothness [1,2]. Therefore, promptly detecting
and repairing damaged road markings is essential. Although manual inspection and
comprehensive detection vehicles are currently the primary methods used for detecting
road marking damage [3], they suffer from drawbacks, such as low efficiency, high cost,
and the need for road closures [4–6].

Recent advancements in remote sensing technologies, such as vehicle-mounted scan-
ning and drones, have provided new opportunities for road marking detection [7]. These
technologies offer advantages, such as rich spatial information and flexibility [8,9], making
them promising for detecting damaged road markings from high-resolution optical images.
However, this task faces challenges, such as target fracture, dense and small-scale markings,
and blurred boundaries. Hence, developing an efficient, accurate, and automatic road
marking damage detection method is of great theoretical significance and practical value.
With the rapid progress in deep learning technology, various efficient image segmentation
methods have emerged, including U-Net [8], PSPNet [9], LinkNet [10], ResNeSt [11], Con-
vNeXt [12], SegFormer [13], and others [12–18]. These methods are designed for typical
application scenarios, such as vehicle recognition, medical imaging, lane line detection,
and so on; however, none of these methods adequately address the challenges posed by
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damaged road markings. Existing approaches to pavement damage detection, such as
those utilizing GPR investigation and direct classification frameworks, are not directly
applicable due to the distinct characteristics of damaged road markings [14,15].

To address the limitations of existing methods, it is crucial to obtain strong semantic
representation at both local and global levels and to consider the dynamic context infor-
mation acquisition required for different damage types. Transformer-based methods have
shown promising results in the effective modeling of remote dependencies [15,16]. However,
they have limitations in dense prediction tasks due to their inability to model the local visual
structure and scale-invariant representation. In contrast, convolutional neural networks
(CNNs) excel at extracting local features and possess scale invariance [14,17,18]. We propose
a novel method that integrates CNN and transformer models to leverage their strengths
and overcome their weaknesses, thus enhancing the detection of damaged road markings.
By adopting a multi-scale spatial selection mechanism, our method can effectively handle
the challenges of fragmented, small-scale, and blurry markings in road images.

The performance of deep learning segmentation models heavily depends on the quality
and diversity of the training data set. While existing road damage data sets, such as ISTD-
PDS7 [19], provide valuable resources, data sets are scarcely specifically focused on damaged
road marking detection, particularly for Chinese roads. Hence, we introduce the Chinese
Damaged Road Marking data set (CDM data set), which enhances research in this area.

In summary, this study makes the following contributions:

• M-SKSNet (multi-scale spatial kernel selection net): a new image segmentation net-
work that effectively processes various object sizes through combining CNN and
transformer architectures with a dynamic kernel.

• CDM data set (Chinese Damaged Road Marking data set): The first extensive data set
for Chinese road scenes, enhancing research on road damage detection.

• Detection performance: our approach successfully identifies challenging road mark-
ings, showing improved accuracy and robustness on the CDM data set.

The remainder of this study is organized as follows. Section 2 reviews related work
on road extraction methods based on deep learning. Section 3 introduces the details of the
CDM data set. Section 4 presents the proposed method based on M-SKSNet. Experimental
results and analysis are provided in Section 5. Finally, conclusions are drawn in Section 6.

2. Related Work

Deep learning, as a data-driven technology, relies heavily on both the data set and the
model. Thus, this section will begin with a discussion of the current state of research on
data sets in the field of traffic. It will then introduce road marking segmentation methods
based on traditional image processing, as well as those based on deep learning. Finally, a
novel method proposed as a result of this research will be presented.

2.1. Damaged Road Marking Data Set

Existing public data sets, such as Cityscape [20], KITTI [21], Toronto City [22], Mapil-
lary [23], ApolloScape [24], Ceymo [25], and so on, contain rich traffic scenes and objects,
as well as diverse data types (RGB optical images, lidar point clouds [26], and thermal
images), covering multiple pixel-level semantic segmentation [27], road segmentation [28],
and instance segmentation of various traffic participants [29], among other tasks, which
have promoted deep learning research in the context of road segmentation.

However, these data sets lack focus on road marking damage scenarios and annota-
tions, hindering the progress of research in this field. Therefore, there is an urgent need to
construct a new data set specifically targeting road marking damage scenarios to facilitate
effective detection and segmentation of damaged markings.

2.2. Road Marking Image Segmentation

Road marking image segmentation methods can be categorized into traditional image-
processing-based methods and deep-learning-based methods.
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2.2.1. Methods Based on Traditional Image Processing

Traditional methods rely on low-level features of images, such as intensity, texture,
edge, and geometry; techniques such as edge detection [30], template matching [31], Hough
transform [32], and threshold segmentation [20] offer advantages in terms of simplicity,
speed, and ease of implementation. However, they have several drawbacks, including
sensitivity to parameter selection, vulnerability to noise and interference, and limited
adaptability to complex scenes and diverse types of damage.

2.2.2. Deep-Learning-Based Methods

Deep learning methods leverage neural networks to extract high-level features from
images, including semantics, context, relationships, and others, for accurate segmentation
of road markings.

1. FCN-Based Methods

The fully convolutional network (FCN) is an end-to-end image segmentation model
that replaces the last fully connected layer of the convolutional neural network with an
upsampling layer, achieving pixel-level classification. FCN-8s [33] and FCN-DenseNet [34]
are typical methods based on FCN that can effectively capture local and global information
of images, but their disadvantages include that the segmentation accuracy of small-scale
objects and weak boundary objects is limited, and they cannot solve the long-range depen-
dency problem.

2. R-CNN-Based Methods

The region-based convolutional neural network (R-CNN) first extracts regions of
interest in the image using a candidate region generation algorithm, such as Selective Search,
and then performs feature extraction and classification for each region. Mask R-CNN [35]
and mask R-CNNs [36–38] are some of the methods that can detect road markings in
complex traffic scenes. An advantage of these methods is that they can handle objects of
different scales and shapes; disadvantages include the dependence on the candidate region
generation algorithm and the difficulty of segmenting small objects and overlapping objects.

3. Transformer-Based Methods

Transformer-based methods rely solely on the self-attention mechanism to effectively
capture long-range relationships. The vision transformer (ViT) [39] has shown excellent
features in extracting global context, making it suitable for sparse damage markings. These
methods inherit the flexibility of transformers in modeling long-range dependencies and
can maintain long-distance spatial information and dependencies of different feature chan-
nels. Large receptive fields are crucial for the success of transformer-based models [40–42],
especially for fractured and fallen markings. This study proposes a new dynamic multi-
scale large selection kernel network (LSKNet), which dynamically adjusts the receptive
field of the feature extraction backbone to improve segmentation accuracy and robustness.

In summary, this study’s method combines a CNN, transformer, and dynamic multi-
scale selection kernel to achieve accurate segmentation of fragmented, dense, small-scale,
and blurred boundary targets. Compared to traditional methods, this approach eliminates
the need for a candidate region generation algorithm and directly segments the image,
improving segmentation efficiency and accuracy. Integrating the strengths of CNNs and
transformers, this method simultaneously extracts both local and global information,
improving the segmentation performance and robustness. Overall, this study’s method
offers a novel and effective approach to image segmentation, leveraging the combined
power of a CNN, transformer, and dynamic multi-scale selection kernel.

3. Public Damaged Road Marking Data Sets

Data sets are pivotal to deep learning techniques, as their volume and integrity shape
the success and stability of these methods. This research presents the China Damaged
Road Marking data set (CDM), crafted to tackle the specific challenges of segmenting
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damaged road markings. The CDM encompasses three distinct subsets, each from varied
environments: CDM-H for highways, CDM-C for city roads, and CDM-P, which is derived
from Apollo scope’s public data.

3.1. Data Processing

The data processing involves three main stages: acquisition, manual curation, and
image refinement.

3.1.1. Data Acquisition

The CDM-H and CDM-C data sets were gathered by our team using the LiMobile M1
system, capturing images with a high-definition resolution of 3520 × 1080 pixels. On the
other hand, the CDM-P data set was compiled from the Apollo Scape public repository.
The CDM-H data set encompasses data from Fuzhou, Chongqing, and Wuhan, producing
a total of 35,565 images. Collection activities were conducted in each city, lasting around an
hour per session and spanning 70 km. The night-time collection was opted for to minimize
visual distractions and improve the visibility of road markings. As for the CDM-C data
set, it focuses on the urban streets of Wuhan and Shanghai. Data collection was a one-time
event in each city, lasting roughly 30 min per session and covering 40 km, resulting in
6838 images. The CDM-P data set, sourced from Apollo Scape and captured using the
VMX-1HA device, showcases the urban landscape of Beijing, with 4274 images, each
boasting a resolution of 1920 × 1080 pixels.

3.1.2. Manual Curation

The manual curation process involves meticulous selection to identify damaged road
markings. From the initial pool of 35,565 images, the CDM-H subset was distilled to 1420,
focusing on wear-prone areas like entrances and exits. Similarly, the CDM-C subset was
narrowed from 6838 to 768 images, highlighting notable road damage. The CDM-P subset,
reflecting Beijing’s well-maintained urban areas, comprised 461 images.

3.1.3. Image Refinement

The refinement process includes detailed annotation of damaged markings and crop-
ping to enhance clarity. Images were annotated to identify instances of damaged road
markings, followed by cropping to mitigate blurriness and remove extraneous elements.
Images were partitioned into regions of interest (ROIs), focusing on the central near-field
view to refine the data set. The final data set sizes were 3080 for CDM-H, 1673 for CDM-C,
and 980 for CDM-P, each offering insights into road markings across varied environments.
Figures 1–3 provide visual examples from the CDM_H, CDM_C, and CDM_P data sets,
illustrating their diverse sample images.
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3.2. Data Set Characteristics

The CDM data set has the following characteristics:

• Consideration of geographical distribution heterogeneity, covering roads from vari-
ous regions of China, including Chongqing, Wuhan, Shanghai, Beijing, and Fuzhou,
reflecting the diversity and complexity of Chinese roads.

• Inclusion of various road types, such as ramp entrances, main roads, ramp exits,
branches, intersections, etc., covering a wide range of complex road scenes.

• Consideration of sample time differences, including data collection during daytime,
evening, and night-time under different lighting conditions.

• Use of the public data set for supplementation and comparison, increasing the scale
and quality of the data set.

3.3. Data Set Contributions

The CDM data set’s contributions include:

• A relatively large-scale road marking damage data set in China: deep learning relies
on data, and the generalization performance of models is influenced by the diversity
of training data. Considering the low coverage of public road data sets in China and
the complexity and diversity of Chinese roads, models trained on existing public data
sets perform well in training but poorly in China. Therefore, the application of the
CDM data set can supplement the insufficient coverage of Chinese public road data
sets and provide important support for the evaluation of deep learning models.

• Higher heterogeneity: the diversity of the data set is key to improving model gen-
eralization performance. The CDM data set covers various road types and scenes,
providing highly heterogeneous and diverse images. This reflects the characteris-
tics of Chinese roads and provides a benchmark for evaluating the usability and
generalization of models.
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• Stronger geographical robustness: intra-class diversity helps models recognize more
road scenes. The CDM data set covers cities in different geographical regions of
China, providing images from various geographical and road backgrounds. This helps
improve the robustness and portability of models.

4. Methods
4.1. Model Architecture

Figure 4 provides an overview of the M-SKSNet architecture examined in this study.
The architecture adopts a UNet-like structure, which is characterized by its encoder–decoder
network using skip connections between matching blocks with the exact spatial resolution
at both ends of the encoder and decoder. It consists of three parts: a transformer encoder,
a CNN stem, and a multi-scale CNN decoder. The transformer encoder is designed as
an s-level sequence of transformer encoder blocks [15], which aims to extract long-range
context information. The CNN stem aims to preserve spatial detail information at a high
resolution. The multi-scale CNN decoder consists of 5 + 1 MLKC blocks, which obtain
multi-scale, global context information through skip connections.
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4.2. The Transformer (Encoder)

The transformer encoder uses sliding windows and a hierarchical structure, paying
attention to both global and local information, and is mainly used to obtain the long-range
context information of the damage markings in this study.

1. Patch Embedding: taking the damage marking image with dimensions of H × W × 3
as input, the Swin transformer uses smaller 4 × 4 patches to better capture the details
of small-scale objects in image segmentation.

2. Transformer Encoder Block: introduces window-based self-attention (WSA) stacked in
the proposed model. Notably, the window position is replaced with half the window size,
allowing for the gradual construction of global context through effectively integrating
information from various windows. This approach enhances the model’s ability to
capture broader contextual information for improved performance in various tasks.

3. Patch Merging: merges adjacent patches into a larger patch, thereby reducing the
resolution of the feature map and increasing the receptive field.
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4.3. The CNN Stem

The CNN stem is mainly used to obtain the local fine-grained spatial detail information
of the damage markings, and it consists of four convolutional layers, each followed by a
BatchNorm and GELU activation layer (Figure 5). The first 3 × 3 convolutional layer, with
a stride of 2 × 2, reduces the input spatial size by half and obtains the local features of
small-scale and dense objects through the following three convolutional layers.
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4.4. Multi-Dilated Large Kernel CNN (DECODER)

This study recognizes the importance of local fine-grained features in accurately seg-
menting small-scale objects. However, it also aims to incorporate global context information
into the segmentation process for improved performance.

A broader decoding context rate is, thus, obtained without any extra parameters. It
consists of a series of multi-dilated large kernel CNN (MLKC) blocks and deconvolution
(Deconv) blocks, which are composed of four parts (Figure 6): a pre-channel mixer, dilated
convolutional layer (DCL), spatial kernel selection (SKS), and a post-channel mixer.
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4.4.1. Pre-Channel Mixer

A pre-channel mixer is applied to the input, which is the concatenation of the output
of the previous multi-dilated CNN block and the skip connection of the mirrored encoder,
to exchange information in the channel dimension. The channel mixing operation can be
achieved using any operator that facilitates the exchange of channel dimension information.
In this study, a pre-channel mixer is implemented as a pointwise convolution layer without
any normalization or activation layer.

4.4.2. Dilated Convolutional Layer (DCL)

DCL uses three convolution kernels, each with different dilation rates of d1, d2, and d3,
to obtain multi-scale receptive fields.
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Given the kernel size k and the dilation rate d, the one-side length of the receptive field
r of the dilated convolution can be calculated as: ri = d1(k − 1) + 1, where, for receptive
fields larger than 3 × 3, the kernel size k is set to 3, and for smaller receptive fields, the
kernel size k is set to 1.

4.4.3. Spatial Kernel Selection (SKS)

This study uses a spatial selection mechanism to perform spatial selection on the
feature maps from different scales of large convolution kernels. Firstly, this study connects
the features obtained from different kernels with different receptive field ranges:

Ũ =
[
Ũ1; . . . ; Ũi

]
, (1)

and then uses channel-based average and max pooling, denoted as Pavg(·) and Pmax(·),

SAavg = Pavg

(
Ũ
)

, SAmax = Pmax

(
Ũ
)

(2)

SAavg is the average pooling feature descriptor factor and SAmax is the max pooling
feature descriptor factor. This study connects the spatial pool features and uses the convolu-
tion layer F 2→N(·) to transform the pooled features (two channels) into N spatial attention
maps to allow information interaction between different spatial descriptors.

ŜA = F 2→N([
SAavg; SAmax

])
. (3)

For each spatial attention map ˆSAi, the sigmoid activation function is applied to obtain
the individual spatial selection mask ˆSAi=σ( ˆSAi), where σ(·) is the sigmoid function. Then,
the features in the sequence of decomposed large kernels are weighted by the corresponding
spatial selection template and fused by the convolution layer F (·) to obtain the attention
feature S:

S = F
(
∑N

i=1 ŜAi·Ũi

)
(4)

The Deconv block utilizes a transposed convolutional layer to upsample the feature
map, doubling the spatial dimension while halving the channel dimension. In this study,
BatchNorm and ReLU activation layers are incorporated after the transposed convolutional
operation to enhance the effectiveness of the upscaling process.

4.4.4. Post-Channel Mixer

When the features are split into three different spatial resolutions, using DCL to
process them, the post-channel mixer is applied to exchange information from the three
convolution layers. This study implements the post-channel mixer using a sequence of
pointwise and 3 × 3 convolution layers, each followed by BatchNorm and ReLU activation
layers.

4.5. Loss Function

Assuming the existence of an optimal distribution that accurately represents the
probability of a sample belonging to each category, this study aims to train the model in
such a way that its output approximates this optimal distribution as closely as possible.
The cross-entropy function can reasonably measure the similarity of the distribution and is
also a standard loss function. This study uses OHEM cross-entropy as the loss function.
The formula is as follows:

LCE = −∑n
i=1 ti log(pi) (5)

LCE is the loss value calculated according to binary cross-entropy, ti represents the
ground truth, and pi is the maximum probability of the i-th class.
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5. Experiment
5.1. Experiment Setting

In this study, the Python 3.7 programming language and Pytorch 1.7 DL framework
were used to build the model, and all experiments were completed using the Centos
7 system. We conducted 100 training sessions for the model, setting the batch size to
8. The Adam optimizer with a learning rate of 0.0001 was used for parameter iterative
optimization, and two NVIDIA RTX 2080Ti GPUs were used to speed up the model training.

In this study, the training set and test set were randomly divided according to a ratio
of 8:1. The division of data sets into an 8:1 ratio was based on standard practices to ensure
a balanced distribution of training and testing data. This ratio allows for comprehensive
model training while maintaining enough data for evaluation. The highway data set,
CDM-H, comprises a total of 3080 images, with 2730 images allocated for training purposes
and 350 images reserved for testing. Similarly, the urban road data set, CDM-C, contains
1673 images, out of which 1483 images are designated for training and 190 images are set
aside for testing. Lastly, the public data set, CDM-P, encompasses 980 images, among which
870 images are utilized for training and 110 images are allocated for testing. These subsets
provide distinct data sets for training and evaluating deep learning models in specific road
scenarios, ensuring comprehensive coverage and accuracy.

5.2. Evaluation Metrics

In this study, five evaluation metrics were used to comprehensively evaluate the road
extraction performance of the network model: overall accuracy (OA), precision (P), recall
(R), F1 score (F1), and intersection over union (IOU). For image segmentation, the prediction
result and the actual label can form four situations: TP (predicted as true, labeled as true),
TN (predicted as false, labeled as false), FP (predicted as true, labeled as false), and FN
(predicted as false, labeled as true). The specific calculations of different evaluation metrics
are as follows:

OA =
TP + FN

FP + TN + TP + FN
(6)

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

F1 =
2 × P × R

P + R
(9)

IOU =
TP

FP + TP + FP
(10)

OA reflects the accuracy of the model prediction result; however, as the image contains
a large amount of background area, F1 and IOU are generally used for comprehensive
evaluation. The higher the F1 score, the better the model classification prediction result.
IOU is the degree of overlap between the damaged road marking prediction area and the
real damaged road marking area. The higher the degree of overlap, the better the model
performance.

5.3. Experimental Results Analysis

To gain a thorough understanding of how well M-SKSNet performs, it was evaluated
against standard road marking segmentation networks, such as BiSeNet [43], EaNet [44],
LANet [45], MAResUNet [46], and LinkNet [10], all utilizing ResNet18 as their backbone.
Furthermore, M-SKSNet was compared with the most recent advancements in road damage
detection models: ResNeSt [11], ConvNeXt [12], and SegFormer [13]. Additionally, various
segmentation experiments were carried out across the CDM-P, CDM-H, and CDM-C data
sets, followed by a detailed analysis of both quantitative and qualitative outcomes.
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5.3.1. Quantitative Results and Analysis

To quantitatively analyze the extraction results of the segmentation model, this study
used the OA, P, R, F1, and IOU indicators to evaluate the test set results on CDM-P, CDM-H,
CDM-C, and the real labels. F1 score and IOU reflect the model classification prediction
result and the accuracy and completeness of the segmentation; therefore, this study focuses
on comparing these two indicators.

1. Quantitative Analysis of Experimental Results on Different Data Sets

(1) Results of the network performance test on the CDM-P data set

Table 1 presents the results of the network performance test on the CDM-P data set.
Among the models tested, M-SKSNet emerges as the best performer across all metrics,
particularly in F1 and IOU, where it surpasses the second best, BiSeNet, by 2.18% and 3.3%,
respectively. These findings suggest that M-SKSNet efficiently preserves both local details
and global context, enabling precise delineation of damaged marking boundaries and
yielding more comprehensive segmentation results. While BiSeNet achieves a fine balance
between speed and accuracy through its architectural choices, it necessitates additional
complexity with a feature fusion module. In contrast, M-SKSNet streamlines feature
extraction and fusion using a CNN stem, 4 × 4 patch, and dynamic large kernel convolution.
Despite EaNet’s slightly higher p value compared to M-SKSNet’s 91.53, its lower scores in
other metrics indicate an overemphasis on positive samples during segmentation, leading
to reduced F1 and IOU scores.

Table 1. Extraction results from the CDM-P data set (%).

Model OA R P F1 IOU

M-SKSNet 99.60 84.39 90.73 86.17 75.69
BiSeNet 99.55 79.54 88.96 83.99 72.39
LinkNet 99.5 78.19 89.80 83.60 71.82
EaNet 99.54 76.29 91.53 83.22 71.27

MAResUNet 99.47 73.10 89.51 80.48 67.34
LANet 99.28 65.60 82.19 72.96 57.43

ResNeSt 99.53 77.39 89.30 82.92 70.82
ConvNeXt 99.45 76.02 85.36 80.42 67.25
SegFormer 99.22 57.96 84.93 68.90 52.56

Note: bold font indicates the best results in each column.

LANet and SegFormer models may have simpler structures, limiting their ability to
capture the intricate features of road damage markings, which is particularly evident in
SegFormer’s poor performance due to a possible mismatch with the semantic segmenta-
tion task. MAResUNet and ConvNeXt may struggle with feature extraction, hindering
their ability to capture crucial road marking features. Furthermore, ResNeSt and EaNet
may suffer from over- or underfitting during training, resulting in unstable or declining
performance.

(2) Results of the network performance test on the CDM-H data set

The results of the network performance test on the CDM-H data set are shown in
Table 2. M-SKSNet also outperforms other models on all indicators, especially on F1 and
IOU, which are 1.94% and 2.86% higher, respectively, than the second best, LinkNet. These
results underscore M-SKSNet’s remarkable segmentation prowess in highway scenarios,
adeptly adjusting to diverse damage and lighting conditions. While LinkNet, originating
from road-use cases, demonstrates relatively good generalization in extracting highway
damage markings, its performance on the CDM-H data set still lags behind M-SKSNet.
LinkNet employs deconvolution and element-wise addition operations for feature upsam-
pling and fusion. Despite enhancing spatial resolution, its semantic information remains
relatively limited. In contrast, M-SKSNet utilizes the transformer to enhance semantic fea-
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ture representation and addresses weak boundary object segmentation through positional
encoding and multi-scale feature fusion.

Table 2. Extraction results from the CDM-H data set (%).

Model OA R P F1 IOU

M-SKSNet 99.59 83.37 85.64 84.49 73.15
BiSeNet 99.55 78.82 86.67 82.55 70.29
LinkNet 99.56 78.47 87.85 82.90 70.79
EaNet 99.54 76.44 88.23 81.91 69.36

MAResUNet 99.56 75.99 89.53 82.21 69.79
LANet 99.37 59.02 90.96 71.59 55.75

ResNeSt 99.49 77.03 84.26 80.48 67.34
ConvNeXt 99.50 74.46 86.38 79.98 66.64
SegFormer 99.42 75.86 80.01 77.88 63.78

Note: bold font indicates the best results in each column.

BiSeNet, LinkNet, EaNet, and MAResUNet exhibit similar overall performance but
display slight variations in specific metrics. While they may prioritize balancing speed
and accuracy, they may not be as comprehensive as M-SKSNet in the complex task of
semantic segmentation of damaged markings. Although they show good generalization,
they lack a thorough understanding and treatment of complex semantics. Conversely,
LANet, ResNeSt, ConvNeXt, and SegFormer demonstrate relatively poorer performance.
LANet achieves the highest p-value on the CDM-H data set, possibly due to its more precise
identification of positive samples during segmentation, facilitating easier recognition and
segmentation of actual damaged markings. LANet may also have better adaptability to
specific data set scenarios, leading to high performance. However, LANet’s simplistic
structure may limit its ability to capture complex features of damaged markings, while
ResNeSt, ConvNeXt, and SegFormer may lack robustness in feature extraction and fusion,
resulting in performance decline. Although LANet excels in certain aspects, its straightfor-
ward structure may restrict its performance in more intricate scenarios. ResNeSt, based on
ResNet architecture, primarily employs residual connections to construct deep networks.
While it introduces branch structures and attention mechanisms, its feature extraction
process is still constrained by residual block design, potentially causing performance bot-
tlenecks, especially in handling detail-rich markings. Despite ConvNeXt adopting grouped
convolutions and multi-scale fusion, insufficient inter-group information exchange may
lead to inadequately extracted features, affecting model performance. SegFormer adopts
transformer architecture, introducing attention mechanisms to enhance inter-feature con-
nections in semantic segmentation tasks. However, despite the outstanding performance of
transformers in processing sequential data, they may face challenges in handling image
data, for instance, high computational complexity and large parameter volumes, potentially
limiting SegFormer’s performance on large-scale data sets.

(3) Results of the network performance test on the CDM-C data set

The network performance results on the CDM-C data set are presented in Table 3. M-
SKSNet demonstrates superior performance across all metrics, particularly in F1 and IOU,
surpassing BiSeNet by 3.77% and 4.6%, respectively. These results indicate M-SKSNet’s
effective segmentation capabilities in urban road scenarios. However, the performances
of the six models on the CDM-H highway data set and CDM-P public road data set
are less than ideal. Possible reasons include night-time data collection with insufficient
illumination, leading to recognition challenges; diverse sample locations (Chongqing,
Wuhan, Shanghai), resulting in spatial heterogeneity and spectral differences; and various
road types and damage scenarios, indicating insufficient data set samples for generalization.
These findings underscore the importance of constructing a comprehensive CDM data set,
providing valuable resources for road damage research in China.
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Table 3. Extraction results from the CDM-C data set (%).

Model OA R P F1 IOU

M-SKSNet 99.08 68.35 79.98 73.71 58.37
BiSeNet 98.99 62.66 79.13 69.94 53.77
LinkNet 98.77 55.40 72.58 62.84 45.81
EaNet 98.88 65.90 71.91 68.77 52.41

MAResUNet 98.76 57.43 70.96 63.48 46.50
LANet 98.59 38.39 74.42 50.65 33.91

ResNeSt 98.99 62.51 79.11 69.84 53.65
ConvNeXt 98.62 57.34 64.95 60.91 43.79
SegFormer 98.63 51.27 68.15 58.52 41.36

Note: the bold font indicates the best results in each column.

BiSeNet, ResNeSt, and EaNet likely perform similarly and outperform other models
because they employ effective feature extraction and fusion strategies in their model archi-
tectures. BiSeNet’s dual-branch design enhances its ability to process both global and local
information, improving semantic understanding. ResNeSt, an upgraded ResNet version,
incorporates branch structures and attention mechanisms to enhance feature representation,
facilitating better feature correlation capture and performance enhancement. EaNet may
employ an attention-like mechanism to focus on crucial image areas adaptively, while also
integrating effective feature extraction and fusion strategies for improved semantic compre-
hension and expression. Compared with other models, the M-SKSNet model still achieves the
best results. This underpins that the model has good robustness and generalization ability.

2. Overall Analysis of Quantitative Experimental Results

In this study, how effectively the M-SKSNet model and other models perform across
three distinct data sets was evaluated. M-SKSNet consistently outperforms its counterparts
in these metrics, underscoring its superior accuracy in identifying damaged markings and
generating reliable segmentation results.

The results indicate that M-SKSNet excels on all data sets, demonstrating its robustness
and generalization capabilities. The CDM-P data set is a public damaged road marking
detection data set with most of the data collection times being in the daytime, and some of
them being in the evening, under good illumination conditions. Therefore, the test results
of different models on the CDM-P data set are generally better than those on the CDM-H
and CDM-C data sets. The CDM-H data set is a highway damage marking detection data
set with relatively single damage types but unstable illumination conditions. Therefore, the
test results of different models on the CDM-H data set are generally better than those on
the CDM-C data set but lower than those on the CDM-P data set. The CDM-C data set is
an urban damaged road marking detection data set, including different types of scenarios,
such as lanes, intersections, trunk roads, and auxiliary roads, with diverse damage types.
The data collection times were mainly at night, with insufficient illumination conditions,
resulting in generally worse test results for different models on the CDM-C data set.

Additionally, the CDM-H data set comprises 3113 images, with 2783 used for training,
while the CDM-C data set contains 1718 images, with 1528 utilized for training. The signifi-
cantly larger image count in the CDM-H data set allows for more comprehensive learning
and enhanced feature recognition compared to the CDM-C data set. This experiment
further demonstrates the need for constructing a damage marking detection data set that
provides a sample library and reference for the research of damaged road marking in China.

5.3.2. Qualitative Results and Analysis

In this study, the CDM-P data set was utilized as a case study to comprehensively
demonstrate the performance of the M-SKSNet model and provide a more representative
analysis. The M-SKSNet model was compared with the classic BiSeNet, EaNet, MARe-
sUNet, LinkNet, and LANet models based on the same loss function and learning rate
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and the advantages of the M-SKSNet model in dealing with the challenging features of
damaged marking images were identified.

Figures 7–9 show the qualitative comparison results of different models in extracting
fractured objects (Figure 7), dense and small-scale damage (Figure 8), and blurred edge
lines (Figure 9), respectively. The green box in the image signifies road damage markings,
while the red box highlights a missed damaged marking during annotation. However, the
model accurately predicts the area of damaged marking.
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Fractured objects: Out of the six models studied, only the M-SKSNet model is capable
of identifying fractured objects. Additionally, even when given incomplete annotations,
this model can still make accurate judgments. Its exceptional performance can be attributed
to its adoption of a spatial selection mechanism that selects feature maps from different
scales of large convolution kernels. This enhances the network’s ability to concentrate on
the most significant spatial context areas for detecting objects.

Dense and small-scale damage: The M-SKSNet model excels in detecting densely
packed and small-scale damage, presenting complete recognition results without any
missed or false detections. This impressive performance can be attributed to the model’s
utilization of CNN stem, which captures local details of small-scale objects through its
multi-scale feature selection process while also considering global context information.

Blurred edges: The M-SKSNet model exhibits notable advantages in extracting blurred
edge lines, and its extracted contours are more precise and more regular, without any
blurring or fracture. This ability is attributed to the fact that the M-SKSNet model uses
a transformer to obtain powerful semantic representation at both the local level (such as
the boundary) and global context level (such as the relationship between objects/classes)
and uses positional encoding and multi-scale feature fusion to deal with the segmentation
problem of weak boundary objects.

The figures clearly demonstrate that the M-SKSNet model shows a strong segmenta-
tion ability for all types of marking damage, and the segmentation extraction results are
more accurate and complete than other models. This model can not only accurately seg-
ment the objects of interest but can also adapt to different types of damage and illumination
conditions. Even in the case of complex or erroneous human judgment, it still ensures
correct segmentation, fully demonstrating its robustness of segmentation.

5.4. Feature Map Visualization

This section utilizes the CDM-H road data set as an illustrative example to visualize
the feature extraction results of the M-SKSNet model. In doing so, it delves into the
internal mechanisms and characteristics of the model, providing valuable insights into its
performance.

As shown in Figure 10, different brightness levels represent the size of activation
values, and it can be seen that the M-SKSNet model can achieve an accurate interpretation
of different damage marking scenarios through modelling global context relationships. In
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addition, Figure 10 shows the feature representations of four different stages, which can
be used to better understand how the M-SKSNet model extracts damage annotations. In
the figure, (a) is the original input image, (b) is the image after the first encoding, (c) is the
image after the second encoding, (d) is the image after the third encoding, (e) is the image
after the fourth encoding (as the feature level increases, the semantic information becomes
more and more abstract, and the damage marking boundary becomes more and more
blurred), (f) is the image after the first decoding, (g) is the image after the second decoding,
(h) is the image after the third decoding, and (i) is the image after the fourth decoding.
After adding the MLKC block, the learned damage marking feature boundary becomes
more apparent, and redundant information is reduced. Further, (j) is the high-resolution
shallow feature information extracted with CNN stem. Final, (k) shows the extracted
outcomes following the semantic division. When the dilation factor is substantial, there
may be significant gaps between the elements of the convolution kernel, resulting in a
checkerboard phenomenon. To alleviate this phenomenon, multi-scale dilated convolution
can be employed to mitigate the hole effect.
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5.5. Ablation Study

This section presents an ablation study to verify the effectiveness of each key compo-
nent designed in the proposed model. The ablation analysis was performed on the CDM-P
data set, using Transformer-T as the baseline model, and then each module was gradually
added. Table 4 illustrates the results of different ablation experiments. Compared with the
baseline model, the addition of CNN stem leads to an increase of 0.79% in F1 and 1.21% in
IOU, respectively, which proves the effectiveness of CNN stem layer design in damaged
road marking extraction. From the table, it can be seen that in terms of IOU, the addition
of the MSKC module increases the baseline from 73.88% to 74.86%, and, in terms of F1, it
increases the baseline from 84.98% to 85.62%. Finally, the combination of the MLKC and
CNN stem modules outperforms the baseline model, with F1 and IOU increasing by 1.19%
and 1.81%, respectively. This increase validates the necessity of each component in the
proposed model for obtaining the best segmentation results. In summary, the CNN stem,
MSKC, and MLKC modules in the proposed model all have significant contributions to the
model performance, and they work collaboratively to achieve accurate segmentation of
damaged markings.
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Table 4. Different method ablation experiment results (%).

Method Baseline CNN Stem MLKC F1 IOU

Baseline
√

84.98 73.88
CNN stem

√ √
85.77 75.09

MDC
√ √

85.62 74.86
M-SKSNet

√ √ √
86.17 75.69

5.6. Model Complexity Analysis

In this section, we provide a comprehensive overview of the model parameters, includ-
ing the number of parameters (params), computation amount (GFLOPs), and throughput.
To calculate the inference time, we used a 512 × 512 input and a batch size of 1. We also
averaged the results of running the model 1000 times to ensure accuracy. The calculation
results are presented in Table 5.

Table 5. Model parameter details.

Model Name GFLOPS Params (MB) Throughput (FPS)

M-SKSNet 64.14 37.48 28.40
BiSeNet 33.55 24.27 72.72
EaNet 18.76 34.23 78.50
LANet 9.62 11.25 198.78
MAResUNet 25.42 16.17 61.66
LinkNet 17.86 11.53 135.34
ResNeSt 37.24 18.24 61.32
ConvNeXt 71.62 46.42 30.93
SegFormer 13.10 7.71 78.98

Table 5 reveals that M-SKSNet operates relatively slowly at 28.40 FPS compared to
other models, likely due to its higher GFLOPS and parameters. In contrast, BiSeNet and
EaNet achieve faster speeds of 72.72 FPS and 78.50 FPS, respectively, thanks to their lower
GFLOPS and parameters. LANet stands out as the fastest, with a speed of 198.78 FPS,
possibly due to its simpler network structure. Models with higher GFLOPS and parameters,
such as ConvNeXt and M-SKSNet, tend to have slower speeds.

To enhance M-SKSNet’s speed, the optimization of the model structure, utilization
of specialized hardware, and adoption of lightweight techniques such as quantization,
pruning, and distillation can be explored. While M-SKSNet may lag behind in terms of
parameter count, computational load, and throughput, it offers significant advantages
in segmentation accuracy. Future research should aim to strike a better balance between
model lightweightness and segmentation performance.

6. Conclusions

In response to the challenges associated with detecting damaged road markings, this
study introduced M-SKSNet, a novel segmentation method combining transformer and
CNN architectures. M-SKSNet effectively addresses these challenges through leveraging
both global semantic representation and the local visual structure. Extensive experiments
on the CDM data set demonstrate that M-SKSNet outperforms existing techniques, achiev-
ing significant improvements in both F1 and IOU metrics. Compared to other mentioned
models, M-SKSNet presented a 3.77% increase in F1 and a 4.6% increase in IOU. This under-
scores its outstanding damaged road marking segmentation performance and innovation.

Despite its innovation, the CDM data set faces challenges related to its spatial het-
erogeneity and potential spectral variations due to the diversity of collection sites (e.g.,
Chongqing, Wuhan, and Shanghai), reflecting different road conditions. To enhance model
generalization, a more comprehensive sample set is needed, particularly in urban road
environments. The current models focus on pixel-level segmentation, providing only loca-
tion and shape information on damaged road markings. Future research should integrate
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additional knowledge and post-processing techniques to enrich semantic interpretation
and analytical capabilities. To ensure model robustness, further testing in various scenarios,
including road cracks, will be carried out to evaluate the adaptability of the model across
different environments.
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