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Abstract: Passive differential optical absorption spectroscopy (DOAS) is widely used to monitor the
three-dimensional distribution of atmospheric pollutants. However, the observational and retrieval
accuracy of this technique is significantly influenced by the precise wavelength calibration of solar
spectra. Current calibration methods face challenges in automation when dealing with complex
remote-sensing conditions. We introduce a novel automatic wavelength calibration algorithm for
passive DOAS based on sequence-matching technology to estimate the spectral parameters of the
spectrometer channels, integrating advanced processing measures such as feature structure enhance-
ment and sub-pixel interpolation. These measures significantly reduce the dependency on reference
spectrum resolution and accurately correct even minor spectral shifts. We perform sensitivity experi-
ments using synthetic spectra to determine optimal retrieval configurations, followed by field tests at
four cities on the Yangtze River Delta, China, to calibrate and compare passive DOAS instruments of
various resolutions. Comparative verification in these field studies demonstrated that our algorithm
was suitable for rapid spectral calibration within a wider resolution range of 0.03 nm to 0.1 nm with a
wavelength inversion error < 0.01 nm. This highlights the applicability and calibration precision of
our algorithm.

Keywords: wavelength calibration; passive differential optical absorption spectroscopy; sequence
matching; solar spectrum

1. Introduction

With the rapid development of globalization and the expansion of human activities,
air pollution is increasingly threatening human health and endangering the integrity of
ecosystems. Therefore, monitoring the atmospheric environment is of great significance.
Passive differential optical absorption spectroscopy (DOAS) is a remote sensing method
used for the detection of atmospheric pollutants. It uses the differential absorption of
solar radiation within various material absorption bands to quantitatively plot its atmo-
spheric distribution [1–3]. With the development of remote sensing inversion algorithms,
passive DOAS technology can achieve the detection of the three-dimensional distribution
of pollutants, including aerosols and trace gases [4–7]. Due to its inherent non-contact
characteristics, high sensitivity, wide wavelength capability, and ability to detect various
components, passive DOAS has become an important pollutant detection technology on a
global scale and has been recognized in international comparative verification [8,9]. With
the improvement of global passive DOAS monitoring networks, the use of passive DOAS in
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practical environmental monitoring scenarios has increased, and case studies have become
more diverse [10–12].

Solar radiation is the foundation of passive DOAS observations, and the accuracy
of passive DOAS measurements is directly affected by solar radiation. There are cur-
rently many studies on solar radiation that greatly promote the development of passive
DOAS [13–18]. In the passive DOAS observation system, the spectrometer is a key instru-
ment in this technology, as solar radiation is mainly received by the spectrometer [6]. The
spectrometer converts light signals from the sun into electrical signals, and we achieve the
inversion of pollutants in different bands by combining accurate wavelength information
from different channels. In order to improve the accuracy and reliability of passive DOAS
measurement results, wavelength calibration methods must be precise and robust [19].

Contemporary DOAS wavelength-calibration methodologies mainly involve manual
intervention, which precludes their capacity for automation. These methodologies are
generally dichotomized into external light-source techniques and solar-spectrum methods.
The former involves interfacing a spectrometer with a standard external light source that
emits known spectral lines to derive the instrument’s response curve and accomplish
wavelength referencing and calibration [20–22]. For example, the error can be controlled
within 1.6 pm using the standard light source of a mercury lamp [22]. Despite its broad
adoption because of its simplicity of operation and high-level accuracy, this technique has
several intrinsic limitations. These include the need for laborious manual management of
the standard light source, aligning light source conditions with established standards, and
conducting rigorous spectral analysis; the necessity for disparate standard light sources
across different spectral bands, resulting in non-uniformity and the potential for health
risks to operators through improper use; and the likelihood of minor operational deviations
in the instrument during runtime, leading to variation between actual wavelengths and
those obtained under standard calibration conditions—a pervasive challenge that remains
elusive to comprehensive resolution.

Solar spectrum methods, an alternative to external light-source techniques, use the
standard solar spectrum as a reference to calibrate wavelength channels based on character-
istic absorption, scattering, and radiative properties [23]. Favored for their ability to obviate
manual calibration processes, these methods can detect and rectify marginal wavelength
shifts during instrument stability. However, this approach demands an exceedingly high-
resolution standard solar spectrum, constraining its application to ordinary instruments.
Typically, standard spectra require a resolution of 0.001 nm with a corrected wavelength
error of 0.003 nm [21]. For example, the significant difference in wavelength resolution
between the standard spectrum and the measured spectrum leads to low matching terms.
Furthermore, this approach does not cater to the detection of wavelength shifts across
various spectral ranges, a problem frequently encountered in field observations [17,24].

In field operations, a combined methodology is often used to assure instrument stabil-
ity: initial instrument pre-calibration with a standard light source, followed by ongoing
adjustments using the solar spectrum throughout continuous observation cycles [25].

We wondered if the merits of both approaches could be amalgamated to accommodate
complex operational conditions, sustain continuous automatic correction, and facilitate
band-specific inversions. Building upon existing calibration methods, we introduce an
innovative automatic solar spectrum wavelength calibration algorithm that reduces reliance
on external light sources and mitigates the dependency on standard light sources. Using
sequence matching technology [26], the algorithm is universally applicable, irrespective
of resolution, and is executed through a four-step procedure encompassing spectral pre-
processing, channel alignment, offset adjustment, and wavelength reconstruction. The
algorithm integrates sophisticated feature extraction [27–30] and channel segmentation
techniques, ensuring high precision and calibration accuracy devoid of elaborate external
reference light sources. Moreover, it offers the flexibility to adapt to varying scenarios. This
algorithm also seamlessly integrates as a compact plug-in within the DOAS observation
system to facilitate real-time, high-accuracy wavelength calibration and preemptive signal
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anomalies during field observations. Therefore, this research fosters interest in spectral
matching and data processing methodologies and propels technological advancements into
atmospheric environmental monitoring.

To corroborate the efficacy of our proposed method, we demonstrate the calibration
process for UV-Vis spectrometers, focusing on the UV-visible light spectrum. Section 2
elucidates the foundational principles and practical implementation of the passive DOAS
calibration algorithm; Section 3 conducts experiments to assess the algorithm’s sensitivity
to various parameters; Section 4 undertakes validation in a real-world field setting; and
Section 5 summarizes the algorithm’s features and its potential applications.

2. Passive DOAS Wavelength Automatic Calibration Algorithm
2.1. Definition of Passive DOAS Spectral Sequence Matching

Our passive DOAS system (Figure 1) captures solar radiation with a telescope, which
is then directed to a UV-Vis spectrometer via optical fibers. Our focus lies primarily on the
ultraviolet to visible light spectrum. Sunlight, after passing through the spectrometer’s slit,
produces a diffraction pattern that is captured and transformed into an electrical signal by a
two-dimensional scanning imager, producing an output of light intensity data. This spectral
information, once processed by an accompanying computer and software, allows for the
inversion of detailed atmospheric pollutant information. The amount of signal captured
by the spectrometer depends on channel number, with the essential data comprising light
intensity and wavelength. Light intensity is directly provided by a charge-coupled device
(CCD), while wavelength information requires calibration of the spectrometer’s channels.
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Figure 1. Passive differential optical absorption spectroscopy (DOAS) schematic and its spectral signals.

For clarity, we establish the following notations: Spectral signals are denoted as follows:

S = {(xi, wi, li)|x1 < x2 < · · · < xN}N
i=1 (1)

where S represents the signal sequence, xi are the channels, wi is the channel wavelength
information, li is the channel light intensity signal, and N is the number of channels in the
spectrometer. A key task of the passive DOAS system is to acquire accurate wavelength
signals (wi) for each channel.

The matching of spectral sequences (Figure 2) involves using a standard spectrum
as a wavelength reference, aligning the channels of the measured spectrum with those
of the standard spectrum through channel changes, and achieving optimal matching of
light intensity sequences. The wavelength back-calculation is then performed using the
wavelength calibration of the standard spectrum.
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Figure 2. Sequence matching problem for wavelength calibration.

Wavelength inversion can be performed via piecewise linear interpolation. Because
sunlight comprises continuous parallel beams entering the slit (D) collimatedly, the result-
ing diffraction angle θ adheres to Fraunhofer’s single-slit diffraction formula:

D sin θ = mλ (2)

For a slit width set at about 102 µm, we deduce that at the maximum diffraction
angle for each channel (P), there is a piecewise linear relationship between the ultraviolet
to visible light intensity and its corresponding central wavelength (λ). Therefore, wave-
length back-calculation for featured channel wavelengths can be achieved through linear
interpolation [26,27].

2.2. Wavelength Calibration Algorithm Based on Sequence Matching

The task of passive DOAS spectral wavelength calibration is to invert an unknown
channel wavelength function through a standard spectrum. We propose a passive DOAS
wavelength calibration algorithm based on sequence matching. The algorithmic process
comprises four main steps (Figure 3). The first step involves input and spectral prepro-
cessing, which includes feature extraction from the standard spectrum and the selection
of matching bands to enhance the algorithm’s discriminatory power, mainly to maximize
differentiation between non-matching and optimally matching channels. The second step
involves spectral channel matching, wherein wavelength shifts at the channel level are
corrected for two spectra. By interpolating the high-resolution spectrum to match the
number of channels and using a value function, we identify the best-matching channel for
the measured spectrum against a standard one. The third step addresses sub-channel level
spectral drift correction, aimed at refining calibration resolution and accuracy by splitting
channels identified in step two into adjacent virtual sub-channels for correction. The fourth
step involves wavelength interpolation and output; full-channel wavelength computation
and output are achieved through piecewise linear interpolation.
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Figure 3. Flow of passive differential optical absorption spectroscopy (DOAS) wavelength automatic
calibration algorithm based on sequence-matching.

Implementation of the algorithm hinges on three key techniques: feature extraction,
intensity interpolation (within and between channels), and optimal estimation. We explore
these parameters and conduct sensitivity experiments to ascertain optimal parameter
settings and to enhance the algorithm’s robustness.

The degree of sequence matching is determined using an evaluation function, which
guides the search for the most suitable match [27,31–33]. The measured spectrum can be
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matched to the characteristic bands of the standard spectrum by interpolation, allowing for
a discretized evaluation function. We use the following mean square error function:

Loss(l) =
1

e − s
×

e

∑
j=s

||lj − l̂j|| (3)

Interpolation enables matching any measured spectrum channel (s, e) to the chosen
feature band (p, q) of the standard spectrum, where l̂j represents the result of interpolating
the measured spectrum according to the interval of the reference standard lj, and (ws, we)
represents the wavelength function of the channel interval under the standard reference
spectrum. The spectral channel (p, q) matched to the measured spectrum can be used
to calculate the wavelength function, which, under the linearity of Equation (4), can be
expressed as follows:

wnew(x) =
we − ws

q − p
× (x − p) + ws (4)

The goal of the calibration algorithm inversion is to search for spectral band parameters
of the measured spectrum that minimize the value function, as follows:

(p, q) = argmin
(p,q)

Loss(ls→e) (5)

By solving the optimal match with Equation (5) (optimal parameter estimation of
DOAS channel) and back-substituting the bands with Equation (4) (wavelength interpola-
tion of channel), the wavelength calibration algorithm can be effectively implemented.

2.3. Algorithm Implementation and Parameter Setting

Implementation of the algorithm is predicated on the computation of the value func-
tion, which requires the spectral channel numbers of the test spectrum to match those of the
standard spectrum. This requirement dictates that the test spectrum must be interpolated to
conform to the number of characteristic bands in the standard spectrum. The spectral inter-
polation function must efficiently preserve the absorption structures in the solar spectrum
(a fundamental aspect of the entire inversion process). Because the choice of interpolation
function can significantly affect inversion outcomes, and given the specific absorption
characteristics of the Fraunhofer structures in the solar spectrum, broadband polynomial
fitting may attenuate these structures. Local interpolation is also prone to overfitting and
Runge’s phenomenon [30]. Consequently, we use a piecewise interpolation approach to
handle adjacent channels to ensure local absorption feature integrity. We examine three
typical piecewise interpolation methods: Lagrange interpolation (LI), Hermite interpolation
(HI), and spline interpolation (SI). Interpolation outcomes within adjacent channels are
represented as follows:

l̂(x) =



LI : ∑
j=i,i+1

ljLj(x)

HI : ∑
j=i,i+1

(ljhj(x) + l′j Hj(x)), x ∈ [xi, xi+1]

SI : ∑
j∈N+

ajSj(xj)

(6)

While all three interpolation techniques are fundamentally polynomial interpolations,
their fitting orders increase successively. Figure 4a presents a representation of these
interpolation methods applied to raw spectral data (spectra taken as hourly averages
over the observation period from 8:00–12:00 (L1) and 12:00–16:00 (L2) in the year 2023).
Differences among the three interpolations are relatively minor, and the value functions
remain consistent because of the closely packed spectrometer channel wavelengths and
the smooth nature of the intensity function. Hence, we opt for the simplest method
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(Lagrange linear interpolation) for channel interpolation to reduce algorithmic complexity
and enhance efficiency.
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and Spline interpolation (SI). And take two spectra and display their interpolation differences through
the loss function.

The solar spectrum’s functional relationships are inconsistent across small domains,
indicating that the choice of interpolation method exerts a small impact within a narrow
scope. Accordingly, we select linear interpolation for the task within these confined inter-
vals. Nonetheless, the span of the interpolation interval remains a critical consideration
because it can significantly influence interpolation accuracy and cause deviations from ac-
tual values. The results of a comparison between interpolated functions and genuine solar
spectrum values using standard high-resolution solar spectra are presented in Figure 5.
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different interpolation interval lengths.

Within an interpolation range of 0.02–1 nm, the solar spectrum’s performance
remains stable across a 200–1000 nm wavelength range (correlation coefficient > 0.95,
discrepancy < 4.3%). However, within the ultraviolet–visible (UV–visible) band, which is
crucial for the inversion of atmospheric pollutant absorption cross-sections, the interpo-
lation’s efficacy is markedly influenced by interval length. In this band, the correlation
reduces to 0.5–0.6, accompanied by a near 50% relative deviation. This observation un-
derscores the need to define an optimal interpolation interval length, which should not
exceed 0.1 nm to achieve a correlation of 0.83, and the relative error should be limited
to approximately 20%. Despite these findings, the impact of the interpolation interval
on spectral inversion should not be a major concern. The wavelength resolution of com-
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monly employed spectrometers typically falls below 0.1 nm, aligning with the prerequisites
delineated in this analysis.

From loss function orders of magnitude, differences between observation systems,
and the amplitude differences of spectra after feature enhancement are considered to be
important factors affecting the solution. Considering that two factors can affect the accuracy
and efficiency of the solving process, we standardize them to constrain them, as follows
(l, µl , σl , and ls represent the original intensity, mean, standard deviation, and normalized
intensity data of the spectrum):

ls =
l − µl

σl
(7)

Figure 6 illustrates the channel structures of spectra post-normalization, showing
increased consistency under the same bands. The standardization process weakens am-
plitude differences between observation systems and enhances the consistency of signal
changes. Value functions have been reduced from the order of 106 to 10−1, providing a
basis for the reliability of subsequent optimal estimation.
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In the wavelength calibration algorithm, the standard spectrum serves as a reference
for sequence matching of test spectra, and feature extraction and initialization are instru-
mental in maximizing the algorithm’s channel discrimination capability. We devise four
typical feature extraction techniques, as follows:

lF(x) =



ICM : l0(x)

PFM :

{
l0(xi), ∆l+ × ∆l− < 0

0, else

DGM : li − li−1

SEM − p f : ICM × PFM

SEM − dg : ICM × DGM

(8)

Feature extraction methods comprise the following: (1) an in-situ correlation method
(ICM), which retains the original intensity features and uses cross-correlation analysis
between standard and to-be-calibrated spectra; (2) a peak-fitting method (PFM) that focuses
on identifying the largest peak within the standard spectrum and extracting its character-
istics; (3) a domain gradient method (DGM) that derives gradient features from changes
in intensity signals across channels and uses these gradient sequences for matching; and
(4) structural enhancement methods (SEM) that enhance absorption structures through
non-linear transformations of the original signal. We use two enhancement approaches
based on gradient (SEM-dg) and peak value (SEM-pf). To ensure consistency of magni-
tudes and narrowing of the value function range for convergence in subsequent solutions,
features are uniformly normalized post-extraction.
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Figure 7 presents a comparison of the four feature extraction techniques against the
in-situ spectra, where normalized outcomes highlight significant feature enhancement in
contrast to the original spectra, with feature values amplified relative to the original signals.
Gradient-based extractions (DGM, SEM-dg) introduce negative gradients to expand the
spectral range and enhance trough structures. Techniques based on peak enhancement
(PFM, SEM-pf) capture spectral extremities, accentuating peak structures.
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The resolution of Equation (8) falls within the purview of optimal estimation theory,
which, for discrete data, is typically approached through iterative algorithms, exhaustive
methods, dynamic programming, or Nelder–Mead techniques, among others. These
methods differ in efficiency and performance and are also influenced by spectral structures.
This content is further discussed in Section 3.

3. Sensitivity Testing of Algorithm Parameters
3.1. Synthetic Spectra Based on the Standard Reference Spectrum

Parameter sensitivity experiments specific to an algorithm are performed to explore the
impacts of feature extraction, channel interpolation, spectral shift, normalization, and opti-
mization core processes in the algorithmic framework to derive the optimal configuration
for inversion.

Because intrinsic differences between instruments can interfere with parameter se-
lection, we opt to test parameters using synthetic data. Synthetic data, having a priori
properties, facilitates calibration testing under known actual wavelength conditions, lead-
ing to more accurate parameter choices. The optimal parameters obtained can then benefit
the calibration of subsequently measured spectra. This paper uses high-resolution solar
spectra with a resolution of 0.001 nm [21].

The definition of synthetic data involves using standard spectral data to transform
channels and synthesize new spectral data. According to Equation (3), both the standard
and test spectra received by the spectrometer have a linear wavelength-channel correspon-
dence, enabling linear transformations to be performed on the channels to generate new
test spectra. To simulate instrumental noise, we introduce Gaussian noise; the expression
for the synthetic spectrum is written as follows:

lnew
(x′) = l(Ax) + ε, A = (k, b), ε ∼ N(µ, σ2) (9)

Because passive DOAS typically uses UV-Vis spectrometers with detection bands
ranging from 200 to 400 nm and slit widths concentrated on the 10−1 to 10−2 µm scale, the
magnitude of the linear transformation slope is relatively small. We select a linear trans-
formation amplitude range of k ∈ (0.9, 1.1). After statistical analysis of the instrument’s
dark current, a Gaussian distribution within the interval lGuassian = l + ε × l, ε ∼ N(µ, σ2)
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is deemed to be suitable for this instrument. Figure 8 presents a comparison of synthetic
data and standard spectra, revealing significant differences at the channel level, with only
similar structures in the high signal-to-noise ratio central bands, yet with notable differ-
ences in light intensity distribution. At the wavelength level, synthetic spectra display
consistent distribution features with original spectra, indicating that synthetic spectra
maintain wavelength stability and channel variability.
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Figure 8. Comparison of synthesized and raw data, showing distribution characteristics through
two methods: channel (a) and wavelength (b).

3.2. Parameter Sensitivity Experiments

Parameter sensitivity experiments using synthetic data were performed. The algo-
rithm provides global results of the inversion process through a brute-force search. We
introduce substantial noise ( ε ∼ (0, 20)) to the signal and allow the computer to randomly
simulate the linear transformation matrix, enabling the algorithm to solve the synthetic
spectrum’s wavelength.

Figure 9 illustrates the algorithmic implementation process established through a
brute-force search, demonstrating that feature engineering ensures algorithm performance.
All provide optimal channel response relations that match randomly simulated matrices.
Specifically, feature extraction offers a significant gain to algorithm implementation, re-
sulting in more pronounced discrimination during the optimization process compared
with the original spectrum (ORI). The indistinct minimum value separation in the original
spectrum could lead to channel misalignment and erroneous inversion outcomes, which
feature extraction ameliorates. Peak-based feature extraction increases the differential to
about 0.8, while gradient-based methods only achieve 0.6. However, because structural
enhancement methods do not offer better discrimination than individual features, our
subsequent inversions use both gradient- and peak-based extraction methods.
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Figure 9. Spectral channel matching under different feature engineering: (a) loss of channel matching,
and (b), discrimination of minimum loss.

To investigate the impact of selected spectral bands on the algorithm, and following
feature extraction with DGM, the choice of calibration spectral bands affects the inversion
(Figure 10). Loss is maintained between 0.14 and 0.19, indicating that the inversion of the
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state matrix for linear transformations is unaffected by channel. This allows for correct
wavelength function recovery for each channel, with correlation coefficients of 1.0.
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Figure 10. Impact of inversion band on inversion results: (a) characteristic band and its loss, and
(b) channel response (retrieved linear vector: A).

Synthetic data experiments reveal the algorithm to effectively invert linear matrices.
However, this process omits the inversion of spectral drift, which is realized in the third
part of the algorithm. While spectral drift is common in practical inversion processes,
drift magnitude does not necessarily cause inter-channel differences, with the main offsets
still being slight inter-channel deviations (addressed in step two, Section 2.2). Therefore,
channel segmentation and interpolation are necessary to detect sub-channel level drift.
Assuming a spectral segmentation quantity of S, the theoretical maximum discrepancy in
spectral calibration would be (∆w/2S). We simulate various random channel values to test
algorithm performance.

Figure 11 presents the effectiveness of the wavelength drift calibration process, where
the algorithm can effectively retrieve randomly simulated offsets, and this inversion is
applicable to any feature engineering. By examining the absolute value of wavelength shift
in the range (−0.5, 0.5), the maximum value (0.04999456 of channel) is <∆w/2S, confirming
that the process can achieve any predetermined level of discrimination.
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Figure 11. Inversion of spectral drift under different feature engineering (simulated drift is created by
a computer with 2000 random offsets in (−1,1). To improve display, we chose a small segmentation
value of 10. However, in practical inversion, segmentation would be as high as possible to ensure
that any offset can be retrieved accurately).

Finally, we discuss the process of channel transformation in optimization of loss, which
is the method of optimization for optimal estimation. From Figure 9, feature engineering ef-
fectively secures the discrimination needed for the algorithm’s optimal matching. However,
it also produces an overall gradient that is less indicative of the original features, leading
to a lack of direction for iterative convergence in the optimization process. Therefore,
optimization of this algorithm requires a combination of the original spectrum features
for coarse iteration to acquire the possible regions of the optimal solution. Following
this, feature-extraction methods delineate detailed value function distributions within the
scope to solve for the optimum (gradient descent and traversal: GD-T). The GD-T method
has successfully narrowed the scope of a brute-force search, accelerating the algorithm’s
execution efficiency.
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We also investigated the selected traversal (ST) solution through the choice and opti-
mization of traversal channels. Figure 12 compares the implementation and efficiency of ST
and GD-T. The combination of iterative and brute-force search methods (GD-T) enhances
efficiency by 60.8% through iteration of original features to obtain the best solution, albeit
with the challenge of choosing iterative steps. The channel-selected algorithm (ST) im-
proves efficiency by 51.0% through channel pruning. We favor the ST-optimization method
because GD-T optimization depends heavily on the choice of step size, where unsuitable
steps can lead to lower efficiency and the potential for erroneous inversion. Because the
observation cycle usually takes a few minutes, the efficiency of both algorithms can ensure
self-correction within each observation cycle. Additionally, in continuous observations, the
range of wavelength drift is small, which greatly reduces the range traversed by the ST
algorithm, leading to higher efficiency.
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3.3. Comprehensive Inversion under Complex Transformations

We embarked on a complex synthetic data inversion experiment. Because the central
wavelengths of spectrometer imaging bands usually exhibited minor shifts while edge
channels showed greater deviations, we used a nonlinear function (a quadratic function
increasing from center to edge) for channel transformation of synthetic spectra. We also
incorporated substantial Gaussian random noise ( x ∼ N(0, 20)) to simulate the system’s
dark current noise. A spectral shift function, comprising a combination of quadratic and
sine functions, was also used to simulate minor spectral shifts. Figure 13a,b illustrate
the functions for these complex synthetic data variations. In our calibration process, we
used a segmented approach, conducting wavelength calibration every 100 channels. As
shown in Figure 13c, through dual corrections for channel and spectral shifts, we confined
the loss across the full bandwidth to within 1.13 × 10−29, with the central band, where
the signal-to-noise ratio was highest, having a loss of only 8.58 × 10−30. Sub-channel
interpolation significantly contributed to loss reduction, further decreasing it by 1.8–9.2%.
Figure 13d compares the channel transformation functions derived from our algorithm with
the original functions, with maximum and minimum errors < 0.0032 nm and <0.0004 nm,
respectively. Compared to a standard spectrum resolution of 0.01 nm, these inversion results
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achieved an average channel wavelength error < 10% of the resolution, indicating that our
algorithm’s performance was excellent for addressing complex calibration challenges.
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(c) Comparison between synthesized data after wavelength calibration and the standard reference
spectrum. (d) The loss function is solved through the sequence matching algorithm.

Our parameter sensitivity experiments for our algorithm established the optimal in-
version configuration. We use a differential gradient method (DGM) for feature extraction,
set the segmentation for spectral shift parameters to 1000, and optimize the channel trans-
formation using the ST method to ensure spectral calibration accuracy. The efficiency of
the algorithm guarantees that spectral self-calibration can be achieved within an observa-
tional cycle.

4. Application of Wavelength Calibration in Practical Remote Sensing

Following parameter sensitivity analyses, field-based remote sensing experiments
were performed. Six solar-spectral-detection instruments were deployed across four cities
(Figure 14: Lu’an, Hefei, Nanjing, and Shanghai) within the Yangtze River Delta region,
China. These sites were chosen for their representation of diverse urban and rural land-
scapes, with distances between them ranging from 72 to 473 km. The instrumentation suite
comprised a MAX-DOAS, Mobile MAX-DOAS, and CE-318 solar photometer, each offering
unique spectral sampling capabilities.

Significant spectral sampling differences exist among instrumentations. The MAX-
DOAS instrument captured solar spectra across various observational elements by adjusting
the telescope’s elevation angle (1◦, 2◦, 3◦, 4◦, 5◦, 6◦, 8◦, 15◦, 30◦, 90◦), conducting spectral
sampling (280–430 nm) in a stepwise fashion to ensure consistent imaging areas across all
observational elements. Mobile MAX-DOAS used detectors with multiple elevation angles
and optical fibers, which simultaneously transmit spectral signals to different regions of a
two-dimensional CCD (1024 × 2048 pixels). The CE-318 uses a sub-band sampling method,
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selecting specific bands (for example, 340, 380, 440, 500, 670, 870, 1020 nm) to ascertain
aerosol optical depth (AOD).
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4.1. Wavelength Calibration under Different References

We calibrate wavelength and validation efforts using four passive DOAS instruments
in four cities. Calibration used standard solar spectra (with a resolution of 0.01 nm) and
standard mercury-lamp sources as references.

Our validation process is depicted in Figure 15. The distribution of average obser-
vations in 2023 for these instruments across the four cities, viewed from a channel per-
spective, is depicted in Figure 15a. Significant differences in wavelength functions among
instruments existed (each observed different wavelength ranges). Hence, calibration was
performed focusing on the central channel (500–1500 pixels). Figure 15b depicts the results
of wavelength calibration for these spectrometers using a standard mercury-lamp source,
identifying the wavelength ranges of M1 and M2 as approximately 290–390 nm and M5
and M6 as 280–420 nm. A subplot provides the distribution of values in the normalized
340–360 nm band, showing good consistency. These results also serve as true wavelength
functions to compare with subsequent calibration outcomes.

Figure 15c presents calibration results using standard solar spectra and compares them
with results from (b), calculating the maximum wavelength error across channels. Using
solar spectra as a reference, the spectral inversion error was <0.01 nm, indicating that the
sequence-matching algorithm achieved a calibration resolution below the reference spec-
trum resolution. Instruments with similar detection bands have similar detection accuracy.
M1 and M2, with narrower wavelength ranges, perform better because of reduced influence
from the interpolation function (with errors < 4 × 10−4 nm). Figure 15d compares the
pairwise calibration among instruments against actual results and reveals the algorithm’s
consistency. No anomalies occur when the reference spectrum matches the spectrum
under test. However, the pairwise calibration process is not entirely reversible, mainly
because of the selection of different channel wavelengths. This outcome suggests that using
higher-resolution spectra for interpolation is beneficial and can further reduce error.



Remote Sens. 2024, 16, 1485 14 of 18
Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 15. Calibrations performed in Lu’an, Hefei, Nanjing, and Shanghai cities, Yangtze River Delta, 
using mercury-lamp and standard-solar spectra as references for passive DOAS calibration. (a) Sig-
nals from MAX-DOAS, Mobile MAX-DOAS, and CE-318 solar photometer instruments, channel 
perspective. (b) Production of true spectra: signals under wavelength perspective post mercury-
lamp calibration, with normalized comparison provided for the 340–360 nm range. (c) Calibration 
conducted using standard-solar spectra, with error analysis compared to true spectra. (d) Post-cali-
bration error comparison for each instrument with the actual wavelength, following pairwise cali-
bration among instruments. 

4.2. Wavelength Calibration of Mobile MAX-DOAS 
Mobile MAX-DOAS was originally developed to address two major challenges in 

stereoscopic monitoring of atmospheric pollutants from mobile platforms: (1) Mobile-
DOAS can typically observe at a single angle at any time, leading to a lack of three-dimen-
sional distribution information about point sources and only vertical column densities 
within the observed area; and (2) the lengthy observation cycle of MAX-DOAS, which is 
inadequate for monitoring rapidly moving platforms. 

Mobile MAX-DOAS uses telescopes fixed at multiple elevation angles (with the M4 
model setting angles at: 1°, 2°, 3°, 4°, 5°, 6°, 8°, 15°, 30°, and 90°) to receive sunlight, which 
is then transmitted through respective optical fibers to a high-resolution (0.03 nm) two-
dimensional spectrometer (M4: 1024 × 2048) for simultaneous imaging. However, this 
leads to significant differences in the offsets of different observation channels, making data 
assimilation and wavelength calibration for Mobile MAX-DOAS challenging. Conven-
tional calibration methods struggle to meet the demands for multi-channel, multi-offset, 
high-resolution, and real-time rapid calibration of Mobile MAX-DOAS. 

Our sequence matching algorithm is basically a data-assimilation method that solves 
this practical remote sensing challenge. Table 1 presents calibration results based on pas-
sive DOAS (M2). It reveals that, despite significant differences in zenith angles, the inver-
sion results are highly stable. Calibration results have a maximum error < 0.01 nm com-
pared with standard mercury-lamp calibration wavelengths, with central band errors as 
low as 0.0016 nm. This clearly meets the resolution requirements for absorption cross-
section fitting in spectral inversion (typically 0.5 nm). Additionally, the algorithm differ-
entiates the wavelength offset differences across 10 elevation angles, clearly illustrating 

Figure 15. Calibrations performed in Lu’an, Hefei, Nanjing, and Shanghai cities, Yangtze River
Delta, using mercury-lamp and standard-solar spectra as references for passive DOAS calibration.
(a) Signals from MAX-DOAS, Mobile MAX-DOAS, and CE-318 solar photometer instruments, channel
perspective. (b) Production of true spectra: signals under wavelength perspective post mercury-
lamp calibration, with normalized comparison provided for the 340–360 nm range. (c) Calibration
conducted using standard-solar spectra, with error analysis compared to true spectra. (d) Post-
calibration error comparison for each instrument with the actual wavelength, following pairwise
calibration among instruments.

4.2. Wavelength Calibration of Mobile MAX-DOAS

Mobile MAX-DOAS was originally developed to address two major challenges in
stereoscopic monitoring of atmospheric pollutants from mobile platforms: (1) Mobile-
DOAS can typically observe at a single angle at any time, leading to a lack of three-
dimensional distribution information about point sources and only vertical column densi-
ties within the observed area; and (2) the lengthy observation cycle of MAX-DOAS, which
is inadequate for monitoring rapidly moving platforms.

Mobile MAX-DOAS uses telescopes fixed at multiple elevation angles (with the M4
model setting angles at: 1◦, 2◦, 3◦, 4◦, 5◦, 6◦, 8◦, 15◦, 30◦, and 90◦) to receive sunlight,
which is then transmitted through respective optical fibers to a high-resolution (0.03 nm)
two-dimensional spectrometer (M4: 1024 × 2048) for simultaneous imaging. However, this
leads to significant differences in the offsets of different observation channels, making data
assimilation and wavelength calibration for Mobile MAX-DOAS challenging. Conventional
calibration methods struggle to meet the demands for multi-channel, multi-offset, high-
resolution, and real-time rapid calibration of Mobile MAX-DOAS.

Our sequence matching algorithm is basically a data-assimilation method that solves
this practical remote sensing challenge. Table 1 presents calibration results based on passive
DOAS (M2). It reveals that, despite significant differences in zenith angles, the inversion
results are highly stable. Calibration results have a maximum error < 0.01 nm compared
with standard mercury-lamp calibration wavelengths, with central band errors as low as
0.0016 nm. This clearly meets the resolution requirements for absorption cross-section
fitting in spectral inversion (typically 0.5 nm). Additionally, the algorithm differentiates
the wavelength offset differences across 10 elevation angles, clearly illustrating the offset
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disparities between central and edge channels. This demonstrates the algorithm’s broad
applicability for complex high-resolution spectral correction and assimilation.

Table 1. Wavelength calibration of Mobile MAX-DOAS based on the MAX-DOAS spectrum.

EAs(θ) 1◦ 2◦ 3◦ 4◦ 5◦ 6◦ 8◦ 15◦ 30◦ 90◦

Cha.s.pixel 502 502 502 502 501 501 501 501 502 502
Cha.e.pixel 1226 1226 1226 1226 1226 1225 1225 1226 1226 1226

Drifts.sub-pixel 0.234 0.142 0.038 0.129 0.261 0.355 0.674 0.582 0.632 0.173
Drifte.sub-pixel 0.062 0.615 0.348 0.257 0.199 0.652 0.544 0.135 0.266 0.012

Diff.MAX/10−3 nm 6.4 7.2 5.3 4.3 1.6 2.5 1.9 2.8 4.6 3.9
Ref. M2, Cha. = (500, 1500), Wave. = (317.7798, 361.6379), S = 1000.

When encountering higher-resolution challenges, only two aspects need to be ensured:
(1) the standard reference spectrum must be accurate, and (2) interpolation should be
performed from a lower to a higher resolution using the standard spectrum as a reference.

4.3. Comparison of Spectral Inversion Products

We expand the application scope of our algorithm beyond spectral calibration verifica-
tion to include data assimilation of spectra from diverse sources, corroborated by results
from other monitoring devices. Using data from MAX-DOAS (M2) to conduct spectral
assimilation for Mobile MAX-DOAS (M4), we map the spectral bands of Mobile MAX-
DOAS onto those of MAX-DOAS to achieve congruent distributions. Spectra with matched
resolutions were then processed through QDOAS inversion software (version 3.2) to extract
AOD [31,32] and the temporal sequence of the pollutant component NO2. Cross-validation
among M2–4 instruments was performed to affirm method viability. Outcomes, depicted
in Figure 16, reveal that post-normalization using the calibration algorithm, the spectral
consistency between M2 and M4 for identical spectral bands is high. Results, post-fitting
through QDOAS [33], also demonstrate significant coherence, with the dSCD inversion
for NO2 exhibiting a consistency of 0.996 and a slope of 0.966. The O4 dSCD inversion
results have a correlation of 0.994 and a slope of 0.974, and the AOD comparison with
CE-318 (360 nm) yields a correlation of 0.869. These findings indicate that the automated
calibration algorithm can assimilate spectral data across instruments of varying resolutions.
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5. Conclusions

Our research was driven by the need to develop a channel wavelength calibration
algorithm with broad applicability for automatic spectral calibration within passive DOAS
systems. The algorithm reduces the resolution requirements of standard spectra and
minimizes dependency on these resolutions through sequence matching. This method
utilizes Fraunhofer absorption features in the solar spectrum for wavelength inversion. It
achieves wavelength calibration of the measured spectra. This is performed by searching
for the best match with standard spectral channel sequences.

The passive DOAS wavelength auto-calibration algorithm encompasses data pre-
processing, spectral channel matching, spectral shift correction, and wavelength function
interpolation. Sensitivity tests with synthetic spectra optimized the selection of key param-
eters. Research on feature extraction demonstrated that data processing based on peaks
or gradients enhanced the clarity of optimal matches by 20–40%, with data normalization
further improving feature extraction and loss convergence. In spectral channel matching,
we concluded that inversion based on any characteristic channel correlated perfectly (1.0)
with synthetic data, validating the effectiveness of feature extraction spectral processing
methods in channel matching. For spectral shift correction, the introduction of segmented
parameters (S) significantly reduced the variance between channel wavelength functions,
enhancing wavelength detection precision by approximately 5%. Additionally, we explored
optimized channel conversion strategies, where a proposed GD-T algorithm, combining
gradient descent and local traversal, improved efficiency by 61% over global search solu-
tions, and the ST (Spectral Transformation) strategy further increased efficiency by 51%.
These sensitivity experiments confirmed our algorithm’s effectiveness in synthetic data
wavelength inversion, verified through wavelength calibration under complex scenarios
with fully non-linear transformations, achieving inversion errors < 0.01 of the reference
spectrum resolution.

After obtaining optimal parameter configurations, we performed extensive remote-
sensing validation over large areas, with cross-validation among instruments in four cities.
Field validation of the algorithm’s measured spectra was performed using passive DOAS
instruments of various resolutions, achieving self-calibration and inter-calibration of wave-
lengths and verifying the use of mercury-lamp spectral lines. Results indicate that our
algorithm significantly captures strong Fraunhofer structures in the solar spectrum, achiev-
ing precise calibration under various reference spectra. Moreover, the algorithm facilitated
simultaneous calibration of multiple channels in Mobile MAX-DOAS with a unified refer-
ence spectrum, achieving ultra-high resolution and multi-channel precise calibration. The
algorithm’s inversion results for different elevation angles were stable, with mercury-lamp
calibration errors < 0.01 nm. We also explored the algorithm’s data assimilation capabilities.
By standardizing the wavelength distribution of two instruments using standard spectra
and then inverting the spectra, aerosol states and pollutant gas information were obtained.
The sequence matching-based algorithm effectively implemented spectral assimilation,
with post-assimilation spectral inversion products reaching a correlation > 0.99 and vali-
dation against CE-318 also achieving a correlation > 0.86. These findings underscore the
applicability, accuracy, and superiority of our algorithm. We intend to further explore the
inversion resolution limits of the algorithm and delve deeper into its efficiency, striving to
contribute to the field of remote sensing.
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