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Abstract: Accurate three-dimensional (3D) cloud structure measurements are critical for assess-
ing the influence of clouds on the Earth’s atmospheric system. This study extended the MODIS
(Moderate-Resolution Imaging Spectroradiometer) cloud vertical profile (64 × 64 scene, about 70 km
in width × 15 km in height) retrieval technique based on conditional generative adversarial networks
(CGAN) to construct seamless 3D cloud fields for the MODIS granules. Firstly, the accuracy and
spatial continuity of the retrievals (of 7180 samples from the validation set) were statistically eval-
uated. Then, according to the characteristics of the retrieval error, a spatially overlapping-scene
ensemble generation method and a bidirectional ensemble binning probability fusion (CGAN-BEBPF)
technique were developed, which improved the CGAN retrieval accuracy and support to construct
seamless 3D clouds for the MODIS granules. The CGAN-BEBPF technique involved three steps:
cloud masking, intensity scaling, and optimal value selection. It ensured adequate coverage of the
low reflectivity areas while preserving the high-reflectivity cloud cores. The technique was applied to
retrieve the 3D cloud fields of Typhoon Chaba and a multi-cell convective system and the results were
compared with ground-based radar measurements. The cloud structures of the CGAN-BEBPF results
were highly consistent with the ground-based radar observations. The CGAN-EBEPF technique
retrieved weak ice clouds at the top levels that were missed by ground-based radars and filled the
gaps of the ground-based radars in the lower levels. The CGAN-BEBPF was automated to retrieve 3D
cloud radar reflectivity along the MODIS track over the seas to the east and south of mainland China,
providing valuable cloud information to support maritime and near-shore typhoons and convection
prediction for the cloud-sensitive applications in the regions.

Keywords: 3D cloud fields; cloud retrieval; deep learning; CloudSat; MODIS; CGAN

1. Introduction

Clouds are a critical element of the Earth’s atmospheric system. Clouds affect the en-
ergy balance of the Earth’s atmosphere and atmospheric circulations across all scales [1,2].
Accurate detection of the three-dimensional (3D) structure of clouds is essential for improv-
ing the simulation of cloud and precipitation processes, diabatic data assimilation, and
studying cloud–radiation interaction and its impact on climate [3]. Currently, many sensors,
including satellite active and passive remote sensing, radiosonde observations, ground-
based remote sensing observations, and aircraft measurements, etc., have been developed to
obtain cloud information. Nevertheless, all existing platforms have significant limitations.
Weather and cloud radars are the most important cloud detection instruments for detect-
ing 3D structures of clouds. However, most radars are ground-based and their coverage
is limited, especially for remote mountainous areas and over the oceans. Geostationary
satellites provide continuous observation of large-scale horizontal cloud distributions over
the oceans, but due to their high altitude, the observation is typically achieved with passive
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remote sensing, which is mostly limited to cloud-top properties. Several polar-orbiting
satellites are equipped with active remote sensing (including radar). For example, the
W-band (94 GHz) millimeter-wave cloud-profiling radar (CPR), on the CloudSat satellite,
provides a global detection of 2D vertical cloud structures [4]. The GPM (Global Precipita-
tion Measurement Core Observatory) [5,6] and the FY-3G satellite [7] are equipped with
dual-frequency precipitation radars (DPR) and precipitation measurement radar (PMR)
respectively, detecting the 3D precipitation structures. Nevertheless, these radars usually
have very narrow swath widths (100–250 km) and low horizontal resolution. Polar-orbiting
satellites carrying passive remote sensing instruments, such as MODIS, have a wide swath
scanning field of view and a high spatial resolution [8,9]. Therefore, it is highly desired to
develop new methods to retrieve clouds based on these satellites’ passive remote sensing
to obtain large-scale oceanic cloud 3D structures.

Several researchers have attempted to explore satellite observations to obtain 3D
cloud information. Barker et al. used a radiation-similarity approach based on thermal
infrared and visible channel data to estimate cloud ceilings. This approach relates donor
pixels (from the active sensor data) to the recipient pixels in the surrounding regions [10].
Miller et al. analyzed the statistical relationships between cloud types and cloud water
content profiles and used detailed local cloud-profile information from active sensors to
approximate properties of the surrounding regional cloud field. Since satellite passive
observing systems provide very limited information about clouds in the vertical dimension,
the technique can only be applied to the uppermost cloud layer observed [11]. Noh et al.
developed a statistical cloud base height (CBH) estimation method to support constructing
3D clouds for aviation applications [12]. Obviously, these studies present very limited
capabilities for retrieving 3D clouds, especially for the broad ocean areas [13].

Modern deep learning technologies provide new capabilities to retrieve clouds from
satellites with passive remote sensing. Several works employed deep learning algorithms to
study cloud properties [14–17]. With deep learning technologies, it is possible to establish a
relationship between the CloudSat CPR 2D cloud vertical profiles and the corresponding
MODIS L2 cloud products so that 3D clouds can be retrieved in the full MODIS granules.
Generative adversarial networks (GANs) and their variant conditional generative adver-
sarial networks (CGANs) have been proven to be very encouraging tools for establishing
such a desired relationship [18,19]. By setting up a CGAN model, Leinonen et al. retrieved
CloudSat CPR-equivalent 2D cloud profiles (64 × 64 scenes, with a horizontal length of
70 km and a vertical height of 15 km) [20]. Wang et al. expanded the dataset in Leinonen
et al.’s study and conducted a systematic assessment of Leinonen’s CGAN model for
different cloud types and geographical regions [20]. Their study showed that the CGAN
model presents great capabilities for retrieving clouds with structured patterns, significant
thickness, and high reflectivity, such as deep convective clouds and nimbostratus [21]. It
retrieves more than 60% of deep convective cloud cases and 50% of nimbostratus cases
having probability of detection (POD) scores greater than 0.8 at a threshold of −25 dBZ.

This study aims to extend the works of Leinonen et al. [20] and Wang et al. [21] to
post-process their 64 × 64-pixel cloud scenes with better accuracy and produce seamless
3D clouds for the MODIS granules (2030 × 1354 pixels) [22] with 64 vertical levels. Firstly,
we analyzed the error characteristics of Leinonen et al.’s CGAN-retrieved cloud scenes.
Secondly, an ensemble fusion technique (described in Section 3) based on CGAN (CGAN-
BEBPF) was developed to improve the accuracy of the CGAN model generation and
achieve probabilistic fusion CGAN-retrievals of the 2D cloud radar reflectivity factors
to produce seamless 3D cloud radar reflectivity fields for full MODIS granules with a
horizontal resolution of 1 km and a vertical resolution of 240 m. The results were compared
with ground-based weather radar observations.

The structure of this paper is as follows. Section 2 introduces the data sources,
Leinonen et al.’s CGAN-based MODIS 2D vertical scene retrieval technique, the weather
case selection for this study, and the evaluation criteria for the 3D cloud retrievals. Section 3
describes the bidirectional ensemble binning probabilistic fusion (BEBPF) technique and
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an evaluation using CloudSat CPR data. In Section 4, the 3D cloud structures retrieved
for typhoon Chaba-2022 and a multi-cell convective system are compared with ground-
based radar observations. Finally, Section 5 summarizes the research results and provides
future perspectives.

2. Data and Methodology
2.1. CloudSat and MODIS Datasets

The data used in this study are from the CloudSat (CPR) and Aqua (MODIS) satellites,
similar to those used for training the CGAN cloud scene retrieval model by Leinonen
et al. [20] and Wang et al. [21]. CloudSat is in a sun-synchronous orbit at an altitude of
705 km. It is equipped with the cloud profiling radar (CPR), a 94 GHz millimeter-wave (W-
band) radar that has significantly higher sensitivity to clouds compared to standard ground-
based weather radars [4]. The 2B-GEOPROF product from CloudSat [23,24] provides radar
reflectivity observations obtained by the CPR. The Aqua satellite carries the Moderate
Resolution Imaging Spectroradiometer (MODIS) [8,9], which has 36 spectral bands covering
the visible to the thermal infrared regions, and is capable of achieving full global observation
coverage within a 2-day period [25]. MODIS enables the detection and characterization of
horizontal cloud extents and cloud radiative properties on a global scale [26,27]. Since both
the Aqua and CloudSat satellites are part of the A-Train constellation, these two satellites
fly in close proximity, with a time separation of less than one minute. Therefore, the
cloud observation data from the MODIS instrument on Aqua and the CPR instrument on
CloudSat are considered spatiotemporally consistent. Note that MODIS provides updated
data twice a day for both daytime and nighttime observations.

The CGAN model developed by Leinonen et al. [20] retrieves the CloudSat CPR
reflectivity from the cloud-top pressure (Ptop), cloud water path (CWP), cloud optical
thickness (τc), effective particle radius (re), and cloud mask, provided by the MODIS
MOD06-AUX cloud product [28]. The dataset comprises global oceanic airspace data
from 2010 to 2017, with a total of 251,456 samples (179,660 from Leinonen et al. and
71,796 from Wang et al.). Ninety percent of the sample was selected for training, totaling
219,848 samples, while the remaining 10% of the data from Wang et al. were used for
validation, totaling 7180 items. A vertical cross-section of 64 × 64 pixels, defined as a
“scene” by Leinonen et al. [20], was generated individually along the CloudSat CPR track.
Therefore, a scene covered an area of approximately 70 km horizontally and 15 km in
height. The MODIS cloud products use a great-circle nearest-neighbor scheme to match the
CloudSat CPR reflectivity, constituting the training samples for the CGAN model [28].

2.2. Requirements for Retrieving 3D Cloud Fields for the MODIS Granules

The CGAN-based cloud retrieval model developed by Leinonen et al. [20] retrieves
2D cloud radar reflectivity scenes (64 × 64 pixels) along the CPR track, using only one-
dimensional MODIS cloud observations (64 pixels) as inputs. A MODIS granule is 5 min
chunks of a MODIS swath containing 2030 × 1354 pixels (Figure 1) and covering a section
about 2030 km along the orbit and 2330 km wide [22,29]. To construct 3D cloud fields for
MODIS granules, we needed to account for the retrieval accuracy of individual scenes and
ensure continuity between neighboring scenes. Additionally, we also needed to ensure
continuity in the direction perpendicular to the CPR track. In this study, we developed a
series of algorithms to complete seamless 3D cloud field construction. Firstly, we evaluated
the characteristics of the CGAN-generated scenes. Then, we designed an ensemble and
blending method to extend the CGAN scenes to the full MODIS granule width, and finally
we dealt with the other direction (normal to the CPR track) and obtained a final 3D cloud
output. The set of processes is referred to as bidirectional ensemble binning probabilistic
fusion based on CGAN (CGAN-BEBPF). The pathway of CGAN-BEBPF is described in
Figure 1. The algorithms in each step are discussed in detail in Section 3.
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Figure 1. The work plan for constructing a 3D cloud field from a MODIS granule based on the CGAN
model. The left part is the CGAN model by Leinonen et al. [20], which generates 2D scenes. The
right part is the research carried out in this paper, where 2D scenes (64 × 64) were seamlessly fused
to obtain 3D cloud fields for the MODIS granules (2030 × 1354) with 64 vertical levels. A MODIS
granule refers to a 5 min observation result from MODIS.

2.3. Case Selection

In February 2018, the CloudSat satellite underwent a descent orbit operation, result-
ing in its withdrawal from the ‘A-train’ constellation. Therefore, since 2018, the CGAN-
retrieved MODIS cloud scenes have no longer had matched CPR observations. To validate
the 3D cloud fields with CGAN-BEBPF, two groups of weather cases were selected. The
first group included six cases from 2014 to 2017. They were used to evaluate the results of
CGAN-BEBPF by comparing them with the CPR observations. The second group included
typhoon Chaba (South China, 2 July 2022) and a multi-cell convective system (South China,
24 August 2022) occurring in the near-shore seas along the south coasts of China, for which
there were no matching CPR observations. The observation range of the coastal ground-
based weather radars (S-band) is about 200 km out into the sea, which provided reflectivity
data for verifying the 3D cloud fields retrieved for these two cases. The ground-based
radar data used for verification were from the Severe Weather Automatic Nowcast System
(SWAN) radar mosaic data provided by the National Meteorological Centre (NMC) of the
China Meteorological Administration. Table 1 describes the cases in the two groups. Note
that the Group 1 cases were also used as a reference in designing EBPF value-selection
strategies (to be detailed later).

Table 1. Description of the weather cases in this study. They are divided into two groups. The first
group had matched CPR observations, while the second had no matched CPR observations. All cases
were based on UTC. The geographical coordinates given in the table are for the central point of the
cases. (None of the cases in the table is in the supplementary dataset provided by Wang et al. [21]).

Group 1 Group 2

23:10, 31 December 2014
Western Pacific

(44◦17′48′′N, 150◦18′1′′W)

14:10, 31 March 2014
Atlantic Ocean

(10◦29′28′′S, 5◦34′52′′W)

02:50, 2 July 2022
Typhoon Chaba

(19◦42′56′′N, 114◦21′21′′E)

23:45, 31 March 2015
Western Pacific

(35◦26′5′′N, 156◦40′55′′W)

16:40, 20 October 2016
Atlantic Ocean

(43◦56′46′′S, 37◦00′43′′W)

06:00, 24 August 2022
A complex convective system

(18◦44′28′′N, 111◦34′23′′E)

04:00, 30 July 2016
Eastern Pacific

(23◦00′47′′N, 141◦33′43′′E)

15:45, 4 December 2017
Atlantic Ocean

(21◦03′40′′S, 27◦52′6′′W)
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2.4. Verification Metrics

To evaluate the 3D cloud field retrievals, the Heidke Skill Score (HSS) [30,31] was
calculated using the binary confusion matrix proposed by Finley et al. (1884) [32] (Table 2),
as verified against the CPR observations. The evaluation was performed pixel by pixel and
case by case.

Table 2. The binary confusion matrix.

Predictions (Positive) Predictions (Negative)

Observation (positive) True positive (TP) False negative (FN)
Observation (negative) False positive (FP) True negative (TN)

HSS is computed as

HSS =
2 × (TP × TN − FN × FP)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
(1)

where, for a given radar reflectivity factor threshold K, TP are the occurrences where the
observation is greater than or equal to K and the retrieval is also greater than or equal to
K. FN are the occurrences where the observation is greater than or equal to K while the
retrieval is less than K. FP are the occurrences where the observation is less than K while
the retrieval is greater than or equal to K. TN are occurrences where the observation is
less than K and the retrieval is less than K. The selected test thresholds in this study were
−22 dBz, −15 dBz, −10 dBz, −5 dBz, 0 dBz, 5 dBz, and 10 dBz.

To calculate the accuracy for the cloud mask determined by ensemble members in
Section 3.3, the accuracy score against the CPR observation was calculated as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(2)

This metric reflects the accuracy of the ensemble cloud mask for distinguishing cloudy
and clear pixels.

3. Bidirectional Ensemble Binning Probability Fusion (BEBPF)
3.1. Errors Distribution of the CGAN Scene Retrievals

Since Leinonen et al.’s CGAN model retrievals are 2D vertical cross sections of cloud
radar reflectivity (64 × 64 pixels), i.e., a scene used to reconstruct 3D cloud fields over
MODIS granules, the simple way is to run the CGAN model by sliding the scenes through-
out the MODIS granule and then combining the individual output scenes. However, such
a method leads to significant discontinuity at the junction of the scenes. The discontinuity
can be caused by the uncertainties of the CGAN model. Thus, to fuse the scenes seamlessly,
one must consider the accuracy of the CGAN-retrieved scenes and the consistency between
the neighboring scenes, especially at their lateral boundary zones. One way to cope with
the problem is to use sliding windows to generate overlapping scenes and then take an
average. However, this causes an artificial smoothing (weakening) of cloud core intensities.

We overcame the problem in three steps. Firstly, we evaluated the error properties of
the scenes; secondly, based on the error properties of the scenes, we developed an ensemble-
based probabilistic blending scheme to fuse the scenes along the CloudSat track, seamlessly;
and lastly, we worked out a similar method to process the scenes in the direction normal to
the CloudSat track.

The root mean squared error (RMSE) of the CGAN-retrieved scenes (64 × 64) was
calculated pixel by pixel for a total of 7180 samples in the validation set. The average
error was calculated over the 64 vertical layers, shown in Figure 2. There are significant
horizontal variations in the RMSE of the CGAN-generated scenes. Larger errors existed in
the lateral boundary zones and the interior errors also appeared to oscillate. This suggests
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that the CGAN generation was influenced by the boundaries because the pixels near the
boundary had less information to be used to infer the labels and, thus, the retrieval error
increased toward the boundary of the scenes. The internal oscillations were caused by
uneven error distribution due to the diverse cloud types among samples. When calculating
pixel-wise RMSE, pixels with fewer cloudy samples are more influenced by outliers, leading
to minor internal oscillations.
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Figure 2. The distribution of the vertical average RMSE of the retrieved 2D cloud scenes for the
7180 test samples.

3.2. Ensembles of the CGAN-Retrieved Scenes

Based on the characteristics of the CGAN-retrieved scene errors, an overlapping scene
generation method (e.g., scenes with small spatial shifting) was designed to provide the
uncertainty information of the CGAN retrievals. After several tests, we chose to retrieve
CGAN scenes by sliding the scene generation by four-pixel intervals at a time. This resulted
in 16 retrievals for each pixel, making a 16-member ensemble. To check the representation
of the CGAN-retrieving uncertainties, Figure 3a displays the results of the 16 ensemble
members for a mesoscale convective system and the CPR observations. It can be seen
that although all retrievals appeared to be similar to the CPR observation in an overview,
the locations and intensity of their convective cores differed significantly. This was more
obvious by comparing the radar reflectivity distribution between the retrieval results
and the CPR observations (Figure 3b). There were significant differences between the
shift-retrieved individual scenes for all radar reflectivity intensities.
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24◦39′37′′S, 27◦00′30′′W. (a) The radar reflectivity factors of the CPR observation (real) and those for
16 ensemble members generated by shifting every 4 pixels. The radar reflectivity range is from −30 to
20 dBZ. (b) The radar reflectivity factor spectral distribution of the 16 GGAN-retrieved ensemble
members (violet) and the CPR observations (blue). The 16 ensemble members, differing by 4 pixels
each, are labeled as Gan1–16.

3.3. Ensemble Binning Probability Fusion (EBPF)

Based on the CGAN-retrieved ensemble, an ensemble binning probability fusion
(EBPF) technique was designed to determine the blending weights of the CGAN retrievals
(ensemble members) at each pixel according to the ensemble probability distributions. The
EBPF technique comprised three algorithms (Figure 4): cloud masking, intensity scaling,
and optimal value selection. The Group 1 weather cases in Table 1 were used to determine
the weight parameters in these three algorithms. Note that the EBPF technique only blended
the CGAN-retrieved 2D scenes along the horizontal direction of the scene ensemble and it
did not retrieve 3D cloud fields.
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(1) Cloud Masking

As a first step, we classified whether the target pixel was cloudy or clear based on the
ensemble members. Since the ensemble contained probabilistic information for cloudy or
clear for each pixel, for a given pixel, the classification of cloudy or clear was determined
by the probability distribution of the ensemble members. To do so, we defined the cloudy
probability threshold in terms of the number of ensemble members to establish the cloud
mask. To determine an optimal threshold, we ran the cloud masking with thresholds of
0–15 members for all six Group 1 cases in Table 1, respectively. Specifically, for example,
given a pixel, a threshold of 2 meant that if more than 2 members of the ensemble said
“cloudy”, we defined the pixel as cloudy. Then, the computed result based on each threshold
was verified against the CPR observations. The accuracy scores (Equation (2)) computed
for different thresholds over all six cases are shown in Figure 5a. Apparently, a threshold of
3 was optimal, yielding the highest accuracy of 94.85%. Figure 5b–d show the results for
the case on 4 December 2017 (Table 1). Apparently, the ensemble cloud masks determined
with threshold 3 were quite consistent with the CPR observations. Therefore, threshold
3 was selected.
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Figure 5. (a) The accuracy score for the ensemble cloud masking scheme with different probability
thresholds over the six cases in Group 1 (Table 1). Results for the case at 15:45 UTC, 4 December
2017: (b) the cloud mask of the CPR observations; (c) the ensemble cloud mask obtained without a
cloudy threshold; (d) the ensemble cloud mask with the cloudy probability (the number of members)
threshold of 3.

(2) Intensity Scaling and Processing

In considering that the accuracy of the CGAN-retrieved clouds changes with the radar
reflectivity intensity, we divided the retrieved radar reflectivity into different grades and
optimized the value for each grade. The CPR data and ensemble retrievals of six cases
listed in Table 1 were used as a basis to determine the scaling and value optimization. To
focus on severe convective clouds and typhoons, the radar reflectivity below −22 dBZ,
predominantly clutter in clear areas, was set to “no cloud”. To define a proper intensity
grade classification, for the CPR radar reflectivity factors ranging from −22 dBZ to 20 dBZ,
we firstly divided them into 8 bins, at intervals of 5 dBZ (referred to as bins 1 to 8). By
examining the performance of different ensemble blending schemes for all bins, we came
up with three desired intensity grades. For each bin, the ensemble mode (MODE), which
indicates the most values that appear in the ensemble members, the mean (MEAN), and
the maximum reflectivity factor (MAX) for each of the 8 CPR radar reflectivity bins were
calculated. In addition, we also calculated the mean of MODE and MEAN, abbreviated as
“avg_max_prob (AMP)”. The verification results against the CPR observations are shown
in Figure 6.
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Figure 6. The violin plots of the ensemble-blending reflectivity with four methods: the reflec-
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avg_max_prob (AMP) result for 8 radar reflectivity bins (a–h). The shaded area between the black
dashed lines in (a–h) represents the target grades. The percentage indicates the hit rate on the target
CPR bin.
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Figure 6 shows that only a small subset of ensemble members had high radar reflec-
tivity at the rain cores due to the uncertainty in the CGAN retrievals. Apparently, the
ensemble mean tended to dilute the intensity of the rain cores. Thus, for the high radar
reflectivity (10 dBZ to 20 dBZ), named as intensity Grade A, the maximum value among
the 16 ensemble members was retained. For the medium radar reflectivity (−5 dBZ to
10 dBZ), named Grade B, since the mode value often led to an underestimation for cloud
clusters with severe convective systems, and the AMP result performed better, we selected
the AMP result. Finally, for the low radar reflectivity (−22 dBZ to −5 dBZ), named Grade
C, the mean value of the ensemble members was chosen. As a result, by defining the three
intensity Grades: A, B, and C, for each pixel, we could choose the best ensemble intensity
blending scheme according to its intensity grade to determine the final intensity at the pixel
based on the 16 ensemble members.

3.4. Evaluation of EBPF

To demonstrate the advantages of EBPF, the reconstruction by EBPF was compared
with direct splicing of the CGAN-retrieved scenes, ensemble mean, and ensemble maximum
for a nimbostratus case. The ensemble maximum referred to the highest value among the
ensemble members if one of the members had a value exceeding 5 dBZ, otherwise, the
ensemble mean was taken.

The results are presented in Figure 7. Compared with the CPR observations (Figure 7(a1,b1)),
direct splicing resulted in serious discontinuity (Figure 7(a2,b2)); ensemble mean smoothed
out the intense core and led to an underestimation (Figure 7(a3,b3)), while ensemble maximum
caused an overestimation of the cloud intensity (Figure 7(a4,b4)). EBPF (Figure 7(a5,b5))
produced the best result. It preserved the mid- to high reflectivity (Grade A and B) which
was more consistent with the CPR observations.
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Figure 7. (a) Cloud radar reflectivity of the CPR observations (a1) vs. the retrievals with direct
splicing (a2), ensemble mean (a3), ensemble maximum (a4), and EBPF (a5). (b) Masks for the intensity
Grade A (10 dBZ to 20 dBZ), B (−5 dBZ to 10 dBZ), and C (−22 dBZ to −5 dBZ) derived from the
cloud radar reflectivity in (a1–a5). (b1–b5) are the masks segmented based on the intensities of
(a1–a5) respectively. The case is a nimbostratus intercepted at 23:10 UTC, 31 December 2014 (Table 1).
The segment is from 46◦56′35′′N, 151◦16′20′′W to 52◦41′39′′N, 153◦42′5′′W.

The TS scores of the EBPF retrievals over all six cases in Group 1 (Table 1) are given in
Table 3. For comparison, the TS scores of the four experiments were computed against the
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CPR observation for different thresholds. In general, EBPF obtained the highest TS scores
across various thresholds, especially for the intense rain cores (a threshold of 10 dBZ). It
indicated that EBPF not only ensured good coverage in the low reflectivity region but also
retained the high reflectivity cores.

Table 3. The average HSS scores for the six cases in Group 1 (Table 1) for thresholds of −22 dBZ,
−15 dBZ, −10 dBZ, −5 dBZ, 0 dBZ, 5 dBZ, and 10 dBZ.

−22 dBZ −15 dBZ −10 dBZ −5 dBZ 0 dBZ 5 dBZ 10 dBZ

Direct
splicing 0.69 0.71 0.72 0.69 0.64 0.55 0.40

Ensemble
mean 0.67 0.73 0.73 0.70 0.66 0.57 0.31

Ensemble
maximum 0.67 0.73 0.73 0.71 0.66 0.57 0.48

EBPF 0.71 0.74 0.75 0.71 0.66 0.59 0.53

3.5. Bidirectional EBPF 3D Cloud Retrieving (BEBPF)

While EBPF extends Leinonen et al. [20] CGAN cloud scene retrievals along the
CPR track direction with continuous and improved cloud vertical profiles, we still had to
consider whether these cloud vertical cross sections could be directly spliced in the normal
direction of the CPR trajectory. Three algorithms were examined: (a) simply splicing the
Leinonen et al. [20] CGAN scenes retrieved in the direction normal to the CPR track (direct
splicing, Figure 8a), (b) performing EBPF in the direction, and (c) combining the EBPF
results in both directions, i.e., bidirectional EBPF (CGAN-BEBPF).
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Figure 8. (a) Schematic diagram showing CGAN cloud retrieving in the directions along and normal
to the CPR track. The red line in the figure indicates the CPR trajectory; (b) CPR observed cloud
vertical profile (cross section); (c) splicing the CGAN scene retrievals in the direction normal to the
CPR track; (d) splicing the EBPF retrievals in the direction normal to the CPR track, and (e) the
CGAN-BEBPF retrieval. The case is a nimbostratus intercepted at 23:10 UTC, 31 December 2014
(Table 1). The segment is from 46◦56′35′′N, 151◦16′20′′W to 52◦41′39′′N, 153◦42′5′′W.

The results of a case study using the above three methods are shown in Figure 8c–e,
and compared with the CPR observation (real, Figure 8b). Direct splicing produced evident
discontinuity (Figure 8c), EBPF generated better results (Figure 8d), and CGAN-BEBPF
brought about further improvements (Figure 8e). Therefore, CGAN-BEBPF was selected
for generating MODIS 3D cloud fields.
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Figure 9 presents the flowchart for constructing a 3D cloud field with CGAN-BEBPF
for a MODIS granule. Firstly, EBPF was applied along the CPR trajectory direction. Next,
we utilized EBPF in the direction normal to the CPR trajectory. It is noteworthy that
during this progress, we performed linear interpolation as well as inverse interpolation
computation on MODIS data corresponding to this observation direction (see Figure 9
for details). Finally, the results of these two steps were averaged to generate the final 3D
cloud field.
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Figure 9. Flowchart for constructing a 3D cloud field for a MODIS granule using CGAN-BEBPF. The
upper part of the diagram illustrates the process of performing EBPF along the CPR observation
trajectory direction. The lower part shows the process of performing EBPF in the normal direction of
the CPR trajectory. During this progress, the 1354 pixels were firstly interpolated to a 1 km grid. Then
the EBPF calculation was performed on these interpolated grids. Finaly, the results were interpolated
back to the original MODIS pixel positions to be consistent with the standard MODIS products.

4. Case Studies

To demonstrate the capability of CGAN-BEBFP, the 3D cloud fields for Typhoon
Chaba and a complex convective system that occurred in the coastal regions of the South
China Sea were retrieved and the results compared with the on-shore ground-based radar
observations. The descriptions of these two cases are given in Table 1. Ground-based
radar data were obtained from the SWAN radar mosaic data provided by the National
Meteorological Center (NMC) of the China Meteorological Administration. The effective
particle radius data from MODIS were plotted for comparison.

4.1. Typhoon Chaba

Typhoon Chaba was observed by MODIS at 02:50 UTC on 2 July 2022. Figure 10
presents the 3D cloud radar reflectivity retrieved with CGAN-BEBFP and a comparison
with the MODIS effective particle radius and the SWAN mosaic of reflectivity. Although
the MODIS effective particle radius did not correspond directly to the radar reflectivity, we
referred to the spatial extent and rainband structures from it. As shown in the figure, the
cloud and rainband distribution of the CGAN-BEBFP-retrieved 3D reflectivity (Figure 10b)
and MODIS effective particle radius (Figure 10a) were quite consistent, indicating an overall
good capability of CGAN-BEBFP. Figure 10b,c show that CGAN-BEBPF retrieved the weak-
intensity cloud areas that were missed by SWAN because CPR (W-band) is more sensitive to
small cloud droplets than ground-based radars (S-band). To verify the detailed structures of
the typhoon rainbands, we masked the retrieved 3D cloud fields with ground-based radar
reflectivity measurements and the results are shown in Figure 10d. In general, the rainband
structures of the 3D retrieval well agreed with the ground-based radar observations. The



Remote Sens. 2024, 16, 1561 12 of 16

3D cloud retrievals captured the typhoon eyewall (“A” labeled in Figure 10d) and spiral
rainbands (“B”, “C”, and “D”) precisely.
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Figure 10. The retrieved 3D cloud fields and the MODIS and ground-based radar observations of
Typhoon Chaba (South China, 02:50 UTC on 2 July 2022). (a) The MODIS effective particles radius;
(b) the composite radar reflectivity of the CGAN-BEBPF 3D cloud fields; (c) the composite radar
reflectivity of the ground-based radar observation (SWAN); (d) the composite radar reflectivity of the
CGAN-BEBPF 3D cloud fields masked with the cloud areas of the ground-based radar observations.

To verify the 3D cloud retrieval, the cross sections of the 3D cloud fields at heights of
1500 m, 6000 m, 9000 m, and 14,000 m were compared with ground-based radar observa-
tions at the same heights (Figure 11). Several important points can be drawn. (a) In a deep
middle layer (Figure 11b,c,f,g), the CGAN-BEBPF-retrieved cloud fields were principally
consistent with the ground-based radar measurements. The retrieval evidently broadened
the ground radar rainbands observed by the ground-based radars due to its ability to
retrieve the weak cloud regions. (b) In the upper layer (Figure 11d,h), CGAN-BEBPF
recovered the important cloud structures of ice crystals and snow particles that were partly
or completely missed by the ground-based radars. (c) CGAN-BEBPF retrieved the eye-
wall and rainbands observed by the ground radars, as well as the weak-intensity cloud
boundaries around these rainbands (Figure 11a), but it significantly underestimated the
intensity of the rainband core. This was related to the intrinsic shortcoming of the CloudSat
CPR (W-band), which cannot properly detect lower-level strong precipitation cores due
to severe signal attenuation by a deep layer of intense cloud particles. We can see that the
rainbands retrieved by CGAN-BEBPF featured with hollow weak echo zones in the rain
core. Three of them are labeled in Figure 11a as “A”, “B”, and “C”.
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Figure 11. (a–h) Comparison of the retrieved MODIS 3D cloud fields with ground-based radar
observations of Typhoon Chaba (South China, 02:50 UTC on 2 July 2022), at altitudes of 1500 m (a,e),
6000 m (b,f), 9000 m (c,g), and 14,000 m (d,h). BEBPF stands for the retrieved MODIS 3D cloud fields
by CGAN-BEBPF and SWAN stands for ground-based radar observations.

4.2. A Multi-Cell Convective System

Figure 12 shows the CGAN-BEBPF 3D cloud retrieval and the ground radar observa-
tions of an intense convective cloud cluster associated with a tropical storm that occurred in
the South China Sea at 06:00 UTC on 24 August 2022. The MODIS effective particle radius
is also presented for comparison (Figure 12a). Comparing the CGAN-BEBPF-retrieved
3D cloud distribution with the spatial coverage of the MODIS effective particle radius,
we found that they were quite consistent (Figure 12b). CGAN-BEBPF successfully recov-
ered the gravity wave rainbands near the coast (labeled as “B”) and the major oceanic
cloud mass (labeled as “C”) that was beyond the detection range of the ground-based
radar observations (Figure 12c). It is worth pointing out that, although the CGAN was
trained with the data over the oceans, CGAN-BEBPF retrieved accurately the lines of strong
cellular convection over land (labeled in “A”) in terms of both convection locations and
intensity. This suggests that the model presents some capability for retrieving 3D cloud
fields over land.
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vations of an intense convective cloud cluster associated with a tropical storm that oc-
curred in the South China Sea at 06:00 UTC on 24 August 2022. The MODIS effective 
particle radius is also presented for comparison (Figure 12a). Comparing the 
CGAN-BEBPF-retrieved 3D cloud distribution with the spatial coverage of the MODIS 
effective particle radius, we found that they were quite consistent (Figure 12b). 
CGAN-BEBPF successfully recovered the gravity wave rainbands near the coast (labeled 
as “B”) and the major oceanic cloud mass (labeled as “C”) that was beyond the detection 
range of the ground-based radar observations (Figure 12c). It is worth pointing out that, 
although the CGAN was trained with the data over the oceans, CGAN-BEBPF retrieved 
accurately the lines of strong cellular convection over land (labeled in “A”) in terms of 
both convection locations and intensity. This suggests that the model presents some ca-
pability for retrieving 3D cloud fields over land. 

 
Figure 12. A multi-convective cell system (South China, 06:00 UTC on 24 August 2022). (a) The 
MODIS effective particles radius; (b) the composite radar reflectivity (mdbz) of the CGAN-BEBPF 
3D cloud fields; (c) the composite radar reflectivity (mdbz) of the ground-based radar (SWAN). 

Figure 12. A multi-convective cell system (South China, 06:00 UTC on 24 August 2022). (a) The
MODIS effective particles radius; (b) the composite radar reflectivity (mdbz) of the CGAN-BEBPF 3D
cloud fields; (c) the composite radar reflectivity (mdbz) of the ground-based radar (SWAN).
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5. Conclusions

This work extended the CGAN-based MODIS cloud retrieval work of Leinonen
et al. [20] to generate seamless 3D cloud radar reflectivity for the whole MODIS granule. A
bidirectional ensemble binning probability fusion (BEBPF) was proposed to automate the
3D cloud radar reflectivity generation based on the CGAN model. CGAN-BEBPF enhanced
the accuracy of the original CGAN retrievals and enabled a seamless fusion of the 64 × 64
(75 km horizontal × 15 km vertical) cloud vertical profiles (scenes) to generate 3D cloud
fields for the MODIS granules. CGAN-BEBPF was applied to retrieve the 3D cloud struc-
ture of a typhoon and a multi-cell convective system, and the results were compared with
ground-based radar observations. The results demonstrate that CGAN-BEBPF retrieved
3D clouds and rainbands of typhoons and severe convection with remarkable accuracy and
reliability. The main conclusions are summarized below.

(1) Statistical verification of the 7180 2D cloud scenes (vertical cross sections of cloud
radar reflectivity) generated by the CGAN model of Leinonen et al. [20] exhibited
discontinuity in neighboring scenes, internal uncertainties, and an increase in error
towards lateral boundaries. Running the model for the overlapping scenes, but with a
small shift in the grids, changed the retrieval results significantly.

(2) A bidirectional ensemble binning probability fusion (BEBPF) technique was intro-
duced to overcome the issues of Leinonen et al. CGAN model and generate seamless
3D cloud fields for the MODIS granules, termed CGAN-BEBPF. CGAN-BEBPF opti-
mized the Leinonen et al. [20] CGAN model retrieval (scenes) accuracy and realized
seamless fusion of the scene by generating overlapped scenes and pixel-wise ensem-
bles and making use of the ensemble probability information. CGAN-BEBPF had
three components: cloud masking, intensity scaling, and optimal value selection.
CGAN-BEBPF provided superior coverage of the low reflectivity areas and preserved
high reflectivity in the cloud cores, significantly outperforming the direct splicing or
simple ensemble mean methods.

(3) CGAN-BEBPF was applied to retrieve the 3D cloud structure of typhoon Chaba and a
multi-cell convective system. A comparison of the retrieved CGAN-BEBPF 3D cloud
fields with the ground-based radar observations showed that CGAN-BEBPF was
remarkably capable of retrieving the structure and locations of rainbands and convec-
tive cells of typhoon and severe convection, as well as the weak ice and snow clouds
in the upper layer of deep convective systems, which were mostly missed by ground-
based radars. Furthermore, CGAN-BEBPF retrieved weak clouds around rainbands,
producing broader 3D rainbands than those observed by ground-based radars.

(4) Due to the signal attenuation effect of the CloudSat CPR (W-band), CGAN-BEBPF
underestimated the radar reflectivity in the lowest 2–3 km precipitation layer of deep
convective cores and had difficulty in resolving the sharp small-scale core structures.

Overall, CGAN-BEBPF exhibited outstanding performance in generating high-resolution
(~1 km horizontally and 240 m vertically) 3D cloud fields at ~1 km over the 2330 km-wide
MODIS granules over the oceans, and thus significantly filled some gaps in the modern
cloud measurements. The CGAN-BEBPF package has been run in near-real time at Nanjing
University of Information Science and Technology to generate 3D cloud fields in the South
China Sea and Western Pacific coastal regions and provides valuable cloud information
for forecasting typhoons and severe convection. Since the polar-orbiting MODIS only
observes a region twice a day, it cannot track the cloud field evolution. We are currently
working to extend this capability to retrieve 3D cloud fields using the Advanced Himawari
Imager (AHI) on board Himawari-8/9 and the Advanced Geosynchronous Radiation
Imager (AGRI) on board FY-4 geostationary satellite observations. In addition, we are also
exploring using ground-based radar reflectivity observations to construct labels for the deep
learning model, which will potentially provide more accurate 3D precipitation reflectivity
retrievals that can be more effectively assimilated into numerical weather prediction models
to improve typhoon and severe convection prediction.
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