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Abstract: The Brazilian Atlantic Rainforest presents great diversity of flora and stand structures,
making it difficult for traditional forest inventories to collect reliable and recurrent information to
classify forest succession stages. In recent years, remote sensing data have been explored to save
time and effort in classifying successional forest stages. However, there is a need to understand if
any of these sensors stand out for this purpose. Here, we evaluate the use of multispectral satellite
data from four different platforms (CBERS-4A, Landsat-8/OLI, PlanetScope, and Sentinel-2) and
airborne light detection and ranging (LiDAR) to classify three forest succession stages in a subtropical
ombrophilous mixed forest located in southern Brazil. Different features extracted from multispectral
and LiDAR data, such as spectral bands, vegetation indices, texture features, and the canopy height
model (CHM) and LiDAR intensity, were explored using two conventional machine learning methods
such as random trees (RT) and support vector machine (SVM). The statistically based maximum
likelihood (MLC) algorithm was also compared. The classification accuracy was evaluated by
generating a confusion matrix and calculating the kappa index and standard deviation based on field
measurements and unmanned aerial vehicle (UAV) data. Our results show that the kappa index
ranged from 0.48 to 0.95, depending on the chosen dataset and method. The best result was obtained
using the SVM algorithm associated with spectral bands, CHM, LiDAR intensity, and vegetation
indices, regardless of the sensor. Datasets with Landsat-8 or Sentinel-2 information performed better
results than other optical sensors, which may be due to the higher intraclass variability and less
spectral bands in CBERS-4A and PlanetScope data. We found that the height information derived from
airborne LiDAR and its intensity combined with the multispectral data increased the classification
accuracy. However, the results were also satisfactory when using only multispectral data. These
results highlight the potential of using freely available satellite information and open-source software
to optimize forest inventories and monitoring, enabling a better understanding of forest structure
and potentially supporting forest management initiatives and environmental licensing programs.

Keywords: Atlantic Rainforest; Landsat-8; CBERS-4; planet; Sentinel-2; machine learning

1. Introduction

Traditional forest inventories in tropical forests require time and resources, which adds
to the difficulty of accessing certain areas to collect information. The costs associated with
field surveys are usually high, which is why they are usually conducted at irregular inter-
vals [1]. This makes it difficult to track forest dynamics and successional stages, hampering
the implementation of management and conservation strategies, which can have serious
consequences for threatened tropical biomes such as the Atlantic Rainforest. This biome
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has been reduced to 28% of its original area [2] due to anthropogenic disturbances such
as industrial activities, urbanization, and agricultural expansion. Currently, the Atlantic
Rainforest consists of forest patches at different stages of forest succession embedded in a
mosaic of degraded areas, pastures, agriculture, forestry, and urban areas [3].

The classification of the forest succession process into different stages is a strategy
for understanding forest dynamics and characteristics [4]. For Brazilian legislation, the
modalities of use and standards for vegetation suppression in the Atlantic Rainforest
biome are regulated differently for each successional stage, making it important to classify
them not only accurately but also in a timely manner for environmental enforcement
and permitting [5]. Measurements of structural attributes related to forest succession
are also important for predicting long-term processes such as carbon sequestration [6].
Identifying and understanding the ecological relationships within different successional
stages is fundamental for maintaining existing ecological values and identifying strategies
for restoring degraded areas [7].

Because classification of different successional stages on a large scale and in a contin-
uous manner is not feasible using traditional field surveys, there is a need to investigate
data and methods that map forest succession more efficiently and rapidly to optimize tradi-
tional field inventory techniques [7,8]. One alternative is the use of airborne LiDAR (Light
Detection and Ranging) technology, which transmits and receives a laser pulse. LiDAR
produces three-dimensional information from the forest canopy and the ground, providing
accurate estimates of structural attributes [9,10]. Parameters such as tree height and canopy
dimensions are important elements for management [11]. LiDAR metrics characterize the
distribution and density of vegetation, which vary with the successional stage, making it
possible to classify the forest successional stages over large areas [12,13].

The sensitivity of certain types of remote sensing data, such as LiDAR and SAR, to
measure the three-dimensional structure of the vegetation canopy enhances their ability to
provide accurate estimates of vegetation structure, since succession is a three-dimensional
process [7,14,15]. Many studies have demonstrated the importance of remotely sensed
data from LiDAR or optical sensors for a variety of land applications. Some studies have
used airborne LiDAR for biomass estimation in temperate forests [16,17], or for ecological
surveys and carbon stock assessment in tropical forests [18,19]. Some studies have used
metrics provided by LiDAR data to classify successional stages [19–22]. Other authors have
used optical data for land use, land cover, and vegetation classification [23–27]. Despite
the ability of airborne LiDAR data to represent the vertical structure of vegetation and the
terrain in which it is located, its cost can still be considered high, especially in developing
countries [7].

Alternatively, many optical sensors on board satellites provide free and global infor-
mation. They are used for a variety of purposes, including natural resource exploration and
thematic mapping, environmental monitoring, natural disaster detection, crop forecasting,
defense, and surveillance. Many of these applications are only possible because of the
improvement in the ability of imaging sensors to produce more accurate information, with
some sensors having spectral resolution of hundreds of bands and spatial resolution better
than 1 m [28,29]. In recent years, several Earth-observation satellites have been launched,
providing data with steadily improving spectral, radiometric, and spatial resolutions [27].
Among them, Landsat-8 and -9 and Sentinel-2 have been explored in many forest appli-
cations, such as aboveground biomass estimation [30], burn severity mapping [31], and
even forest succession stage classification [27]. Other potential optical sensors have been
introduced but have not been as well studied for these applications. Among them, CBERS-
4A was launched on 20 December 2019, which has three sensors: a multispectral camera
(MUX), wide field imaging camera (WFI), and wide scan multispectral and panchromatic
camera (WPM). This WPM sensor has a high spatial resolution of 2 m in the panchromatic
band, a radiometric resolution of 10 bits, and a spectral resolution of 4 bands. Another
sensor is the PlanetScope, which has a radiometric resolution of 16 bits and a spatial reso-
lution of 3 m. It currently has eight spectral resolution bands and offers the possibility of
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daily temporal resolution. Given that all these sensors provide data with different spatial,
spectral, and temporal resolutions, there is a need to understand whether any of these four
sensors stand out for the classification of successional forest stages, with the advantages
and disadvantages of each.

Compared to spaceborne multispectral data, airborne LiDAR data are typically avail-
able at smaller scales. Nevertheless, studies have shown the potential of using data from
both airborne LiDAR and satellite-based imaging sensors for forest successional stage
classification [32,33]. However, to our knowledge, no study has compared the performance
of multispectral sensors from these four satellites (CBERS-4A, PlanetScope, Sentinel-2, and
Landsat-8) in conjunction with LiDAR data for this purpose. Due to the availability of a
variety of open and commercial multispectral satellite data, it is important to be aware
of and understand the strengths and weaknesses of each for forest classification. This
allows users to make better decisions when implementing conservation and management
strategies while conserving resources.

In addition to the selection of the most appropriate data, the chosen classification
method is also critical for successful land cover and land use mapping [34]. The use of mul-
tispectral spaceborne data combined with large-scale automatic classification techniques
reduces the inconsistencies associated with human interpretation [35,36]. In this context,
traditional statistical and machine learning algorithms are widely used due to their ability
to handle high-dimensional data with a limited number of samples [37]. They are easier to
interpret compared to advanced deep learning algorithms [38]. In machine learning (ML),
nonparametric algorithms are used for area modeling and classification. These algorithms
accept a variety of data as input predictor variables and refrain from making assumptions
about them [39,40]. Random Tree (RT) and Support Vector Machine (SVM) are examples of
this type of algorithm. On the other hand, parametric algorithms assume that the regression
function can be parameterized with a finite number of parameters [41]. Statistical and
probabilistic models assume that the input data are described using a Gaussian distribution
and allow statistical inference to describe these distributions [42–44], such as the maximum
likelihood classifier (MLC).

This study proposes a method for classifying forest successional stages in a subtropical
forest area in southern Brazil, combining LiDAR and multispectral data from four platforms:
CBERS-4A, PlanetScope/Dove, Sentinel-2, and Landsat-8, two of which have never been
used for this purpose. The canopy height model (CHM) was extracted from the LiDAR
data, validated with field data, and used as an attribute in some classification approaches.
From the four multispectral sensors, additional texture-related metrics were extracted,
and the addition of some vegetation indices was also considered. In addition to testing
datasets composed of different attributes and sensors, different classification methods
were compared: a traditional parametric classification method, MLC, and two machine
learning methods, RT and SVM. The accuracy of the classifications was evaluated using
conventional forest inventory data and manual photo interpretation of CBERS-4A data and
an unmanned aerial vehicle (UAV) mosaic. The results of this study help to understand
how sensors with different capabilities influence classification accuracy in discriminating
forest succession stages in an Atlantic rainforest, and such information can help decision
makers implement conservation and management strategies in this threatened biome.

2. Materials and Methods
2.1. Study Area

The study area is a Private Natural Heritage Reserve (https://klabin.com.br/sustentabilidade/
meio-ambiente-e-biodiversidade/rppns, accessed on 17 April 2024) and is located in the munici-
palities of Bocaina do Sul, Painel, and Urupema (Santa Catarina state; Southern Brazil; Figure 1).
This region has a Cfb climate (humid mesothermal temperate climate with mild summers) [45].
The predominant vegetation in the region is classified as Upper Montane Mixed Ombrophyllous
Forest [46], with an average elevation of 1525 m above sea level, and it belongs to the Atlantic Forest
biome. According to forest inventory data provided by the organisation, the predominant species in

https://klabin.com.br/sustentabilidade/meio-ambiente-e-biodiversidade/rppns
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the area are Araucaria angustifolia, Dicksonia sellowiana, Drimys angustifolia, Drimys brasiliensis, Eugenia
pyriformis, Ilex microdonta, Ilex paraguariensis, Myrcia palustris, and Siphoneugena reitzii. Figure 1 shows
the map of the study site containing the property’s boundaries.
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2.2. Data Collection and Processing

Six data sources were selected for this study: an LiDAR point cloud, multispectral
spaceborne imagery from CBERS-4A, Landsat-8, Sentinel-2, and PlanetScope, and a mosaic
obtained from a UAV flight. Figure 2 shows the point cloud information and processing
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steps distributed in the processing flowchart. The detailed procedures of each processing
step are described in the following sections.
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2.2.1. LiDAR Data

Table 1 shows the sensor and settings used for the LiDAR data acquisition. The aerial
survey was performed by SAI—Serviços Aéreos Industriais—October 2019. The CHM was
generated by filtering and classifying the LiDAR point cloud using the method developed
in previous studies [47,48] in Lastools v.2020.
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Table 1. Characteristics of the aerial coverage and the LiDAR equipment used.

LiDAR Optech ALTM Gemini

Wavelength 1064 nm
Acquisition date 8 October 2019

Flight height 800 m
Average flight speed 184 km/h

Scanning angle ±10◦

Laser scanner repeat 70 kHz
Scanning frequency 70 Hz

Return number 1–4
Intensity 12 bits

Average density of points 15.38 points/m2

2.2.2. Description of the Multispectral Satellite Data

The data from CBERS-4A (WPM sensor) and PlanetScope are from 17 April 17 2020.
The scenes used were “CBERS_4A_WPM_20200312_206_146_L4” and “20201704_142122_94_
1069_3B_AnalyticMS_SR”, respectively. The Landsat-8/OLI data are from March 10, 2020, cor-
responding to the scene “LC08_L1TP_221079_20200310_20200822_02_T1”, and from Sentinel-
2/MSI, we used a scene from 24 April 2020, “L2A_T22JFQ_A016366_20200424T132408”.

The CBERS-4A images have been downloaded from the INPE website (http://www.
dgi.inpe.br/catalogo/explore, accessed on 17 April 2024), and have three sensors: multi-
spectral camera (MUX); wide field imaging camera (WFI); and wide scan multispectral
and panchromatic camera (WPM). The WPM sensor provides 2 m spatial resolution in the
panchromatic band, 10-bit radiometric resolution, and four spectral bands from visible to
near-infrared. Images from the Landsat-8/OLI platform are available on the USGS website
(https://earthexplorer.usgs.gov/, accessed on 17 April 2024) and have a spatial resolution
of 15–30 m and a 16-bit radiometric resolution.

Sentinel-2 data are available on the Copernicus website (https://dataspace.copernicus.
eu, accessed on 17 April 2024). This platform consists of a pair of imaging satellites and has
a spatial resolution of (10–60 m), 12-bit radiometric resolution, and high spectral resolution
with 13 bands. The three platforms mentioned above make their data freely available.

On the other hand, PlanetScope images are commercially available through the Planet
website (https://www.planet.com/, accessed on 17 April 2024). This platform has a
constellation of satellites with 16-bit radiometric resolution, 3 m spatial resolution, and
currently four spectral bands, in addition to high temporal resolution. The free images with
the data closest to the LiDAR coverage were used. Since there is a time lag between the
data acquisition dates, there may be differences in vegetation characteristics between them.
Table 2 shows the bands used along with the spectral resolution of each image.

Table 2. Spectral bands of the satellites CBERS-4A (WPM), Landsat-8/OLI, Sentinel-2/MSI, and
Planet/Dove.

CBERS-4A/WPM LANDSAT-8/OLI Sentinel-2/MSI PlanetScope

0.45–0.52 µm (B) 0.45–0.51 µm (B) 0.46–0.52 µm (B) 0.45–0.51 µm (B)
0.52–0.59 µm (G) 0.53–0.59 µm (G) 0.54–0.58 µm (G) 0.50–0.59 µm (G)
0.63–0.69 µm (R) 0.64–0.67 µm (R) 0.65–0.68 µm (R) 0.59–0.67 µm (R)

0.77–0.89 µm (NIR) 0.85–0.88 µm (NIR) 0.78–0.89 µm (NIR) 0.78–0.86 µm (NIR)
0.45–0.90 µm (PAN) 1.57–1.65 µm (SWIR1) 0.70–0.71 µm (Red Edge 1)

2.11–2.29 µm (SWIR2) 0.73–0.75 µm (Red Edge 2)
0.50–0.68 µm (PAN) 0.77–0.79 µm (Red Edge 3)

0.85–0.87 µm (Red Edge 4)
1.57–1.66 µm (SWIR1)
2.11–2.29 µm (SWIR 2)

Note: B: blue, G: green, R: red, NIR: near infrared, SWIR: shortwave infrared, and PAN: panchromatic spectral band.

http://www.dgi.inpe.br/catalogo/explore
http://www.dgi.inpe.br/catalogo/explore
https://earthexplorer.usgs.gov/
https://dataspace.copernicus.eu
https://dataspace.copernicus.eu
https://www.planet.com/
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2.2.3. Preprocessing Satellite Images

The CBERS-4A, Planet, and Sentinel-2 satellite data already have atmospheric and
geometric corrections. For the Landsat-8 images, the semi-automatic classification plu-
gin [49] in the QGIS 3.22 application was used. The preprocessing tool was used to perform
atmospheric correction based on the .MTL files provided with the images. Geometric
corrections were also applied to these images.

After the atmospheric correction, the images were subjected to a band composition to
obtain color images, which were then used to extract texture metrics. For the images with
the panchromatic band, the sharpness weight of the bands was calculated, considering
the radiance within each band [50]. Then, to increase the spatial resolution of the Landsat-
8 and CBERS-4A images, the pan sharpening between the color compositions and the
panchromatic band was performed using the weight value of each of the previously calcu-
lated bands and the Gram–Schmidt method, which is based on a vector orthogonalization
algorithm [51].

Finally, using the raster calculator tool, the following vegetation indices presented in
Table 3 were generated for all satellites through mathematical operations between the bands.

Table 3. Vegetation index equations used in the study.

Vegetation Index Equation Reference

NDVI (NIR − R)/(NIR + R) [52]
EVI 2.5 (NIR − R)/(L1 + NIR + C1 ×R − C2 × B + 1) [53]
TGI −0.5 × (190 × (R − G) − 120 ×(R − B)) [54]

SAVI (NIR − R)/(NIR + R + L2) × (1 + L2) [55]
VARI (G − R)/(G + R − B) [56]

Note: L1 = 1; C1 = 6; C2 = 7.5; L2 = 0.5.

The multispectral images were converted into a gray level image by applying weights
for each band and normalizing the output image using the gray level function [57]. Then,
the gray level image was used to extract the texture information. Using the Haralick
method [58] empirically and considering the pixel size of the images, and with the search
window (3 × 3, 5 × 5, and 7 × 7), the azimuth value of 135◦ [24] was extracted. As a result,
information on energy, entropy, correlation, contrast, and homogeneity of variance was
extracted. This process was performed for all satellite images examined. At the end of the
preprocessing steps, all data were resampled to 1 m spatial resolution to allow integration
with LiDAR-derived data. This resampling of multispectral data to 1 m did not change
the spectral and spatial characteristics of these datasets, as each 15 m or 10 m pixel size
(depending on the multispectral sensor) is divided into a 1 m pixel size that reflects the
same information as its original resolution. This procedure is only intended to make the
multispectral data compatible with the LiDAR spatial resolution, while not degrading the
resolution of the LiDAR data. We are aware that some polygons used as training samples
may contain only partial information of the original pixel size. However, since our targets
are natural forests and not individual objects such as trees, we felt that this effect would
not be as pronounced.

2.2.4. Reference Classification

The elaboration of the reference classification, or ground truth, was carried out using
information from the conventional forest inventory provided by the company that owns
the area where the study was conducted, the CHM (Appendix A, Figure A1), and manual
photointerpretation using the CBERS-4A satellite image, which has the best spatial resolu-
tion among the images used. The mosaics generated using the UAV were used to validate
the photointerpretation, since flights were only performed in some parts of the study area,
and these did not provide enough information to generate the reference classification. The
forest height provided by the CHM was the main information used for class delimitation,
together with the visual analysis of the CBERS-4A image.
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2.2.5. Unmanned Aerial Vehicle (UAV)

To evaluate the reference classification, images with very high resolution were acquired
from UAV Parrot Blue Grass. Table 4 shows some characteristics of the platform.

Table 4. Characteristics of the unmanned aerial vehicle and its sensor parameters.

UAV Parrot Blue Grass

Camera Parrot Sequoia e RGB 16 MP
Flight autonomy (min) 25

Weight (g) 1850
Multispectral sensor Green, Red, RedEdge, and NIR
Navigation sensors GPS + GLONASS
Spatial resolution 2 cm

The flight altitude was 120 m, with a longitudinal and lateral overlap of 80% and
a flight speed of 5 m/s. The resulting pixel size information was 11.31 cm/pixel, with
an approximate flight time of 13 min based on the established parameters. Six areas of
approximately 16 hectares each were selected for the aerial survey.

After the UAV data collection, they were subjected to automatic aerial triangulation
and digital orthomosaic creation using the WebODM 2.4.2 software. The high-resolution
processing parameter was used to obtain the photogrammetric point cloud of the area
of interest, leaving its options as default. The UAV mosaics were used to validate the
manual photointerpretation generated from the CBERS-4A image and the data derived
from LiDAR. The UAV campaign was conducted in April 2021, with a time lag between
the LiDAR campaign and the natural forest areas, which are well established and have not
suffered the effects of anthropization.

2.2.6. Datasets Creation

For each satellite used (CBERS-4A, Sentinel-2, Landsat-8, and Planet), 11 datasets were
created to use all the available information (spectral bands, vegetation index, GLCM, and
LiDAR information) for that satellite or sensor. All data combinations were obtained for
each satellite, and data from different satellites were not combined. Table 5 shows the input
data settings used in the classification process.

Table 5. Dataset and number of variables as input data for the supervised classification approaches.

Datasets
Number of the Rasters in Each Dataset

CBERS-4A Landsat-8 Sentinel-2 PlanetScope

1 Satellite bands 4 6 10 4

2 Satellite bands
+CHM (LiDAR) 5 7 11 5

3 Satellite bands
+CHM (LiDAR) + intensity (LiDAR) 6 8 12 6

4 Satellite bands
+CHM (LiDAR) + intensity (LiDAR) + NDVI 7 9 13 7

5 Satellite bands
+CHM (LiDAR) + intensity (LiDAR) + EVI 7 9 13 7

6 Satellite bands
+CHM (LiDAR) + intensity (LiDAR) + TGI 7 9 13 7

7 Satellite bands
+CHM (LiDAR) + intensity (LiDAR) + SAVI 7 9 13 7

8 Satellite bands
+CHM (LiDAR) + intensity (LiDAR) + VARI 7 9 13 7

9 Satellite bands
+CHM (LiDAR) + intensity (LiDAR) + GLCM 3 × 3 13 15 19 13

10 Satellite bands
+CHM (LiDAR) + intensity (LiDAR) + GLCM 5 × 5 13 15 19 13

11 Satellite bands
+CHM (LiDAR) + intensity (LiDAR) + GLCM 7 × 7 13 15 19 13
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2.3. Image Classification

Training and validation polygons were created to provide the classification algorithms
with information about the classes of interest to perform image classification. Since all data
were resampled to 1 m spatial resolution, the same samples were used for different datasets.

For the classification in this study, a pixel-oriented classification approach was also
used. Despite the advent of high and ultra-high spatial resolution digital images, object-
based classification has been developed [59,60]. Object-based classification differs from
pixel-based classification in two ways. The first is that object-based classification is per-
formed on object units derived from the image segmentation process, whereas pixel-based
classification analyzes image pixels directly. The second is that pixel-based classification
uses their spectral properties. At the same time, object-based classification uses not only the
spectral properties but also the spatial, textural, and shape properties of objects [59,60]. De-
spite these differences, both techniques have achieved relatively satisfactory performance
in extracting land cover information from various remotely sensed images [59,60], each
with its advantages and limitations. Pixel-based classification does not alter the spectral
properties of pixels and can preserve these properties [60]. Although object-based clas-
sification can exploit the spectral and complementary properties of objects, the spectral
properties of objects are smoothed by image segmentation [61]; segmentation errors caused
by under-segmentation and over-segmentation can affect the accuracy of object-based
classification results [62]. Over-segmentation occurs when a semantic object is divided into
several smaller image objects, while under-segmentation occurs when different semantic
objects are grouped into one large image object. From a classification perspective, over-
segmentation and under-segmentation have different effects on the potential accuracy of
object-based classification [62]. For over-segmentation, each object corresponds to a class,
so it is possible to classify all pixels in an over-segmented image object to their true class.
However, for under-segmentation, it is impossible to classify image objects into their true
classes because each under-segmented image object overlaps with multiple classes, but
the image object is classified into only a single class [62]. Due to the characteristics of the
natural forest canopy, with its high variability of species and canopy sizes, it is possible
to introduce a classification error due to the segmentation used, for example by grouping
different successional classes together. For this reason, pixel-based classification was chosen
for this study.

2.3.1. Sampling

To create the samples, polygons for the different classes of the area were generated us-
ing the Region of Interest (ROI) tool of the Arcmap 10.4 software, based on field inspections
and photo interpretation. These data were then randomly divided into training (±70%) and
validation (±30%) samples. The classes sampled were “field”, “water”, initial successional
stage “SS1”, intermediate successional stage “SS2”, and advanced successional stage “SS3”.
Table 6 shows the areas obtained from the reference classification of each class in hectares
(ha), and Table 7 shows the number of pixels sampled per class. The same calibration and
validation samples were used for all models. Appendix A Figure A2 shows the spatial
distribution of the samples over the study area.

Table 6. Classes found within the research area and their respective areas in hectares.

Class Area (ha)

Field 125.8
Water 0.3

SS1 118.1
SS2 349.6
SS3 378.9

Total 972.7
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Table 7. Number of pixels (1 × 1 m) for training and validation samples.

Samples

Class Training Validate Total

Field 164,410 85,816 250,226
Water 975 788 1763

SS1 82,332 39,157 121,489
SS2 144,005 67,030 211,035
SS3 97,036 49,120 146,156

2.3.2. Supervised Classification

Three classification algorithms were used to classify the datasets: RT, SVM, and MLC,
using the tools available in Arcmap 10.4. First, empirical tests were performed to define the
parameters of each classifier to train the classification algorithm. For the RT, the maximum-
number-of-trees parameter was set to 50, the maximum tree depth was set to 30, and
the maximum number of samples per class was set to 1000. For the SVM algorithm, the
maximum number of samples per class was set to 500, and Arcmap does not indicate
which kernel the tool is using. The MLC used only the variance and covariance of the class
signature to assign each pixel to one of the classes [63].

The classifiers mentioned above adjusted a classification model based on the training
samples performed for each of the datasets of the four satellites. The classified image was
generated based on the classification of the respective dataset using the model trained in
the previous step. The confusion matrix [64] was generated from the evaluation points
created within the validation polygons. These points extracted the class information from
the classified image and the reference classification to construct the matrix by comparing
these two data.

2.4. Accuracy Assessment

All the accuracy assessment measures were created from validation samples (±30%).
The confusion matrix allowed the calculation of the overall accuracy, weighted kappa
index [65], standard deviation of the kappa index, and its minimum and maximum values.
In addition, the producer’s and user’s accuracy was calculated. It was also verified whether
there was a statistical difference between the mean height values of the inventory and the
CHM, using Student’s t-test, and between the kappa values, using the Z-test [66], both tests
having 95% significance.

3. Results
3.1. Canopy Height Model

One of the steps in this study was to generate the CHM to be used as an attribute in
the successional stage classification. The CHM was generated by classifying and filtering
the LiDAR point cloud (Figure 3) and subtracting the resulting Digital Terrain Model from
the Digital Surface Model [48]. This product provided information on the vertical structure
of the vegetation as an alternative to collecting field data. Table 8 shows the comparison
between the average heights provided by the conventional forest inventory and the average
height of the CHM.
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Table 8. Comparison of the average height of trees measured in the conventional forest inventory
and the tree height in CHM.

Plot Mean Height by Forest Inventory (m) Mean Height by CHM (m)

1 10.05 12.05
2 10.46 9.9
3 10.94 12.05
4 6.89 6.25
5 8.72 9.9
6 6.12 8
7 8.63 9.9

The mean heights of the CHM showed no statistical difference in relation to the mean
heights of the forest inventory, with a value of p = 0.41 in the t-test with a significance of 95%.

3.2. Classification of the Vegetation Succession Stages

The kappa index for each one of the datasets was calculated using three different
algorithms (RT, SVM, and MLC). Table 9 shows the resulting kappa values for each dataset.



Remote Sens. 2024, 16, 1523 12 of 22

Table 9. Kappa index values obtained from supervised classification (RT, SVM, and MLC) of images
from CBERS-4A, Sentinel-2, PlanetScope, and Landsat-8. The best results from each dataset are shown
in bold.

CBERS-4A Sentinel-2 PlanetScope Landsat-8

Dataset RT SVM MLC RT SVM MLC RT SVM MLC RT SVM MLC

1 0.79 0.80 0.76 0.81 0.90 0.88 0.65 0.68 0.63 0.88 0.92 0.93
2 0.85 0.88 0.85 0.85 0.90 0.90 0.79 0.84 0.81 0.91 0.93 0.94
3 0.87 0.86 0.88 0.86 0.93 0.91 0.81 0.84 0.83 0.90 0.94 0.92
4 0.85 0.88 0.85 0.86 0.91 0.92 0.82 0.84 0.79 0.89 0.95 0.82
5 0.87 0.88 0.86 0.84 0.93 0.92 0.84 0.84 0.81 0.89 0.95 0.91
6 0.87 0.87 0.82 0.86 0.91 0.90 0.83 0.82 0.82 0.92 0.94 0.83
7 0.88 0.88 0.86 0.84 0.91 0.89 0.83 0.85 0.80 0.91 0.94 0.81
8 0.88 0.87 0.87 0.86 0.89 0.90 0.83 0.84 0.82 0.91 0.95 0.74
9 0.86 0.86 0.59 0.86 0.91 0.65 0.84 0.84 0.83 0.87 0.90 0.84

10 0.88 0.86 0.52 0.84 0.91 0.61 0.87 0.84 0.85 0.90 0.87 0.48
11 0.88 0.85 0.49 0.85 0.91 0.60 0.84 0.84 0.85 0.81 0.89 0.90

Images from the Sentinel-2 and Landsat-8 satellites showed results with a higher kappa
index, reaching 0.93 (Sentinel-2, SVM classifier, datasets 3 and 5) and 0.95 (Landsat-8, SVM
classifier, datasets 4 and 5), respectively. For images from the CBERS-4A satellites, the best
result was 0.88 (with the SVM classifier, datasets 2, 4, and 5, and the MLC classifier, dataset 3),
and for PlanetScope, the best result was 0.87 with the RT classifier and dataset 10.

Among the three selected classifiers, the SVM provided the highest kappa for two of
the four data platforms used in the study: dataset 3 for Sentinel-2 and dataset 4 for Landsat-
8. In the case of the CBERS-4A dataset, multiple classifications yielded a kappa index of
0.88, the maximum value for this sensor. However, dataset 2 with the SVM algorithm was
the combination with the least amount of additional data while reaching this value for the
agreement index. The classification of the planet image was the only one that obtained
a higher kappa value than the other datasets using the texture information, and dataset
10 obtained a kappa of 0.87 using the RT classifier. All top classifications are considered
excellent [67]. The worst results were obtained using the MLC classifier in sets whose
datasets use texture metrics for the CBERS-4A and Landsat-8 sensors, which are classified
as good [67].

Below are the confusion matrices and the user (UA) and producer (PA) accuracy
values for the best classification of the CBERS-4A (Table 10), Sentinel-2 (Table 11), Landsat-8
(Table 12), and Planet (Table 13) sensors. Datasets with less derived information were used
when the kappa index result was equal.

Table 10. Confusion matrix, user and producer accuracy for the CBERS-4A image succession stage
classification, with the dataset 2* using the SVM classifier.

Class Field Water SS1 SS2 SS3 Total UA

Field 355 0 0 0 0 355 1
Water 0 9 0 0 1 10 0.90

SS1 0 0 162 6 11 179 0.91
SS2 0 0 8 253 51 312 0.81
SS3 0 0 1 9 140 150 0.93

Total 355 9 171 268 203 1006
PA 1 1 0.95 0.94 0.69

* Note: The input data of each dataset are shown in Table 9.
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Table 11. Confusion matrix user and producer accuracy for the Sentinel-2 image succession stage
classification, with the dataset 3* using the SVM classifier.

Class Field Water SS1 SS2 SS3 Total UA

Field 355 0 0 0 0 355 1
Water 0 10 0 0 0 10 1

SS1 0 0 162 20 4 186 0.87
SS2 0 0 2 249 22 273 0.91
SS3 0 0 1 6 175 182 0.96

Total 355 10 165 275 201 1006
PA 1 1 0.96 0.93 0.92

* Note: The input data of each dataset are shown in Table 9.

Table 12. Confusion matrix user and producer accuracy for the Landsat-8 image succession stage
classification, with the dataset 4* using the SVM classifier.

Class Field Water SS1 SS2 SS3 Total UA

Field 355 0 0 0 0 355 1
Water 0 10 0 0 0 10 1

SS1 0 0 162 1 2 165 0.98
SS2 0 0 7 267 17 291 0.92
SS3 0 0 2 5 178 185 0.96

Total 355 10 171 273 197 1006
PA 1 1 0.90 0.97 0.94

* Note: The input data of each dataset are shown in Table 9.

Table 13. Confusion matrix user and producer accuracy for the Planet image succession stage
classification, with the dataset 10* using the RT classifier.

Class Field Water SS1 SS2 SS3 Total UA

Field 355 0 1 0 0 356 0.99
Water 0 6 0 0 4 10 0.60

SS1 0 0 151 4 26 181 0.83
SS2 0 0 6 237 21 264 0.90
SS3 0 0 4 31 159 194 0.82

Total 355 6 162 272 210 1005
PA 1 1 0.86 0.83 0.87

* Note: The input data of each dataset are shown in Table 9.

The dataset derived from CBERS-4A and CHM showed a user accuracy of 0.92 to 1
and a producer accuracy of 0.90 to 1. The dataset using Sentinel-2 and LiDAR showed a
minimum and maximum value of 0.87 to 1 and 0.92 to 1 for user and producer accuracy,
respectively. For the Landsat-8 dataset paired with LiDAR and NDVI, the user and producer
accuracies ranged from 0.92 to 1 and 0.90 to 1, respectively. Classification of the PlanetScope
image showed the most variation among the others, with producer accuracy ranging from
0.83 to 1 and user accuracy ranging from 0.60 to 0.99.

Table 14 shows the confidence interval for the best classifications of each orbital sensor
and LiDAR studied, with a significance of 95%.

The Landsat-8 classification using the SVM classifier and dataset 4 had the least
variation with a standard deviation of 0.0077, with minimum and maximum values of
0.9387 and 0.9691, respectively. With a standard deviation of 0.0125, the PlanetScope image
with the RT classifier and dataset 10 showed the greatest variation, with the kappa index
reaching a maximum value of 0.8931 and a minimum value of 0.8441. Figure 4 shows the
graphical representation of the classifications compared to the reference classification.
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Table 14. Kappa index, minimum and maximum values for the index and standard deviation, for the
best classifications of the CBERS-4A, Sentinel-2, Landsat-8, and PlanetScope images.

Sensor Classifier Dataset Weighted Kappa Standard Deviation Minimum Maximum

CBERS-4A SVM 2* 0.88 0.0119 0.8603 0.9068
Sentinel-2 SVM 3* 0.93 0.0097 0.9066 0.9446
Landsat-8 SVM 4* 0.95 0.0077 0.9387 0.9691

PlanetScope RT 10* 0.87 0.0125 0.8441 0.8931

* Note: The dataset of the compositions can be seen in Table 9. The significance of the test was 95%.

Table 15 compares the best kappa indices of each classifier for each of the four satellites
together with the LiDAR data, using the z-test with a significance of 95%.

Table 15. Value of the Z test to compare the best classifications scenarios of each chosen classification
approach applied over CBERS-4A, Sentinel-2, Landsat-8 e PlanetScope images.

Sensor Datasets Z Critical Value

CBERS-4A
SVM2 *—RT11 * 0.3122

1.96

SVM2 *—MLC3 * 0.2175

Sentinel-2
SVM3 *—RT8 * 5.3904
SVM3 *—MLC5 * 0.7511

Landsat-8
SVM4 *—RT6 * 3.8575
SVM4 *—MLC2 * 2.1378

PlanetScope RT10 *—SVM7 * 1.6503
RT10 *—MLC11 * 1.0931

* Note: The dataset of the compositions can be seen in Table 9. The significance of the test was 95%.
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Figure 4. Graphical representation of dataset and sensor classification: (a) reference classification;
(b) classification of CBERS-4A image using SVM and dataset 2*; (c) classification of Sentinel-2
image using SVM and dataset 3*; (d) classification of Landsat-8 image using SVM and dataset 4*;
(e) classification of Planet image using RT and dataset 4*. * Note: The data input of the compositions
are detailed in Table 9.
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The kappa indices of the best classification of CBERS-4A of each classification algo-
rithm showed no statistical difference and the value of Z < 1.96. A statistical difference was
observed for the classification of the Sentinel-2 image with the SVM algorithm and dataset
3 compared to the classification of the RT algorithm and dataset 8. When comparing the
agreement indices of the best classification of the Landsat-8 image, which was the SVM
with dataset 4, with those of the RT and MLC algorithms, the difference was statistically
significant for both. Finally, there was no statistical difference in the comparisons between
kappas for the classifications of the PlanetScope image.

4. Discussion

In this study, a CHM was first generated from LiDAR data to be used as an additional
attribute with multispectral images to classify forest succession stages. The mean heights
obtained from the CHM showed no statistical difference with t-test compared to those obtained
in the field using conventional forest inventory. This result is consistent with a similar study
that showed a strong correlation between CHM and field measurements, with coefficients of
determination and RMSE ranging from 0.85 to 0.92 and 2.7 to 3.5 m, respectively [68]. Our
study also showed agreement with the previous study, concluding that LiDAR has a good
performance in directly describing the height of trees in natural forests [69]. This highlights the
usefulness of this sensor for large-scale mapping for territorial management and monitoring
purposes, especially in vegetation conservation units.

The successional stage classifications for the four multispectral and LiDAR sensors
used gave excellent results according to the kappa classification [67]. For the PlanetScope
image, the best result was 0.87 for the agreement index, and this result is close to that
of a previous study that obtained a kappa of 0.90 and also used PlanetScope images
combined with LiDAR data and the RT classifier for land cover mapping and vegetation
assessment [24]. For the PlanetScope dataset, both the information derived from LiDAR
and the image texture metrics contributed to an increase in classification accuracy, with the
RT classifier also achieving the best result, but this showed no statistical difference with the
best classifications of the other algorithms used.

For the CBERS-4A dataset, the best classification resulted in a kappa of 0.88 when
using the SVM classifier with dataset 2, which consists of the sensor′s multispectral bands
together with the CHM. In a similar study, the classification of preserved or non-preserved
environmental areas was performed using convolutional neural networks and CBERS-
4A images for algorithm training and Sentinel-2 images for testing, with an accuracy of
0.87 [26].

Classification using the Landsat-8 datasets had the highest agreement index among
the datasets used. A kappa of 0.95 was obtained using the multispectral sensor images
with the addition of data derived from LiDAR (CHM and intensity image) and vegetation
indices with the SVM classifier. This result is in agreement with [27], who indicate that
the use of additional data in conjunction with Landsat-8 images produces a kappa that is
classified as reasonable to excellent for the study of vegetation. Authors [24] show that
their best classification of successional stages was completed using Landsat-8 images with
a kappa of 0.88, also using the addition of the NDVI vegetation index, but together with
the RS index and texture metrics, and using the RF classifier.

The dataset containing multispectral bands and data derived from LiDAR (dataset 3)
had the best result for Sentinel-2 with a kappa of 0.93. A study classifying an ETF (European
Forest Types) forest into three vegetation classes (pure coniferous, pure deciduous, and
mixed) obtained a kappa of 0.83 using Sentinel-2 imagery [70]. A study in a region similar
to the present study used Sentinel-2 imagery to classify successional stages and achieved
an overall accuracy of 0.98 [35].

The better performance of the Sentinel-2 and Landsat-8 satellites can be attributed
to the better radiometric resolution together with the use of more spectral bands, which
can help to discriminate each target using remote sensing [9]. One study presented its best
results for successional stage classification using Landsat-8 images instead of RapidEye
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images. RapidEye has different characteristics than Landsat-8, such as a spatial resolution
of 5 m, a spectral resolution of 4 bands, and a radiometric resolution of 12 bits, and the
results were attributed to the better radiometric resolution of Landsat-8 as well as the
greater spectral variability within the same class by RapidEye [24].

For the field class, all images obtained a good classification with a producer accuracy
of 1 and a user accuracy ranging from 0.99 to 1, indicating that the class had little confusion
with the other classes and that the model had good separability of this class from the
others. For the water class, the producer accuracy was also 1 and the user accuracy ranged
from 0.6 (Planet) to 1 (Sentinel-2, CBERS-4A, and Landsat-8), indicating that only for the
PlanetScope image was there more confusion between this class and SS3. For vegetation
classes, SS2 showed misclassification with SS3, and user accuracy ranged from 0.81 to 0.92.
The SS3 class had the most confusion in terms of producer accuracy, with values ranging
from 0.92 to 0.69, representing the proportion of points correctly assigned to the class, and
the most confusion with the SS2 class. Previous studies [32,71,72] also found challenges in
discriminating between SS2 and SS3 successional stages.

As for the classifiers used, the SVM was the one that showed the best results in an
overview of the kappa indices, while also being the best classifier for the Sentinel-2 and
Landsat-8 images. Studies such as [73,74] have shown that this classifier has better results
for images with lower spatial resolution because it needs fewer samples to train the model.
The RT classifier has a better performance with higher spatial resolution images, which
was also verified by Xie et al. in [73]. This study also confirmed this point, and the RT
classifier obtained a higher concordance index for the Planet image, but this was not
statistically different from the other classifiers used. On the other hand, the MLC algorithm
had the lowest performance, but its results do not show a statistical difference in the best
classifications of the CBERS-4A, Sentinel-2, and PlanetScope images. With a kappa ranging
from 0.85 to 0.94 for the best classifications, our results achieved similar performance to the
study of [72], which presented an overall accuracy of 0.89 for the classification of vegetation
succession stages, like this study using UAV-derived data.

For most classifications, the addition of LiDAR-derived data improved accuracy
(Table 9), as these data provide information on the vertical structure of the vegetation [75].
This result is consistent with previous studies where classification accuracy increased when
LiDAR data were added to the classification models [76,77]. Most of the classification
results improved after the inclusion of texture metrics, as this information refers to the
important attributes for the differentiation of vegetation classes [27]. In some cases, texture
metrics did not contribute to the accuracy improvement, mainly when the MLC classifier
was used.

The vegetation indices used showed that they can also improve the performance of the
classifications. In this study, these indices stood out when used with the SVM classifier for the
Landsat-8 image, giving the best results among the compositions used. Other studies [24,78,79]
showed increased classification accuracies when vegetation indices were used.

Regarding the overall results, our research achieved excellent results with the highest
kappa of 0.95. This result is consistent with other successional classification studies, which
obtained a kappa of 0.908 using Landsat-8 and RapidEye sensors [27]. Interestingly, a study
by Falkowski et al. [12] achieved a kappa of 0.95 when classifying forest successional stages
in northwestern USA forest environments using only airborne LiDAR data.

The main limitation of this study was the use of only pixel-oriented classification, as
this can reduce accuracy for satellites with higher spatial resolution, limiting the ability to
detect details in heterogeneous scenes [80] and to deal with the intra-class variability often
present in such data. Future studies are recommended to use image segmentation methods
to perform object-oriented classification [81], reducing the effects of noise caused by pixel-
oriented classification, and to use other data derived from LiDAR, such as percentile metrics
describing forest structure [12], allowing comparison of vegetation between different dates.
Interestingly, there would be attempts to retrieve other biophysical parameters such as
biomass and carbon [82] with the present dataset. The methodology can also be tested in
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other tropical and subtropical forest environments, and/or multitemporal satellite data can
be used to capture differences in vegetation phenology.

5. Conclusions

The methodology used in this study demonstrates the feasibility of classifying forest
successional stages using LiDAR and each of the orbital images analyzed. Although
the accuracy obtained varies depending on the dataset used, the approach consistently
demonstrates the ability to differentiate between these stages.

Three different supervised classification algorithms were also evaluated for the dif-
ferentiation of successional stages and land use and occupation. These algorithms used
different spectral bands, vegetation indices, and textures from optical sensors with different
specifications in terms of spatial, radiometric, and spectral resolution, in addition to data
derived from LiDAR. The best accuracy was achieved by using the SVM algorithm with
Landsat-8 data and airborne LiDAR data.

The classification accuracy for all sensors when used individually was satisfactory,
but with the addition of airborne LiDAR data as well as the vegetation and texture indices,
the classification accuracy increased, which proved to be effective when used in specific
datasets and classification algorithms. All classifiers used achieved excellent classifications,
and, among the three used, SVM was the most effective.

The produced CHM showed no statistical difference with the tree heights provided
by the conventional forest inventory. In addition, CHM was an important attribute in the
classification of vegetation succession stages.

All four satellites used (CBERS-4A, Sentinel-2, Landsat 8 and PlanetScope) have the
potential to achieve excellent results for the classification of vegetation succession stages
in the study area. Finally, all the data related to the methodology presented in this study
can be used to classify the successional stage of the mixed ombrophilous forest, which can
contribute to the understanding of the characteristics of this natural forest with the potential
to be extrapolated to other tropical and subtropical forest environments. In addition, this
methodology can serve to help in the licensing and inspection processes in these areas.
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