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Abstract: Ocean Acoustic Waveguide Remote Sensing (OAWRS) typically utilizes large-aperture
linear arrays combined with coherent beamforming to estimate the spatial distribution of acoustic
scattering echoes. The conventional maximum likelihood deconvolution (DCV) method uses a likeli-
hood model that is inaccurate in the presence of multiple adjacent targets with significant intensity
differences. In this study, we propose a deconvolution algorithm based on a modified likelihood
model of beamformed intensities (M-DCV) for estimation of the spatial intensity distribution. The
simulated annealing iterative scheme is used to obtain the maximum likelihood estimation. An
approximate expression based on the generalized negative binomial (GNB) distribution is introduced
to calculate the conditional probability distribution of the beamformed intensity. The deconvolution
algorithm is further simplified with an approximate likelihood model (AM-DCV) that can reduce
the computational complexity for each iteration. We employ a direct deconvolution method based
on the Fourier transform to enhance the initial solution, thereby reducing the number of iterations
required for convergence. The M-DCV and AM-DCV algorithms are validated using synthetic and
experimental data, demonstrating a maximum improvement of 73% in angular resolution and a
sidelobe suppression of 15 dB. Experimental examples demonstrate that the imaging performance of
the deconvolution algorithm based on a linear small-aperture array consisting of 16 array elements is
comparable to that obtained through conventional beamforming using a linear large-aperture array
consisting of 96 array elements. The proposed algorithm is applicable for Ocean Acoustic Waveguide
Remote Sensing (OAWRS) and other sensing applications using linear arrays.

Keywords: OAWRS; conventional beamforming (CBF); maximum likelihood; deconvolution; Fourier
transform; small aperture

1. Introduction

Horizontal coherent line arrays are commonly employed to capture scattered acoustic
signals from diverse scatterers and sources in the undersea environment [1–3]. In a typical
wide-area application, such as Ocean Acoustic Waveguide Remote Sensing (OAWRS),
acoustic images are generated as a function of azimuthal angle and range using plane wave
conventional beamforming (CBF) and travel time analysis to chart the spatial distribution
of scatterers and sources, including fish aggregation [4,5], marine mammals [6,7], and
seabed geographic features [8–10]. The direction of arrival (DOA) estimation performance
of CBF is typically compromised due to its relatively wide beam width, which limits the
capability to detect two targets that are close to each other. CBF is also generally considered
a biased estimator of incident plane wave intensity, which is critical for discerning the
temporal and spatial characteristics of the target. This estimation bias arises due to the
inherent characteristics of CBF, particularly its sensitivity to the steering vector of the array
and its susceptibility to the presence of noise and interference. CBF can non-linearly blur
the angular distribution of incident plane wave intensities for array geometries that lack
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spherical symmetry. These limitations are particularly notable in scenarios where there are
multiple sources and the array’s response is influenced by factors such as sidelobes and
beam width.

Alternative techniques and algorithms, such as the minimum variance distortionless
response (MVDR) [11] and multiple signal classification (MUSIC) algorithms [12], have
been proposed based on the covariance matrix of array measurements to overcome the
limitations of CBF on angular resolution and intensity estimation. Despite their utility in
spatial signal processing, the MVDR and MUSIC algorithms face considerable limitations,
including high sensitivity to interference [13] and a requirement for high signal-to-noise
ratios to accurately identify signal directions or frequencies. Furthermore, the MUSIC
algorithm is notably burdened by its computational intensity due to the necessity of
eigendecomposition [14], posing challenges for real-time applications. Additionally, the
effectiveness of these algorithms is contingent upon accurate prior knowledge regarding
the number of signal sources [15] and precise array calibration [16]. These factors, if
misestimated or erroneous, can lead to diminished accuracy in practical scenarios.

In recent years, compressed sensing (CS) theory [17] has been widely used in DOA
estimation through solving the least squares problem while minimizing the ↕1 norm, which
utilizes the sparsity of the number of sources in the data. Following the principles of
compressed sensing, numerous outstanding algorithms have been proposed, including
orthogonal matching pursuit (OMP) [18–20] and atomic norm minimizing [21–23]. These
algorithms can significantly reduce the number of sensors to be used through exploiting
the sparsity of the signal, as well as decreasing the number of samples required for signal
restoration and bearing estimation. Although compressed sensing-based algorithms for
DOA estimation generally exhibit strong robustness compared with other covariance
matrix-based algorithms, their performance is significantly affected by the assumption of
signal sparsity, which is commonly not applicable for OAWRS in imaging of large fish
aggregation or extended geological features.

Essentially, the CBF output can be considered as the incident intensity signal modu-
lated by the beam pattern, where the beam pattern can be regarded as the system function of
the channel. The intensity distribution estimation of the incident signals can fundamentally
be viewed as a deconvolution problem or a signal recovery issue. In the field of underwater
acoustic communication, various methods have been proposed to address signal recovery
or channel estimation problems in different scenarios. Common channel estimation meth-
ods include the least squares (LS) algorithm [24], the minimum mean square error (MMSE)
algorithm [25], the time-reversal algorithm [26], and the compressed sensing algorithm [27].
An adaptive filtering algorithm [28] based on recursive least squares has recently been
proposed, which reduces interference in channel estimation, providing higher accuracy
and better interference cancellation effect. Additionally, deep learning methods [29–31]
have been proposed for channel estimation without channel statistics information, mainly
through learning complex underwater channel properties from the received signals.

A deconvolution approach based on the Richardson–Lucy (RL) algorithm originating
from the field of image deblurring was recently proposed for high-resolution bearing
estimation with a small-aperture linear array [32]. The algorithm generally deconvolves
the intensity distribution of CBF output blurred by the beam pattern. It simultaneously
provides narrow beam width and low sidelobes while retaining the advantages of ro-
bustness and less computation in CBF [33]. Although the algorithm has been widely
used for image enhancement in optical applications [34–36], it does not estimate the real
intensity of the original target, making it unsuitable for OAWRS and other acoustical
wide-area applications.

An alternative deconvolution method (DCV) based on maximum likelihood (ML)
estimation [37] has been developed, which provides satisfying performance regarding the
estimation of the spatial intensity distribution of incident plane waves from the CBF output.
The algorithm takes advantage of the relatively pervasive circular complex Gaussian
random (CCGR) statistics of acoustic fields in the ocean that follow from the central limit
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theorem [38–41]. Based on the assumption that the CBF output intensity measured at a
certain scan angle also follows a Gamma distribution [42], the ML estimator was derived
to resolve the angular distribution of incident plane wave intensities from coherent array
measurements. However, in the marine environment, the plane waves incident from
adjacent directions typically have significant differences in intensity. The statistics of CBF
output intensity measured at a certain scan angle deviate from the Gamma distribution,
leading to a noticeable performance degradation.

In this study, we derive a deconvolution algorithm with a modified likelihood model
(M-DCV) to estimate the spatial intensity distribution by deconvolving the CBF output. The
beamformed intensity of one single incident plane wave measured at a certain scan angle is
assumed to follow a Gamma distribution. The CBF output intensity measured at a certain
scan angle is, hence, considered as the summation of multiple independent but not identical
Gamma-distributed beamformed intensities. A computationally efficient approximate
expression based on a generalized negative binomial (GNB) distribution is introduced
to calculate the conditional probability distribution of the beamformed intensity. The
simulated annealing iterative scheme [43] is employed to obtain the maximum likelihood
estimation. This iterative approach necessitates recalculation of the conditional probability
distribution of the beamforming output at each iteration step. To reduce the computational
complexity of each iteration, we simplify the deconvolution algorithm with an approximate
signal model (AM-DCV), which can significantly reduce the number of random signals
that need to be considered when calculating the conditional probability distribution at
each iteration. Moreover, a direct deconvolution method based on the Fourier transform
is employed to enhance the initial solution in the iterative scheme, thereby reducing
the number of iterations required. The deconvolution algorithm proposed in this study
addresses the performance degradation issue of the conventional deconvolution (DCV)
algorithm in the presence of multiple adjacent targets with significant intensity differences.

The M-DCV and AM-DCV algorithms offer several advantages compared with the
existing approaches as follows.

(1) The algorithms yield better angular resolution (up to 73%) and lower sidelobes (15 dB)
compared with the CBF algorithm, depending on the width and incident angle of the
features.

(2) The algorithms retain the advantages of the CBF algorithm in terms of robustness and
the number of snapshots required for processing.

(3) The algorithms provide better estimation of intensity distribution compared with
other deconvolution algorithms (DCV and RL), especially for targets close to the
end-fire direction of the array.

(4) The algorithms can significantly reduce the array aperture (~6 times smaller) and, at
the same time, achieve performance outcomes comparable to those achieved using
the CBF algorithm with large-aperture arrays.

These improvements were validated using both synthetic and experimental data.

2. Methods
2.1. Beamformed Complex Pressure Amplitude on a Discrete Receiver Array

Let Pi(r, t) = P(ki, ω)exp[j(ki · r − ωt)] denote the pressure field at spatial location r
and time t due to a time-harmonic plane wave propagating in the direction of the acoustic
wave number vector ki = ki

xux + ki
yuy + ki

zuz, where u is the unit vector, P(ki, ω) is the
complex amplitude, k = |ki| = ω/c is the wavenumber vector, ω is the radial frequency,
c is the speed of sound, and i is the index for i = 1, 2, 3 . . . , M directions. A uniformly
spaced linear array of length L containing N elements is aligned horizontally along the
y-axis in the ocean waveguide with elements located at rl = (0, yl , 0), where l = 1, 2, ..., N
(Figure 1). A plane wave from any of the M directions is incident on this discrete receiver
array. The pressure field received on the l-th element of the array located at rl = (0, yl , 0) is
Pi(rl , t) = P(ki, ω)exp[j(ksinφisinθiyl − ωt)], where φi is the inclination angle and θi is the
azimuthal angle.
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Figure 1. A sketch of the array geometry and incident plane wave field. The uniformly spaced linear
array is aligned horizontally along the y-axis in the ocean, with elements located at rl = (0, yl , 0). The
azimuthal angle of the incident plane wave is θ0 measured from the array broadside.

Assuming the plane waves are incident along the horizontal surface as the inclination
angle φ = π/2, then the total pressure field of the plane waves on the whole array measured
at scan angle θ after beamforming is as follows:

PB(θ, t, ω) =
M
∑

i=1

N
∑

l=1
P(ki, ω) exp{j[kyl(sin θi − sinθ)− ωt]}

=
M
∑

i=1
P(ki, ω)B(sinθ − sinθi, ω)e−jωt

(1)

where B(sin θ, ω) is the discrete linear array beam pattern. For a uniformly spaced array
with N elements and a total length of L for yl between [−L/2, L/2], the array beam pattern
is given [44] by the following expression:

B(sin θ, ω) =
N

∑
l=1

exp(−jkylsin θ) =
1
N

sin
(

k
2 Ndsin θ

)
sin

(
k
2 dsin θ

) (2)

where d = L/(N − 1) is the array element spacing and θ spans from −π/2 to π/2.

2.2. Modified Likelihood Model of Beamformed Intensity Given the Expected Incident Plane
Wave Intensity

Assuming there are J discrete scan angles, the beamformed intensity is measured at
the j-th scan angle θj, which can be written as follows:

Wj = W
(
θj, ω

)
=

∣∣∣∣∣ M

∑
i=1

P(ki, ω)B
(
sin θj − sin θi, ω

)∣∣∣∣∣
2

(3)

where j is an index for j = 1, 2, 3 . . . , J scan angles. It has been proposed that the CBF output
intensity measured at a certain scan angle follows a Gamma distribution [37]. However, the
statistics of CBF output deviate from the Gamma distribution in the presence of multiple
plane waves with significant differences in intensity incident from adjacent directions. In
this study, we propose a modified likelihood model that models the beamformed intensity
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Wj at a certain scan angle as the summation of multiple intensity components given by the
following expression:

Wj =

∣∣∣∣∣ M

∑
i=1

PiBij

∣∣∣∣∣
2

=
M

∑
i=1

∣∣PiBij
∣∣2 + M

∑
i=1

M

∑
k=1,k ̸=i

∣∣∣PiPkBijBkj

∣∣∣ = M

∑
i=1

Wij + α (4)

where Pi = P(ki, ω) are the complex pressure fields from M incident directions,
Bij = B

(
sin θj − sin θi, ω

)
, Wij =

∣∣PiBij
∣∣2 denotes the intensity component from the i-th

incident plane wave after beamforming, and α denotes the cross term. For OAWRS applica-
tions, the beamformed intensity measurements are commonly averaged over the time of
the pulse width after matched filtering, which is typically on the order of 10 ms. Within
this period, the mean of the incident plane wave complex amplitude is approximately zero,
making the cross term α in Equation (4) negligible.

According to the central limit theorem, the incident plane wave complex amplitude
P(ki, ω) follows circular complex Gaussian random (CCGR) statistics; therefore, the mean
⟨P(ki, ω)⟩ is zero [40,41]. It is assumed that distinct incident plane waves are statisti-
cally independent of each other, such that

〈
P(ki, ω)P*(kj, ω

)〉
= ⟨P(ki, ω)⟩

〈
P*(kj, ω

)〉
for

i ̸= j [40,41]. S(ki, ω)=
〈
|P(ki,ω)|2

〉
is the expected intensity of the incident plane wave. The

expected beamformed intensity at scan angle θj is then given by the following expression:

σ
(
θj, ω

)
=

〈
W

(
θj, ω

)〉
=

M

∑
i=1

S(ki, ω)
∣∣B(sin θ j − sin θi, ω

)∣∣2 (5)

It can be noticed from Equation (4) that the beamformed intensity Wj measured at a
certain scan angle is the summation of M independent but not identical random variables
Wij. The conditional probability distribution of the beamformed intensity component Wij

given the expected intensity vector S containing Si = S(ki, ω) =
〈

P(ki, ω)P*(ki, ω)
〉

from
all horizontal azimuths is given by the following expression [42,45]:

P
(
Wij

∣∣S) =
[

ηj
σij(S)

]ηj
W

ηj−1
ij exp

[
−ηj

Wij
σij(S)

]
Γ
(
ηj
) (6)

where ηj is equal to the signal-to-noise ratio (SNR)
〈
Wj

〉2/⟨W2
j ⟩ −

〈
Wj

〉2 [42,45],

σij(S) = S(ki, ω)
∣∣B(sin θ j − sin θi, ω

)∣∣2 is the component of expected intensity from the
i-th incident plane wave after beamforming, and Γ represents the Gamma function.

In general, the exact probability distribution of the summation of multiple independent
Gamma-distributed random variables is quite complicated and does not admit a closed and
simple form [46]. Thus far, various implementations of exact probability distributions have
been proposed; however, these are all based on approximations, often of the numerical
type [47–50]. Below, we provide a computationally efficient approximate expression [51]
based on a generalized negative binomial (GNB) distribution as follows:

P
(

Wj
∣∣S) = ∞

∑
k=0

wk

[
ηj

σij(S)min

]ρ+k
Wρ+k−1

ij exp
[
−ηj

Wij
σij(S)min

]
Γ(ρ + k)

(7)

where ρ = Mηj, M is the number of incident plane waves, k = 0, 1, 2..., σij(S)min is the minimum
value of σij(S), and wk is a three-parameter GNB given by the following probability function:

GNB(k; r, p, b) =

 r
r+bk

(
r + bk

k

)
pk
(

1 − p)r+bk−k, k = 0, 1, 2, . . .

0, k ≥ µ, r + bµ < 0
(8)
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The parameters p, b, and r are approximated by the following expression:
p = 1 − A

2 +
√

A2

4 − 1

b = 1
p

[
1 −

(
µ(1−p)

µ2

)1/2
]

r = µ
(

1−pb
p

)
,

(9)

where A = −2 +
[
µµ3 − 3µ2

2
]2/

(
µµ3

2
)
. The roots are real if and only if A ≥ 2, i.e., if[

µµ3 − 3µ2
2
]2/

(
µµ3

2
)
≥ 4. For A < 2, we set b = 1. The values of three parameters µ, µ2,

and µ3 are given by the following expression:

µ =
M
∑

i=1

σij(S)
σij(S)min

(
1 − σij(S)min

σij(S)

)
ηj

µ2 =
M
∑

i=1

(
σij(S)

σij(S)min

)2(
1 − σij(S)min

σij(S)

)
ηj

µ3 =
M
∑

i=1

(
σij(S)

σij(S)min

)3(
1 − σij(S)min

σij(S)

)(
2 − σij(S)min

σij(S)

)
η

j

(10)

The provided expression can be utilized to numerically calculate the probability
distribution of the summation of multiple Gamma-distributed random variables with large
variability in scale parameters σij(S)/ηj, which is common in OAWRS imaging applications.

In the OWARS imaging system, distinct beams are statistically independent [40,41]. There-
fore, the log-likelihood function for the beamformed intensity vector W =

[
W1, . . . , WJ

]T

from all horizontal azimuths given the expected intensity vector S is then as follows:

ln P(W|S) =
J

∑
j=1

ln P
(
Wj

∣∣S) (11)

The maximum likelihood estimate (MLE) Ŝ is determined as the log-likelihood func-
tion and attains its global maxima with the simulated annealing method below [43]:

Ŝ = argmax
S

ln P(W|S) (12)

2.3. Approximate Likelihood Model of Beamformed Intensity Given the Expected Incident Plane
Wave Intensity

The modified likelihood model requires sequential convolution to compute the exact
conditional probability distribution of the beamformed intensity measured at a certain scan
angle, which leads to computationally expensive calculations. In this section, we propose
an approximate likelihood model for reducing computational complexity.

The plane waves incident from different directions can be distinguished into effective
signals and ambient noise based on a predefined threshold determined by the majority of
incident plane waves with lower intensities. The expected incident plane wave intensity
vector S = [S1, S2, . . . SM]T can then be expressed as the summation of the effective signal
intensity vector Ssig and the ambient noise intensity vector Snoise:

S = Ssig + Snoise (13)

The intensity vector Ssig contains the effective signal intensities Sq =
〈

P
(
kq, ω

)
P∗(kq, ω

)〉
incident from Q out of M horizontal azimuths, and 0 in other M − Q horizontal azimuths,
where q is an index for q = 1, 2, 3 . . . , Q and P

(
kq, ω

)
denotes the complex amplitude

of the q-th effective signal. The intensity vector Snoise contains ambient noise intensities
Si = ⟨P(ki, ω)P∗(ki, ω)⟩ incident from M − Q horizontal azimuths, and 0 in other Q hor-
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izontal azimuths, where i is an index for i = 1, 2, 3 . . . , M − Q horizontal azimuths and
P(ki, ω) denotes the complex amplitude of the i-th ambient noise.

The beamformed intensity Wj measured at scan angle θj can then be written as the
following expression:

Wj = Wj,sig + Wj,noise =
Q

∑
q=1

Wqj,sig + Wj,noise (14)

where Wj,sig and Wj,noise are the beamformed intensities of effective signals and ambi-

ent noise measured at scan angle θj, and Wqj,sig =
∣∣∣P(kq, ω

)
Bqj

∣∣∣2 denotes the intensity
component from the q-th effective signal after beamforming.

The ambient noise in the marine environment can generally be approximated as
omnidirectional in M horizontal azimuths and uniform in intensity. Therefore, the ambient
noise intensity vector Snoise can be approximated as a unit vector multiplied by the average
intensity S. Based on the above assumption, the expected beamformed intensity of ambient
noise σj(Snoise) measured at scan angle θj can be expressed as follows:

σj(Snoise) =
M

∑
i=1

S
∣∣B(sin θ j − sin θi, ω

)∣∣2 (15)

where the ambient noise intensity vector Snoise and the average value of ambient noise
intensity S can be obtained from the elements of the expected incident plane wave intensity
vector S that are below the threshold. The conditional probability distribution of the
beamformed intensity of ambient noise P

(
Wj,noise

∣∣S) given the expected incident plane
wave intensity vector S at scan angle θj approximately obeys a Gamma distribution given
by the following expression:

P
(

Wj,noise
∣∣S) =

[
ηj

σj(Snoise)

]ηj
W

ηj−1
j,noiseexp

[
−ηj

Wj,noise
σj(Snoise)

]
Γ
(
ηj
) (16)

where σj(Snoise) and ηj are only related to the normalized ambient noise level and scan
angle, respectively.

The expected beamformed intensity of effective signals σj
(
Ssig

)
measured at scan

angle θj can be expressed as follows:

σj
(
Ssig

)
=

Q

∑
q=1

Sq
∣∣B(sin θ j − sin θq, ω

)∣∣2 (17)

where the effective signal intensity vector Ssig can be obtained from the elements of the
expected incident plane wave intensity vector S that are above the threshold. Similar to
Equation (4), the beamformed intensities of effective signals measured at the j-th scan angle
Wj,sig can be considered as the sum of Q independent but not identical random variables
Wqj,sig. The conditional probability distribution of the beamformed intensity components
Wqj,sig follows the Gamma statistics given by the following expression:

P
(

Wqj,sig
∣∣S) =

[
ηj

σj(Ssig)

]ηj

W
ηj−1
qj,sigexp

[
−ηj

Wqj,sig

σj(Ssig)

]
Γ
(
ηj
) (18)

Therefore, the conditional probability distribution of the beamformed effective signal
intensities P

(
Wj,sig

∣∣S) given the expected incident plane wave intensity vector S at scan
angle θj can then be calculated using the approximate expression proposed in Section 2.2.

It should be noted that, in most OAWRS applications, effective signals are sparsely
distributed in space (i.e., Q ≪ M). Therefore, much fewer random variables need
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to be considered in the calculation of the conditional probability distribution of beam-
formed effective signals, which can significantly reduce the calculation complexity of the
approximate expression.

It is assumed that the beamformed measurements of effective signals and ambient
noise are statistically independent of each other. The conditional probability distribution of
the beamformed intensity at scan angle θj can then be calculated as follows:

P
(

Wj
∣∣S) = P

(
Wj,noise

∣∣S) ∗ P
(

Wj,sig
∣∣S) (19)

The maximum likelihood estimate Ŝ is obtained as the log-likelihood function which
attains its global maxima with the simulated annealing method following Equation (11).
We set a predefined threshold to separate the CBF output into effective signals and ambient
noise. The initial value of S is determined as the average value of the CBF output below
the threshold. The initial values of effective signal intensities are determined as the CBF
output but are assumed to be zero at directions where the CBF output is smaller than the
threshold. In the iteration process, effective signal intensity below the threshold at any scan
angle is considered ambient noise.

2.4. Improvement in the Initial Intensity Distribution for Maximum Likelihood Estimation

The selection of the initial solution for the iterative process can significantly affect
the convergence and efficiency of the ML deconvolution algorithm. Generally, we use
the normalized CBF output as the initial solution vector [37]. However, for arrays with
small apertures, CBF output deviates significantly from the ground truth distribution of
incident plane wave intensity, which can greatly increase the number of iterations before
convergence. Therefore, we propose a method to improve the initial solution vector by
directly deconvolving the CBF output based on the Fourier transform technique.

According to Equation (5), the expected beamformed intensity σ(sin θ, ω) can also be
written as the convolution of the magnitude squared beam pattern
B(sin θ, ω) = |B(sin θ, ω)|2 with the expected incident plane wave intensity distribution
S(sin θi, ω):

σ(sin θ, ω) =
M
∑

i=1
S(sin θi, ω)|B(sin θ − sin θi, ω)|2

= S(sin θ, ω) ∗ B(sin θ, ω)
(20)

where ∗ denotes the convolution symbol. It can also be expressed in the wavenumber
domain as the following expression:

Σ(k) = S(k)·B(k) (21)

where Σ(k), S(k), and B(k) are the Fourier transform values of σ(sin θ, ω), S(sin θ, ω),
and B(sin θ, ω) in the wavenumber domain, respectively. In practical applications, Σ(k)
is averaged over the beamforming measurements of multiple snapshots. According to
Equation (21), the initial intensity distribution S(k) in the wavenumber domain can be
calculated as follows:

S(k) =
Σ(k)
B(k) (22)

Knowing the beam pattern of a given array, we can obtain the improved initial intensity
distribution in the spatial domain using the inverse Fourier transform. The improved
initial intensity distribution is more computationally effective for the simulated annealing
iterative scheme.

3. Illustrative Examples

In this section, we first demonstrate the method proposed in Section 2.3 for computing
the conditional probability distribution of CBF output of ambient noise in the approximate
likelihood model. We use both simulated data from field experiments and real wide-
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area OAWRS data to validate the M-DCV and AM-DCV algorithms. We compare the
reconstructed images obtained from the deconvolution algorithm with the true images to
evaluate the performance and accuracy of the algorithm. The approximate expression in
Section 2.2 is used to numerically calculate the conditional probability distribution, which
is also the likelihood of beamformed intensity. We employ the simulated annealing iterative
scheme to obtain the maximum likelihood estimation; this method helps us to extract
the intensity distribution estimation from CBF outputs through iteratively updating the
parameters to maximize the likelihood estimation. For the iterative process, the initial
intensity distribution is calculated using the direct deconvolution method discussed in
Section 2.4 for both the M-DCV and AM-DCV algorithms. This initial estimation serves as
a starting point for the iterative refinement process.

3.1. Conditional Probability Distribution of Conventional Beamforming Output of the Ambient Noise

In this section, we first validate whether the conditional probability distribution of
the CBF output of ambient noise Wj,noise at one single scan angle approximately obeys

the Gamma distribution Γ(ηj,
σj(Snoise)

ηj
). The Kolmogorov–Smirnov test is used to verify

whether the conditional probability distribution follows a Gamma distribution. Through
performing this validation, we can determine whether the method for computing the
conditional probability distribution in the approximate likelihood model is accurate. This
validation step is crucial as it ensures the reliability and correctness of the subsequent
deconvolution algorithms.

We assume that the ambient noise level Snoise is 70 dB. The array is set as a uniform lin-
ear array consisting of 32 elements, and the element spacing is half of the plane wavelength.
The speed of sound in water is c = 1500 m/s.

As shown in Figure 2, we use the Monte Carlo method to calculate statistical his-
tograms of the normalized CBF outputs at scan angles θj =0◦, 30◦, 60◦, and 90◦, respectively.
It is shown, in the figure, that the conditional probability distribution of ambient noise
after CBF can be well-described using Gamma distributions (black line) with the proper
scan angle-dependent shape parameters ηj = η

(
θj
)
. The scale parameter of the Gamma

distribution can be automatically determined by the shape parameter ηj and the expected
beamformed intensity of ambient noise σj(Snoise). The shape parameter ηj as a function of
scan angles is shown in Figure 3.
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Figure 2. Statistical histograms of normalized beamforming outputs at different scan angles. The
conditional probability distributions are plotted with black lines.
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Figure 3. The shape parameter ηj of the Gamma-distributed beamformed intensity of ambient noise
as a function of scan angle θj.

3.2. Simulation Data Results

In this section, we demonstrate the deconvolution of incident CCGR fields using
simulated data. The uniform linear receiver array consists of 32 elements, and the element
spacing is half of the plane wavelength for all of the illustrations shown in this section. The
speed of sound in water is c = 1500 m/s. In Figures 4–7 it is shown that, after using the
M-DCV and AM-DCV algorithms, the angular resolution can be improved by a factor of
6–73%, depending on the width and incident angle of the features. The results of the DCV
and RL algorithms are provided for comparison.
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Figure 4. The results for a narrow feature of 2◦ width at the array broadside: (a) ground truth expected
plane wave intensity and plane wave intensity with signal-dependent noise; (b) a comparison between
the CBF, M-DCV, AM-DCV, DCV, and RL results; (c) a zoomed-in version of (b) within the highlighted
box. The horizontal bars in (c) represent the 3 dB widths.



Remote Sens. 2024, 16, 1506 11 of 22
Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 5. The results for a wide feature of 9° width at the array broadside: (a) ground truth expected 
plane wave intensity and plane wave intensity with signal-dependent noise; (b) a comparison be-
tween the CBF, M-DCV, AM-DCV, DCV, and RL results; (c) a zoomed-in version of (b) within the 
highlighted box. The horizontal bars in (c) represent the 3 dB widths. 

 
Figure 6. The results for a narrow feature of 2° width close to the end-fire direction of the array: (a) 
ground truth expected plane wave intensity and plane wave intensity with signal-dependent noise; 
(b) a comparison between the CBF, M-DCV, AM-DCV, DCV, and RL results; (c) a zoomed-in version 
of (b) within the highlighted box. The horizontal bars in (c) represent the 3 dB widths. 

− 90 − 60 − 30 0 30 60 90
Azimuthal Angle (degree)

− 20

− 15

− 10

− 5

0

5

10

Pr
es

su
re

 L
ev

el
(d

B)

(a)Ground Truth Expected Plane Wave Intensity
Intensity With Signal-dependent Noise

− 90 − 60 − 30 0 30 60 90
Azimuthal Angle (degree)

− 20

− 15

− 10

− 5

0

5

10
(b)CBF

CBF (normalized)
M-DCV
AM-DCV
DCV
RL

− 15 − 10 − 5 0 5 10 15
Azimuthal Angle (degree)

− 20

− 15

− 10

− 5

0

5

10
Pr

es
su

re
 L

ev
el

(d
B)

(c)

− 90 − 60 − 30 0 30 60 90
Azimuthal Angle (degree)

− 20

− 15

− 10

− 5

0

5

10

Pr
es

su
re

 L
ev

el
(d

B)

(a)Ground Truth Expected Plane Wave Intensity
Intensity With Signal-dependent Noise

− 90 − 60 − 30 0 30 60 90
Azimuthal Angle (degree)

− 20

− 15

− 10

− 5

0

5

10
(b)CBF

CBF (normalized)
M-DCV
AM-DCV
DCV
RL

60 70 80 90
Azimuthal Angle (degree)

− 20

− 15

− 10

− 5

0

5

10

Pr
es

su
re

 L
ev

el
(d

B)

(c)

Figure 5. The results for a wide feature of 9◦ width at the array broadside: (a) ground truth expected
plane wave intensity and plane wave intensity with signal-dependent noise; (b) a comparison
between the CBF, M-DCV, AM-DCV, DCV, and RL results; (c) a zoomed-in version of (b) within the
highlighted box. The horizontal bars in (c) represent the 3 dB widths.
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Figure 6. The results for a narrow feature of 2◦ width close to the end-fire direction of the array:
(a) ground truth expected plane wave intensity and plane wave intensity with signal-dependent
noise; (b) a comparison between the CBF, M-DCV, AM-DCV, DCV, and RL results; (c) a zoomed-in
version of (b) within the highlighted box. The horizontal bars in (c) represent the 3 dB widths.
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Figure 7. The results for a wide feature of 9◦ width close to the end-fire direction of the array:
(a) ground truth expected plane wave intensity and plane wave intensity with signal-dependent
noise; (b) a comparison between the CBF, M-DCV, AM-DCV, DCV, and RL results; (c) a zoomed-in
version of (b) within the highlighted box. The horizontal bars in (c) represent the 3 dB widths.

For a relatively narrow angular rectangle feature of 2◦ width at the array broadside,
the 3 dB beam width values of the M-DCV, AM-DCV, DCV, and RL results are 2.12◦, 2.21◦,
1.86◦, and 1.76◦, respectively (Figure 4). This provides a maximum 42% improvement
compared with CBF, which results in an output of 3.68◦. For a relatively wide angular
rectangle feature of 9◦ width at the array broadside, the 3 dB beam width of the M-DCV,
AM-DCV, DCV, and RL results are 9.42◦, 9.52◦, 9.38◦, and 9.72◦, respectively (Figure 5).
Compared with the CBF output with a 3 dB beam width of 10.02◦, a maximum 6% angular
resolution improvement is provided. In summary, the four algorithms all provide a narrow
main lobe and low sidelobes. Additionally, the RL algorithm shows a significant deviation
in the intensity distribution estimation near the end-fire direction of the array.

Next, we calculate the ML deconvolved estimate results for the same features; however,
this set of features is located at the end-fire direction of the array, as shown in Figures 6 and 7.
For the relatively narrow angular rectangle feature, the 3 dB beam widths of the M-DCV,
AM-DCV, DCV, and RL results are 2.40◦, 2.46◦, 2.45◦, and 11.65◦, respectively (Figure 6). A
maximum 73% angular resolution improvement is provided, compared with that of the CBF
output of 9.08◦. For the relatively wide angular rectangle feature, the 3 dB beam widths of
the M-DCV, AM-DCV, DCV, and RL results are 9.69◦, 9.95◦, 9.87◦, and 17.06◦, respectively
(Figure 7). For comparison, the 3 dB beam width after CBF is 11.36◦, and a maximum 15%
improvement in angular resolution is provided. Compared with the DCV algorithm, the
M-DCV and AM-DCV algorithms provide lower sidelobes while maintaining the resolution
of the main lobe. Meanwhile, the 3 dB beam width of the RL results significantly increases
as the scan angle approaches the end-fire direction, and its intensity estimation results are
less accurate compared with other methods.

It can be noticed that the M-DCV and AM-DCV results maintain good angular resolu-
tion and intensity distribution estimation at both the broadside and end-fire directions of
the array. The results also match the ground truth intensity better, when compared with
the CBF output, which can help to reconstruct the fine distribution of the incident features.
For the relatively narrow angular rectangle feature at the array broadside (Figure 4), the
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M-DCV result deteriorates the ground truth intensity at up to 15 dB down from the peak
value, compared with that of CBF output at roughly 2 dB down from the peak value. The
agreements between the M-DCV results and the ground truth intensities only deviate by
no less than 7 dB down from the peak intensity, depending on the incident angle as well as
the width of the features (Figures 4–7).

Finally, we evaluate the performance of the M-DCV and AM-DCV algorithms for
two adjacent relatively narrow features with a significant difference in target strength at
the array broadside, as shown in Figure 8. The width of both of the features is 1◦, with
a separation of 2◦ and a target strength difference of 7 dB. The estimation result of the
DCV algorithm is also plotted for comparison. The 3 dB beam widths of the M-DCV,
AM-DCV, DCV, and RL results are 1.11◦, 1.24◦, 1.60◦, and 1.59◦, respectively. The M-DCV
and AM-DCV algorithms provide a better interference rejection and direction estimation of
targets with a small bearing separation and significant intensity differences compared with
the DCV and RL algorithms. The M-DCV and AM-DCV algorithms also provide a better
intensity estimation, which deteriorates the ground truth intensity at up to 12 dB down
from the peak value, compared with that of the CBF and DCV algorithms at roughly 4 dB
and 6 dB down from the peak value, respectively. Note that, in the presence of multiple
plane waves with significant differences in intensity incident from adjacent directions, the
statistics of the CBF output are more accurately characterized by the modified likelihood
model rather than the Gamma distribution [37], which results in a marked difference in the
estimation performance.
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Figure 8. The results for two adjacent features with a relatively narrow width of 1◦, a separation of
2◦, and a target strength difference of 7 dB at the array broadside: (a) ground truth expected plane
wave intensity and plane wave intensity with signal-dependent noise; (b) a comparison between the
CBF, M-DCV, AM-DCV, DCV, and RL results; (c) a zoomed-in version of (b) within the highlighted
box. The horizontal bars in (c) represent the 3 dB widths.

To illustrate the improvements in computational speed provided by the approximate
model discussed in Section 2.3 and the direct deconvolution method presented in Section 2.4,
we compare the single iteration time between the M-DCV and AM-DCV algorithms and the
number of iterations between the DCV and M-DCV algorithms, as shown in Tables 1 and 2,
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respectively. From the tables, it is evident that using the approximate model and direct
deconvolution method reduced the single iteration time by 95–98% and the number of
iterations by 73–75%.

Table 1. A comparison of the single iteration time between the M-DCV and AM-DCV algorithms.

Location/Feature Type M-DCV AM-DCV

Broadside/narrow 7.17 s 0.11 s
Broadside/wide 7.21 s 0.31 s
End-fire/narrow 7.18 s 0.12 s

End-fire/wide 7.22 s 0.33 s
Broadside/adjacent 7.16 s 0.11 s

Table 2. A comparison of the number of iterations between the DCV and M-DCV algorithms.

Location/Feature Type DCV M-DCV

Broadside/narrow 784 198
Broadside/wide 875 231
End-fire/narrow 765 203

End-fire/wide 837 229
Broadside/adjacent 796 212

The performance of the M-DCV algorithm on angular resolution as a function of
the signal-to-noise ratios (SNRs), number of array elements, and number of snapshots
is then tested. The performance is evaluated according to the beam width for the M-
DCV results of ideal features with negligible width located at the broadside and end-fire
directions, respectively.

We first study the dependence of the beam width as a function of the SNR. The number
of snapshots is constantly set to 5, and the number of array elements is fixed at 16, 32, and 64.
As shown in Figure 9, the M-DCV algorithm provides an improvement of up to one order
of magnitude in angular resolution compared with the CBF algorithm. For features at the
array broadside (Figure 9a), the beam width of the M-DCV results gradually decreases
and tends to be stable when the SNR becomes greater than −3 dB for all the arrays with
different numbers of elements. For the array with 16 elements, the beam width of the
M-DCV results decreases from 2.25◦ to 0.30◦. The angular resolution is slightly improved
for the array with 32 elements as the beam width decreases from 1.44◦ to 0.29◦. The beam
width can be further reduced but less improved when array elements increase to 64 as the
beam width decreases from 0.95◦ to 0.22◦. For features at the end-fire direction of the array
(Figure 9b), the beam width of the M-DCV results is similar but slightly larger compared
with the results at the array broadside. For the arrays with 16, 32, and 64 elements, the
beam width of the M-DCV results decreases from 4.98◦ to 2.94◦, from 2.04◦ to 0.48◦, and
from 1.26◦ to 0.36◦, respectively. For the array with 16 elements, the initial SNR is set to
−7 dB, and the beam width of the M-DCV results becomes unstable for features at the
end-fire direction. This is because the array gain becomes extremely low in this condition.
The steer response after beamforming is significantly affected by the noise incident from
other directions, leading to an unstable feature that can hardly be determined from the
beamformed intensity distribution.

We next study the dependence of the beam width as a function of the number of
array elements. The number of snapshots is constantly set to 5. For features at the array
broadside, the SNRs are fixed at −18 dB, −13 dB, and −8 dB, respectively. As shown
in Figure 10a, the beam width of the M-DCV results decreases from 2.72◦ to 0.43◦ as the
number of array elements increases from 8 to 64 for a −13 dB fixed SNR. The angular
resolution is slightly improved for a higher SNR at −8 dB as the beam width decreases
from 2.35◦ to 0.42◦. The angular resolution can be further but less improved when the
array elements increase to more than 64. It is noticed that, for an SNR lower than −18 dB,
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although the beam width maintains a downward trend, it becomes unstable since the weak
fluctuating target signal is difficult to identify from the ambient noise. For features at the
end-fire direction of the array, the SNRs are fixed at −8 dB, −3 dB, and 2 dB, respectively.
As shown in Figure 10b, the beam width of the M-DCV results maintains a similar trend
as in the broadside direction. For a fixed −8 dB SNR, the beam width decreases from
4.98◦ to 0.53◦. For higher SNRs at −3 dB and 2 dB, the beam width of the M-DCV results
decreases from 4.27◦ to 0.49◦ and from 3.54◦ to 0.45◦, respectively. The difference in SNR
settings between broadside and end-fire directions is because the array gain is lower at the
end-fire direction. Any features with SNRs lower than −8 dB are hard to identify from the
ambient noise.
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Figure 9. The performance of the M-DCV algorithm as a function of signal-to-noise ratios (SNRs).
The performance is evaluated according to the beam width of the CBF outputs and the M-DCV results
located at (a) the broadside and (b) end-fire directions, respectively.
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Figure 10. The performance of the M-DCV algorithm as a function of the number of array elements.
The performance is evaluated according to the beam width of the CBF outputs and the M-DCV results
located at (a) broadside and (b) end-fire directions, respectively.
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Finally, we study the performance of the M-DCV algorithm as a function of the number
of snapshots. The SNR is constantly set at −8 dB, and the number of array elements is
fixed at 32. As shown in Figure 11, the performance of the M-DCV algorithm improves
and stabilizes as the number of snapshots increases up to 5 for both the broadside and
end-fire directions. The beam width of the M-DCV results decreases from 1.15◦ to 0.70◦ for
features at the array broadside and decreases from 1.31◦ to 0.86◦ for features at the end-fire
direction. For comparison, the beam width of the CBF output remains unchanged for both
the broadside and end-fire directions. In most practical applications, a number of snapshots
larger than 5 is required to obtain stable intensity distribution estimates via deconvolution.
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3.3. Field Experiment Data Results

The field experiment was conducted near the Xisha Islands in the South China Sea in
June 2021 and consisted of performing dynamic acoustic imaging of the geological features
of the seabed [52] (Figure 12). The water depth in the Xisha Islands region ranges from
200 m to 1200 m. Two research vessels, Fishing & Scientific IX and Fishing & Scientific III,
were employed to carry a low-frequency source array and tow a large-aperture horizontal
linear hydrophone array during the experiment. The source array, consisting of ten trans-
ducer elements at a spacing of 0.417 m, was deployed vertically with a center depth of
approximately 50 m from the source ship. The source ship was moored throughout the
transmission, and its position information was determined and recorded using the onboard
GPS sensor. The source array periodically transmitted an up-sweep linear frequency modu-
lated (LFM) signal shaded with a Turkey window every 40 s, with a center frequency of
1800 Hz, a bandwidth of 200 Hz, and a pulse width of 1 s. The source level was calibrated as
216 dB re 1µPa @ 1m. The pulse signals propagating through the ocean acoustic waveguide
were scattered by the geological features of the seabed and other potential targets. A nested
array with 128 elements was towed by the receiver ship along a preset route to collect and
record the echoes of the transmitted pulse signals (Figure 12). The first 96 elements of the
array, with a spacing of 0.417 m, were designed for signals with a frequency below 1800 Hz,
and the remaining 32 elements, with a spacing of 1.667 m, were designed for signals below
450 Hz. The sound speed was assumed to be c = 1500 m/s in data processing.

The echo signal collected by the receiver array was processed to image the scattering
acoustic field from the geological features of the seabed or other potential targets as a
function of the incident direction and time using coherent CBF and matched filtering.
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We adopted the acoustic data collected by multiple sub-apertures consisting of either 16
or 32 elements with a 50% overlap throughout the array to test the performance of the
M-DCV and AM-DCV algorithms. The acoustic data from all sub-apertures after CBF and
normalization were averaged and used for subsequent deconvolution.
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We first evaluated the performance of the M-DCV and AM-DCV algorithms for a
relatively wide potential target located at the broadside direction of the receiver array. Echo
signals from potential targets were recorded in the continental rise region in the area west
of the Xisha Islands around 8:45 on 18 June 2021 (China Standard Time; CST). The potential
target highlighted within the white box in Figure 13 is considered to be an underwater
geological feature. This feature was identified by scattering echoes that were continuously
received over nearly half an hour between 8:27 and 8:52 (CST); moreover, the position of the
scatterer did not change over time or with the changing positions of the sound source and
receiver. The M-DCV and AM-DCV algorithms were applied to the CBF outputs of echo
signals using sub-apertures with 32 array elements. Figure 13 shows the results in Cartesian
coordinates on the left and in polar coordinates on the right. The intensity distributions
of the CBF outputs, the M-DCV and AM-DCV algorithm results averaged over a distance
from 12.50 km to 12.60 km, are plotted as a function of the azimuthal angle in Figure 14. In
addition, the result of the CBF outputs with a full aperture consisting of 96 array elements
is shown in the figure as the ground truth for comparison. The M-DCV result of potential
target imagery leads to a maximum 45% improvement in angular resolution over CBF.
As shown in Figure 13, the imaging of the M-DCV and AM-DCV results, as well as the
CBF outputs with the full array of 96 elements, can depict the boundary and shape of the
target well, which is not achievable using the CBF with 32 elements. The M-DCV result
deteriorates the ground truth intensity at up to 20 dB down from the peak value, compared
with that of the CBF at roughly 4 dB from the peak value.

We next compare the performance of the M-DCV, AM-DCV, and CBF results for wide-
range extended features detected near the South China Sea continental shelf at 20:33 on
19 June 2021 (CST). The strong scatters highlighted within the white box in Figure 15 are
considered to be a result of continental shelf reverberation. Multiple eigenrays formed
under the marine sound speed profile by the transmitted signals focused on the continental
shelf, thereby generating reverberation echoes. The distribution of reverberation echoes
is related to the seabed geographic features, water depth, sound speed profile, and the
relative positions of the source and receiver. The results for sub-apertures with both 16 and
32 array elements are shown in Figure 15 to illustrate the effectiveness of the algorithm.
As shown in the figure, the AM-DCV result with 32 array elements (Figure 15d) shows
comparable performance to the CBF algorithm using the full aperture with 96 elements
(Figure 15g). The M-DCV results with fewer than 16 array elements (Figure 15a) also
achieve a similar performance (Figure 15d), indicating that the AM-DCV algorithm has a
comparable performance on deconvolved beamforming as the array aperture reduction. In
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practical applications, the AM-DCV algorithm will greatly reduce the computation time,
making it useful in applications that require quasi-instantaneous processing.
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Figure 15. A comparison between (a,b) the M-DCV results using 16 or 32 array elements, (c,d) the
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4. Discussion

In this study, we follow the well-known assumption that the instantaneous field of
incident plane waves from distinct directions follows circular complex Gaussian statistics,
due to random fluctuations caused by random wave propagation and scattering according
to the central limit theorem [38–41]. The averaged intensity of each incident plane wave
over a short time period (e.g., the measurement time) follows a Gamma distribution. As a
result, the acoustic intensity measurements then derived from the CCGR field contain signal-
dependent noise [37,38]. After time-harmonic plane wave beamforming with a sufficient
large-aperture array, intensities at distinct scanning angles are statistically independent
of each other and can be considered as a summation of the products of the beam pattern
and multiple independent—but not identical—Gamma-distributed incident plane wave
intensities. Knowing the beam pattern of the array with a spatial taper function, we yield a
maximum likelihood estimator of the incident intensities from distinct directions through
maximizing the likelihood function of these independent beams. The estimator acts as a
deconvolution process that extracts the original angular distribution of the incident plane
wave fields from blurred beamformed outputs.

Previous work has assumed that the beamformed intensity of incident plane waves
measured at a certain scan angle follows the Gamma distribution. It is noticed that, for
multiple adjacent features with significant differences in intensity, the statistics of the CBF
output deviate from the Gamma distribution, leading to a noticeable performance degra-
dation in angular resolution for the DCV algorithm. Therefore, in this study, we derive
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the modified conditional probability distribution of the beamformed intensity. Further-
more, we also provide an improved initial solution vector for the iterative scheme and an
approximate likelihood model that can be numerically calculated.

5. Conclusions

In this study, the CBF output intensities at distinct scan angles were modeled as
the summation of the products of the beam pattern and multiple independent—but not
identical—Gamma-distributed incident plane wave intensities. Based on this conclusion,
we derived the exact conditional probability distribution of beamformed intensity and
proposed the M-DCV algorithm. We also introduced a computationally efficient approxi-
mate expression for calculating the conditional probability distribution of the CBF output.
To reduce the computational complexity, we proposed the AM-DCV algorithm, which
simplifies the modified model and reduces the number of random signals when calculating
the conditional probability distribution. Using both synthetic and experimental data, the
M-DCV and AM-DCV algorithms were shown to provide a significant improvement in
angular resolution over CBF. The performance of the M-DCV algorithm was further eval-
uated as a function of signal-to-noise ratios, number of array elements, and number of
snapshots. The M-DCV result for acoustic images generated from the real data indicated
an improvement of roughly 45% close to the array broadside. The proposed algorithms
are applicable for OAWRS or other applications that utilize plane wave beamforming with
linear or other array types.
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