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Abstract: This paper focuses on the problem of dynamic target search in a curve-shaped area by
an unmanned aerial vehicle (UAV) with an optical camera. Our objective is to generate an optimal
path for UAVs to obtain the maximum detection reward by a camera in the shortest possible time,
while satisfying the constraints of maneuverability and obstacle avoidance. First, based on prior
qualitative information, the original target probability map for the curve-shaped area is modeled by
Parzen windows with 1-dimensional Gaussian kernels, and then several high-value curve segments
are extracted by density-based spatial clustering of applications with noise (DBSCAN). Then, given
an example that a target floats down river at a speed conforming to beta distribution, the downstream
boundary of each curve segment in the future time is expanded and predicted by the mean speed. The
rolling self-organizing map (RSOM) neural network is utilized to determine the coverage sequence of
curve segments dynamically. On this basis, the whole path of UAVs is a successive combination of the
coverage paths and the transferring paths, which are planned by the Dubins method with modified
guidance vector field (MGVF) for obstacle avoidance and communication connectivity. Finally, the
good performance of our method is verified on a real river map through simulation. Compared
with the full sweeping method, our method can improve the efficiency by approximately 31.5%. The
feasibility is also verified through a real experiment, where our method can improve the efficiency by
approximately 16.3%.

Keywords: dynamic target search; unmanned aerial vehicle (UAV); curve-shaped area; curve segment;
coverage path; transferring path

1. Introduction

Over the past few decades, unmanned aerial vehicles (UAVs) have been increasingly
used in many applications, including mapping [1], surveillance [2], and tracking [3]. Com-
pared with ground vehicles or surface vehicles, UAVs have better maneuverability, wider
field of view (FOV), and less restriction by terrain [4], and thus they are very suitable for
target search missions. This paper particularly focuses on using UAVs to search a dynamic
target located in a curve-shaped area, e.g., river, coastline, road, etc. Assuming that a
person falls into a flowing river, their probability of survival will decrease rapidly over time.
In addition, because the person flows downstream by the water current, the dynamically
changing information of the person will make the search and rescue mission more difficult.
Therefore, UAVs need to cover and detect the area of interest as quickly as possible. The
dynamic target search problem here can be formulated as optimizing the searching path of
UAVs, which aims to obtain the maximum detection reward in the shortest possible time
under the constraints of UAV maneuverability and obstacle avoidance. The work in [5]
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proposes two methods, namely Equivalent Area Iteration (EAI) and Probability Estimation
Diffusion (PED), for situations where environmental information is relatively accurate with
certain errors, respectively. However, there is no specific quantification of the relatively
accurate range of environmental information. It should be noted that, although the target
search problem also needs to plan the UAV path, it is quite different from the traditional
path planning problem between the starting point and destination for autonomous nav-
igation. In [6], a new DAALO method based on natural-inspired ALO is proposed to
solve the problem of UAV route planning. The DAALO method can plan flight paths
faster and smoother, but it is only applicable to single aircrafts and has not been extended
to multi-UAVs.

Researchers have already presented various methods for searching targets located in
a 2D wide area. For static target search, the work in [7] proposes a two-step search and
investigation algorithm for multi-UAV systems for searching forest fires. For dynamic
target search, the work in [8] proposes a search improvement algorithm based on the theory
of dynamical system traversal for searching drift areas on the ocean surface. Although the
proposed method improves the search efficiency by an order of magnitude, this improve-
ment is achieved by abandoning the optimal utilization of fuel and resources. Without
any priori information, UAVs can use a geometry method or a completely random way to
perform search missions. In [9], the researchers propose a progressively spiral-out-based
method for UAV searching for ground moving targets, but the method itself requires a
sensor detection probability of 100%. In [10], an online distributed algorithm is proposed
for UAV search of targets, taking into account energy loss, but the accuracy of the algorithm
will decrease as the search area expands. The work in [11] proposes a lost target search
algorithm based on recursive regional clustering and target trajectory prediction in marine
environments. However, the efficiency of these patterns will be low if some prior infor-
mation is already known in a complex search problem. In this case, graph-based heuristic
methods (such as biologically inspired swarm intelligence [12], the greedy method [13,14],
receding-horizon approach, coverage control method [15], mixed-integer linear program-
ming [16], and reinforcement learning) are widely used, relying on various graphs (such
as a target probability map, information density map, pheromone map). For example,
based on the target probability map of the search area, our previous work [14] models the
Glasius bio-inspired neural network to solve the target search problem and introduces
the Gaussian mixture model (GMM)-based global guidance mechanism to improve the
searching efficiency. The different flight heights of UAVs can also affect the resolution
of camera sensors, so the work in [17] proposes a method for determining the optimal
height of UAVs by considering their power consumption, high-value areas, and image
resolution. After determining the altitude, the motion trajectory of the UAV only considers
a 2D wide space.

As mentioned above, the existing searching methods mainly focus on target search
mission in a 2D wide space, where UAVs can cover the entire region completely or detect
the area of interest hierarchically according to prior information. This paper, however,
emphasizes a dynamic target located in a curve-shaped area, which can be modeled as
abstract curves subjected to geographical constraints resulting in the limitation of the
UAV’s coverage motion. Hence, the existing 2D searching methods cannot be utilized for
this mission directly [18]. In fact, this mission is similar to the road-network search path
planning problem to some extent [19], but the existing methods mainly guide UAVs to cover
the areas of interest without any quantified heuristic architecture [20,21]. Inspired by the
hierarchical heuristic architecture for target searches in a 2D wide area, our previous work
has achieved the coverage search of stationary targets in a river by extracting and sorting
some high-value curve segments [20]. Although the scenario is simple, this proposed
scheme has shown its huge potential and high efficiency in searching targets located in a
curve-shaped area.

Based on the above analysis, a three-layer heuristic framework is used to solve the
dynamic target search problem in a curve-shaped area. First, based on prior information,



Remote Sens. 2024, 16, 1502 3 of 16

the curve-shaped area should be modeled and several high-value curve segments can
be extracted. Second, the optimal visiting sequence of segments for UAVs should be
determined. Third, the whole path of the UAV is planned by combining transferring paths
and coverage paths. For the first step, the traditional distance-based clustering methods,
such as GMM or K-means [21], require some knowledge in advance of the number of
clusters and can only handle regularly shaped clusters. Density-based spatial clustering of
applications with noise (DBSCAN) is a density-based clustering method widely used in
2D clustering problems, and it does not require any settings of the number of clusters and
can discover arbitrarily shaped clusters [22]. For the second step, it leads to a variant of the
well-known traveling salesman problem [23], and many methods have been proposed for
this, e.g., approximation insertion, generalized solution [24], self-organizing map (SOM)
neural network [25]. But, these methods may not be suitable for the target search problem
in a dynamically changing area. For the third step, the constraints of UAV maneuverability
and obstacle avoidance need to be considered at the same time in a complex scenario.

There has been a lot of research on the autonomous control of UAVs in regular
cases [26,27]. This paper aims to solve the problem of dynamic target searching in a curve-
shaped area, which can be modeled as a path planning problem for UAVs to obtain the
maximum detection reward. The main contributions are as follows.

(1) Based on the original target probability map generated by Parzen windows with
1D Gaussian kernels, several high-value curve segments can be extracted by DBSCAN.

(2) Considering the dynamic characteristics of drifting targets, the boundary of each curve
segment is predicted, and the coverage sequence of curve segments is dynamically
determined by the rolling SOM (RSOM) neural network.

(3) The whole path of UAVs is a successive combination of coverage paths and trans-
ferring paths planned by the Dubins method with modified guidance vector field
(MGVF) satisfying the constraints of maneuverability and obstacle avoidance.

The paper is organized as follows. Section 2 gives the problem formulation. Section 3
proposes the three-layer hierarchical heuristic architecture. Section 4 shows the experimen-
tal results. Section 5 draws the conclusion.

2. Problem Formulation

This paper assumes that an UAV equipped with a gimbaled camera performs the
search task and takes a water falling event as an example that a person falls into a river
and waits to be rescued. The real position of the person is undetermined. As time passes,
the area of interest will gradually expand since the person may be carried downstream by
the current, while the person’s probability of survival will decrease rapidly. Therefore, the
UAV must detect the area of interest as quickly as possible to find the person.

2.1. Simplified UAV Model

Suppose that the UAV flies at a fixed altitude, and its kinematic model can be described by
.
x = v cos φ
.
y = v sin φ
.
φ = ω

(1)

where (x, y)T is the inertial position, v the speed, φ the heading angle, and ω the turning
rate with constraint |ω| ≤ ωmax. In order to ensure the confidence of target detection
and decrease the cruising time, the flying speed when detecting the target (i.e., the UAV
is directly covering the curve-shaped area) is vcov = vmin, and in other cases it is the
maximum cruising speed vcru = vmax. Here, the change between vcov and vcru is ignored.
In addition, this paper assumes that the UAV’s maneuverability can satisfy the geographical
curvature of the curve-shaped area, and thus only the maneuverability during cruising is
considered with the minimum turning radius Rmin = vcru/ωmax.
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2.2. Environment Model

This paper takes a portion of the Weihe river in Weinan City, Shaanxi Province, China,
as an example of a curve-shaped area, as shown in Figure 1. Usually the detection range
of the camera on a UAV is larger than the width of river, so the river can be modeled as
a curve with the appropriate resolution. From Figure 1b, the whole curve can be divided
into M = L/Ls cells uniformly with respect to the forward distance s, where L is the total
length of the curve and Ls is the cell length. Thus, the 2D position xm = (xm, ym)

T of cell m
can be reduced to 1D expression by sm = m · Ls. This paper utilizes the target probability
map as the basic information for target searching, which will be described in Section 3.
Each cell has a probability p(xm) ∈ [0, 1] determined by prior information and it represents
the detection payoff of this cell. Additionally, if only one target exists, the volume of the
whole probability map is equal to 1:

M

∑
m=1

p(xm) = 1 (2)

We define z1:t
m =

{
z1

m, . . . zt
m
}

as the historical detection events of cell m at time t. Using
Bayes’ rule, the target probability p

(
xm
∣∣z1:t

m
)

after detection can be updated by

p
(

xm

∣∣∣z1:t
m

)
= λ · p

(
xm

∣∣∣z1:t−1
m

)
·
(

1 − g
(
zt

m
∣∣xm
))

(3)

where p
(
xm
∣∣z1:t−1

m
)

at the initial time t = 1 is equal to the prior value of p(xm),
λ = 1/∑M

m=1
(

p
(
xm
∣∣z1:t−1

m
)
·
(
1 − g(zt

m
∣∣xm)

))
is a normalization parameter, and g(zt

m
∣∣xm)

is the detection confidence related to the observation ability of the camera. This paper
assumes the sensor performance to be perfect, i.e., when the UAV completes the coverage
of cell m at time t, a new observation occurs with g(zt

m
∣∣xm) = 1 and zt

m = 1, and otherwise
g(zt

m
∣∣xm)= 0 with zt

m = 0.
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In addition, since the target drifts downstream by the water current in the river, the
prior target probability map will be changed as well. This paper uses the beta distribution
to describe the probability of drifting speed:

f (vt) =
c

vtmax

(
vt

vtmax

)a−1(
1 − vt

vtmax

)b−1
(4)

where vt ∈ [0, vtmax] denotes the drifting speed of the target, and
a, b, c = (a + b − 1)!/((a − 1)!(b − 1)!) are parameters of beta distribution. Based on the
Chapman–Kolmogorov equation, the target probability can further be predicted by

p
(

xm

∣∣∣z1:t
m

)
=

M

∑
l=1

(
p
(

xl

∣∣∣z1:t
l

)
· f l(vt)

)
(5)

where the value of vt is determined by the transition from any cell l to the current cell m,
and f l(vt) is an integration of f (vt) in the relevant cell. This prediction model has good
convergence and low complexity.

2.3. Problem Description

The single conditional probability of non-detection for UAVs can be obtained by the
volume of multiplying the target probability and the sensor non-detection confidence:

Dt
=

M

∑
m=1

(
p(xm|z1:t−1

m ) ·
(
1 − g(zt

m|xm)
))

(6)

Thus, the probability that the target has been found so far, i.e., the cumulative detection
reward, is given by

D1:t = 1 −
t

∏
i=1

Di (7)

It should be noted that Dt
< 1 and D1:t → 1 with t → ∞ . Next, we define ζ as a

candidate path. Hence, the problem of dynamic target search can be formulated as finding
the optimal path ζ∗ attached with the maximum searching efficiency (i.e., the maximum de-
tection reward in the shortest possible time) under the constraints of UAV maneuverability
and obstacle avoidance:

ζ∗ = argmax
ζ

(
D1:t(ζ)/t

)
,

s.t. ζ ∩ SF = ∅ , R ≥ Rmin
(8)

where SF denotes the obstacle region, and R is the turning radius of the UAV.

3. Three-Layer Hierarchical Heuristic Architecture

This paper utilizes a three-layer heuristic architecture to solve the dynamic target
search problem in a curve-shaped area, as shown in Figure 2. First, the original target
probability map for the curve-shaped area is generated by the Parzen windows method,
and on this basis, some high-value curve segments are extracted by DBSCAN preliminarily.
Second, given an example of a drifting target along the river, the downstream boundaries
of curve segments in the future time can be updated and predicted by the mean speed
of beta distribution, and the coverage sequence of these high-value curve segments is
determined by RSOM dynamically. Third, the transferring path between curve segments
(or the transferring path between the starting point and curve segment) is planned by
the Dubins method with MGVF, and thus the whole path is obtained by connecting the
transferring paths and the coverage paths (i.e., the curve segments) successively.
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Figure 2. Three-layer heuristic architecture.

3.1. Preliminary Processing of Curve-Shape Area
3.1.1. Generation of Original Target Probability Map

In most cases, there usually exists prior qualitative information about the target to be
searched, which may be obtained from historical incidents, reports from commons, infer-
ence from experts, etc. Suppose there are J discrete data and each one Q =

{(
sj, γj, λj

)}
,

j ∈ {1, . . . J} has three attributes, i.e., the position sj, the reliability γj, and the accuracy λj.
As seen in Section 2.2, the position sj can be reduced to a 1D expression with respect to
forward distance. The reliability γj ∈ [0, 1] denotes the confidence of this prior information.
The inverse of accuracy λj denotes the possible region around sj. Thus, a standard 1D Gaus-
sian function G

(
sj, 1/λj

)
with reliability γj can be used to describe this prior information.

Given that the prior information matches the Gaussian distribution, it is appropriate to
utilize Parzen windows with Gaussian kernels to build the original target probability map.
Because the amount of the prior qualitative data is usually insufficient, each item should
first be expanded to Ej = Emaxγj samples from its corresponding Gaussian function. Then,
the original target probability map can be generated by summing the Gaussian kernels of
all the samples:

p(s) =
1
E

E

∑
e=1

Ge(se, σ) (9)

where E = ∑J
j=1 Ej denotes the number of samples after expansion, se the position of each

sample, σ the standard deviation for each Gaussian kernel calculated by

σ = 0.5E−1/5min(σstd, IQR/1.34) (10)

where IQR denotes the difference between the 75th and 25th percentile of samples, and
σstd the standard deviation of samples. In addition, the continuous form of (9) should be
discretized into p(xm) for ease of processing.

3.1.2. Extraction of High-Value Curve Segments by DBSCAN

DBSCAN is a density-based clustering algorithm [24] that is suitable for extracting
high-value curve segments from the original target probability map. First, we choose
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N points (N ≥ M) to form the training samples. To reflect the prior information objectively,
the number of points placed in the center of each cell is

Nm = [p(xm) · N] (11)

where the symbol [ ] denotes the rounding operation. Additionally, the number of points
in some cells needs to be fine-tuned to satisfy ∑M

m=1 Nm = N.
In DBSCAN, we define Rη as the neighborhood radius for each cell in the 1D space,

which is an integer multiple of Ls. We define minPts as the minimum number of points in
the neighborhood. The algorithm works as follows. First, an unmarked cell m from M cells
is selected randomly. If there exists at least minPts points in the neighborhood of cell m,
this cell is marked as a core one. Then, all the cells in the neighborhood of cell m are added
to the same high-value segment. These steps are repeated until all the cells have been
visited. Those cells which are not core cells but fall within the neighborhood of a core cell
are considered as boundary cells, since they are not sufficient to form a segment but can be
assigned to another segment. Figure 3 illustrates the principle of the DBSCAN algorithm
in a 1D space, where the red core cells and the blue boundary cells form a cluster. Finally,
each cluster corresponds to an extracted high-value curve segment.

Figure 3. The principle of DBSCAN algorithm in 1D space.

3.2. Coverage Sequence of Curve Segments
3.2.1. Prediction of Downstream Boundary by Beta Distribution

The geographical restriction for the target makes only the coverage motion of the UAV
along the curve be valuable. Thus, the UAV should cover and detect the high-value curve
segments in an optimal order to obtain the maximum detection reward in the shortest
time. However, the target probability map is dynamically changing by (4) and (5), and
consequently the extracted high-value curve segments are changing as well. Although the
DBSCAN method could be used repeatedly to update the curve segments at each moment,
it is too time consuming. Here, this paper takes an example of a drifting target at the speed
conforming to beta distribution in a river and utilizes its dynamic characteristics to update
and predict the boundaries of the original high-value curve segments directly.

As described in (4), although the speed of a dynamic target is uncertain at each
moment, its mean speed tends to be constant:

vmean =
avtmax

a + b
(12)

Considering the dynamic characteristics of a drifting target, the upstream boundary of
the curve segment is unchanged, but the downstream boundary will extend a distance of
mean speed multiplied by time.

3.2.2. Sorting Curve Segments by RSOM

Unlike most neural networks, the SOM neural network only contains an input layer
and output layer [28]. In this paper, each boundary point of the high-value segment
denotes a neuron of the input layer. The starting point of the UAV is also an input neuron.
Additionally, to ensure the region constraints, i.e., the upstream and downstream boundary
points of the same segment are continuously accessed by the UAV, we add some virtual
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points evenly distributed in each curve segment as neurons of the input layer. The number
of virtual points inserted in each segment is

ζk =
[
ζ · Lk

/
∑K

k=1 Lk

]
(13)

where ζ is a constant denoting the total number of virtual points, Lk denotes the length
of a curve segment, and K is the number of curve segments. Each neuron of the input
layer is denoted by its coordinates Pk = (xk, yk)

T, k ∈ {1, . . . , ζ + 2K + 1}. The spatial
relationship of these ζ + 2K + 1 points is the pattern that the neural network needs to
learn, and finally a circular topological structure of neurons ch, h ∈ {1, . . . , H} in the output
layer will be obtained. It is noticed that H is usually much larger than ζ + 2K + 1, and the
initial positions of output neurons are set randomly. Because the upstream/downstream
boundary points of the same curve segment can be seen as adjacent with the help of virtual
points, and each output neuron ch gets close to any one input point Pk gradually, the final
circular topological structure with neuron connections can reflect the coverage sequence of
curve segments, as well as the entry/exit point for each curve segment. Figure 4 illustrates
the structure of the SOM, where each neuron of the output layer is connected with all the
neurons of the input layer.

Figure 4. The structure of SOM neural network.

In this paper, three evaluation factors including the transferring time, the coverage
time, and the reward are used in the winner selection step of the SOM framework. The
shortest transferring path between the input neuron and output neuron under the constraint
of UAV maneuverability can be obtained using the Dubins method, where the heading of
input/output neuron is determined by the geographical restriction. Then, the transferring
time can be calculated by

TPk→ch =
dPk→ch

vcru
(14)

where dPk→ch denotes the length of Dubins path. As the UAV should cover the corre-
sponding curve segment after arriving at the boundary point, the coverage time can be
calculated by

Th =
Lh

vcov
(15)

and Lh denotes the length of the curve segment which ch is closest to. And the reward of
the curve segment is the sum of the target probability of cells contained in this segment:

Rh = ∑xm∈Sh
p(xm) (16)

where Sh denotes the curve segment. Therefore, for any input neuron Pk, the winner neuron
of the output layer can be selected by

cwin = arg max
h∈{1,...,H}

Rh
TPk→ch + Th

(17)
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Then, the neighbor neurons of cwin can be updated by

c′h = ch + δt · exp
(
−d2

h/σt2
c

)
· (cwin − ch) (18)

where dh is the distance between the winner neuron and the neighbor neuron, δt is a
learning factor, and σt

c is the radius of neighborhood decayed over iteration:

δt = γδ · δt−1

σt
c = γσc · σt−1

c
(19)

where γδ and γσc denote the decay factors. The above process of winner selection and
weight update repeats until reaching the maximum number of iterations or the threshold
of neighborhood radius.

The traditional SOM is more suitable for a static scenario assuming all the curve
segments remain unchanged. However, the boundaries of curve segments in this paper
will expand slowly in real time, so a rolling strategy is introduced into the SOM. The
proposed RSOM algorithm consists of four main steps. First, the boundary points of the
remaining curve segments are updated and predicted. Then, for the remaining curve
segments, we generate some virtual points according to the length of segment. Then, the
optimal coverage sequence for these segments is planned by the iterative process of winner
selection and weight update in the SOM. Finally, the UAV only covers the first one of these
sequenced segments and updates the current state. The above steps repeat until all the
curve segments are covered.

3.3. UAV Path Planning
3.3.1. UAV Path in Free Environment

Based on the sequenced curve segments, the whole path of the UAV is actually a
successive combination of transferring paths and coverage paths. The curve segment can
be used as the coverage path directly. The Dubins path can be taken as the transferring path
between the starting point and the first curve segment, or that between two curve segments
(i.e., the boundary points with specified heading angle under geographical restriction).
Figure 5 illustrates a scenario including three high-value curve segments S1, S2 and S3.
Obviously, the transferring paths (red) and the coverage paths (blue) can combine the
whole path c = {S0→1, S1, S1→2, S2, S2→3, S3} in sequence.

Figure 5. Illustration of Dubins transferring paths and coverage paths.

3.3.2. UAV Path in Obstacle Environment

In some complicated cases, there may be some obstacles that bring risk for the UAV.
When obstacles exist on the transferring path, for example, the UAV cannot avoid them
along the original Dubins path. Thus, this paper utilizes the MGVF method to achieve the
Dubins path tracking and obstacle avoidance simultaneously, assuming that the UAV is
equipped with lidar sensors. First, to achieve Dubins path tracking in a free environment,
the original velocity of the UAV can be obtained by

v = vcru · (dD/d0 · δ + τ)

|dD/d0 · δ + τ| (20)
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where dD denotes the vertical distance between the current UAV position and the Dubins
path, d0 is a constant, δ = (−∂ζ/∂x, ∂ζ/∂y)T is the normal vector pointing towards the
path, and τ = (−∂ζ/∂y, ∂ζ/∂x)T is the tangent vector along the path.

Then, the original velocity needs to be adjusted when the UAV detects some obstacles.
Considering the distance and orientation of the point cloud from lidar, the threat level for
each point on the obstacle is calculated by

Γ =
1 + cos θ

2dobs
(21)

where dobs denotes the distance between the UAV’s position and the lidar’s sampling point,
and θ is the angle between the UAV’s heading and the lidar’s ray direction. Then, we select
the obstacle point Po = (xo, yo)

T with the highest threat level to define the normal vector n
and tangent vector t by

n =
1√

(xo − x)2 + (yo − y)2

[
xo − x
yo − y

]
(22)

t =
1√

(xo − x)2 + (yo − y)2

[
y − yo
xo − x

]
(23)

Thus, the correction matrix is defined as

M = I − nnT(
edobs

) 1
ρ |n|2

+
tnT(

edobs
) 1

ε |t||n|
(24)

where I denotes the unit matrix, and ρ and ε are constants. After that, the desired velocity
of the UAV can be corrected by

v = vcru
Mv∣∣Mv
∣∣ (25)

Using the MGVF method, both the stability of the Dubins path tracking and the safety
of obstacle avoidance can be ensured.

3.4. Constraint of UAV Communication Network

The above solution framework is also suitable for multi-UAVs, once the subregions
are allocated to corresponding UAVs [29]. In this case, the connectivity of the multi-UAV
communication network should be ensured to achieve the continuous information transmis-
sion. Here, we quantify the communication connectivity between UAVs by the successful
transmission probability. First, we suppose that UAV i sends a message to UAV j under the
sending power Pi and the transmitter output noise with average power σ2

j , so the received
signal-to-noise ratio (SNR) of the signal can be defined as

Γij =
PiGij

σ2
j

(26)

The channel gain is

Gij =
Cij
∣∣hij
∣∣2

Dα
ij

(27)

where Cij is related to the antenna gain and shading, hij is a factor of multipath decay, Dij is
the distance between two UAVs, and α is the propagation loss factor. To ensure successful
information transmission with acceptable packet loss, the SNR should be higher than the
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minimum level of link quality γ. Thus, if hij conforms to a standard Gaussian distribution,
the probability of successful transmission can be expressed as

Pij
r (Γ ≥ γ) = exp

(
−

σ2
j γDα

ij

CijPi

)
(28)

If Pij
r is larger than a certain threshold δP, the two UAVs are connected. The above

constraint should always be satisfied in order to form a communication network with
strong connectivity. Therefore, if the communication constraint is not satisfied, one UAV
should fly straight to the other one, i.e., the original velocity of the UAV in (20) should
be redefined:

v =


vcru · (dD/d0·δ+τ)

|dD/d0·δ+τ| , Pij
r > δP

vcru ·
(

dD/d0·δ+τ+λ(δP−Pij
r )·η

)
∣∣∣dD/d0·δ+τ+λ(δP−Pij

r )·η
∣∣∣ , Pij

r ≤ δP
(29)

where η denotes the normal vector of the UAV pointing towards the other one, and λ is a
constant. It should be noted that even if only a single UAV is involved for a target search,
we still need to consider the constraint of the communication network between the UAV
and base station.

4. Experiment

The effectiveness of the proposed method is verified via simulation in the river map
of Figure 1 by MATLAB R2022a on a computer with 64-b Intel Core i7-11800H CPU with
2.3 GHz frequency. Unless otherwise specified, the parameter values are as follows: cell
length Ls = 10 m, minimum turning radius of UAV Rmin = 150 m, cruising speed of
UAV vcru = 80 m/s, detecting speed of UAV vcov = 20 m/s, maximum speed of target
vtmax = 3 m/s, a = 3, b = 2, maximum number of expanded samples Emax = 400, number
of training samples in DBCSAN N = 5000, neighborhood radius in DBSCAN Rη = 20 m,
and minimum number of neighbor points in DBSCAN minPts = 10, and the parameters
of SOM and MGVF can be chosen in a relatively broad range. Additionally, a simple
real-world flight experiment is conducted on a quadrotor UAV to verify the feasibility of
our method.

4.1. Coverage Search by DBSCAN-RSOM

Figure 6 gives the original target probability map of a dynamic target in the Weihe river
generated by the Parzen windows method based on some prior qualitative information
about the target. Obviously, there are several high-value clusters conforming to Gaussian
distribution in this map. On this basis, six high-value segments can be extracted by
DBSCAN accurately, as shown in Figure 7. Additionally, the expanded downstream
boundary of each high-value segment at t = 1500 s is shown in Figure 8, considering the
beta distribution-based speed of the target drifting along the river (from left to right). It
is obvious that the dynamically changing scenario cannot be ignored, since the length of
each expansion (green) will be long. We suppose that the UAV starts from 3000 m, 0 m
with a heading angle 90◦ and performs the coverage search task. Figure 9 illustrates the
planned path by RSOM and MGVF, where the green areas denote the obstacles, the blue
circles denote the original upstream/downstream boundary points of segments, and the
yellow circles mean the expanded downstream boundary points. The RSOM method can
determine the optimal coverage sequence (3,2,1,4,5,6) and the corresponding entry point
(1,1,0,1,0,0, where 0 and 1 denote upstream/downstream boundary point, respectively) of
these dynamically changing segments. Additionally, the transferring path by MGVF can
avoid both regular and irregular obstacles.
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4.2. Comparison of Different Methods

To verify the advantages of the DBSCAN-RSOM, some other methods are utilized as
well for comparison. It should be noticed that the obstacle avoidance is not considered
when using these methods. The first is the full sweeping method, i.e., the UAV flies along
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the river and covers the whole river after a long time, as shown in Figure 10a. The second
is the GMM-RSOM, i.e., the architecture is similar to our method but the high-value curve
segments are extracted by the GMM. However, the clustering result by the GMM is heavily
dependent on the given number of clusters. Suppose that the preset number of clusters is 4,
for example, it will result in some low-probability areas being included in the extracted
segments. As shown in Figure 10b, the UAV will waste some time on detecting these
low-value areas. The third is the DBCSAN-DW, where the dynamic window (DW) strategy
is utilized to sort the segments extracted by the DBCSAN. The principle of the DW is
similar to the well-known model predictive control method, and the optimal sequence
for the next three segments is computed but only the first one is covered by the UAV in a
rolling way. For the DBCSAN-SOM, the coverage sequence of segments is only computed
once by the traditional SOM method, where the dynamic characteristic of the target is
ignored. The planned paths using different methods can be seen in Figure 10. In addition,
Figure 11 shows the curve of cumulative detection reward of each method. The RSOM is
a global optimization strategy and, inversely, the DW emphasizes a local myopia, so the
reward of the DBCSAN-RSOM is less than the DBCSAN-DW in the early stage but the
DBCSAN-RSOM will complete the search task in the shortest time. The performance of
each method is also provided in Table 1. Obviously, the hierarchical heuristic architecture
(i.e., the latter four methods) has a much higher efficiency (less flight time) than the full
sweeping method, which can improve the efficiency by approximately 31.5%. And the
DBCSAN-RSOM can obtain almost all the detection rewards (0.99) in the shortest time
(620 s). Furthermore, although the computation time of our method is longer than others, it
is still acceptable for the time-sensitive mission in this paper.
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Figure 11. Comparison of cumulative detection reward using different methods.
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Table 1. Performance of different methods.

Method Final Reward Flight Time (s) Computation Time (s)

Full sweeping 1 923 0.91
GMM-RSOM 0.99 671 2.33
DBSCAN-DW 0.99 694 2.28
DBSCAN-SOM 0.99 674 3.38

DBSCAN-RSOM 0.99 620 4.03

We also ran 20 tests in various random scenarios to verify the robustness of our method.
In each test, 10~30 discrete qualitative data with a random position, reliability, and accuracy
were set. Because the final reward of each method was almost the same, we only took
the flight time as the comparison index. As the flight time by the full sweeping method
was much larger than others, Figure 12 mainly displays the statistical results of four other
hierarchical methods. Overall, the flight time by our method is the shortest in most cases,
showing its high search efficiency in various scenarios.

Figure 12. Statistical results by different methods.

4.3. Real-World Flight Experiment

To verify the feasibility of the DBSCAN-RSOM, we utilize a quadrotor UAV to perform
a simple real-world flight experiment on a 80 m × 60 m field, where a virtual target is
assumed to exist in the curve-shaped road and a series of prior data points are set artificially.
With a wheelbase of 450 mm, the quadcopter is equipped with a Raspberry Pi 4B on-board
computer, monocular and binocular cameras, GPS and IMU, etc., as shown in Figure 13.
Three high-value curve segments with true coordinates of boundary points are extracted
by the DBSCAN. Assuming that the virtual target moves at 0.1 m/s, the cruising speed
and the detecting speed of the quadrotor is 1 m/s and 0.5 m/s, respectively, and the path
of quadrotor is then planned by the RSOM. Figure 14 shows the real flight path, and
obviously the quadcopter completes the coverage of high-value segments. As seen in
Table 2, our method can improve the efficiency by approximately 16.3%, compared with
the full sweeping method.

Figure 13. The quadcopter UAV.
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Figure 14. The real flight path of UAV.

Table 2. Performance of different methods in real-world flight experiment.

Method Final Reward Flight Time (s)

Full Sweeping 1 92
DBSCAN-DW 0.99 85

DBSCAN-RSOM 0.99 77

5. Conclusions

The dynamic target search mission in a curve-shaped area is formulated as an optimal
UAV path planning problem, which aims to obtain the maximum detection reward in
the shortest flight time under various constraints. To improve the mission efficiency, this
paper proposes a three-layer hierarchical heuristic architecture, including the extraction
of high-value curve segments by the DBSCAN, the sorting of high-value curve segments
by the RSOM, and path planning by Dubins with MGVF. The effectiveness, robustness,
and feasibility of our method is verified through simulations and a real flight experiment.
Compared with the full sweeping method, our method can improve the efficiency by
approximately 31.5% in simulations and 16.3% in real experiments, respectively. The
proposed hierarchical heuristic architecture is not limited to curve-shaped areas, and it can
be generalized to 2D or even 3D wide cases (e.g., sea surface, farmland, hilly region, etc.).
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