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Abstract: Cloud detection technology is crucial in remote sensing image processing. While cloud
detection is a mature research field, challenges persist in detecting clouds on reflective surfaces like
ice, snow, and sand. Particularly, the detection of cloud shadows remains a significant area of concern
within cloud detection technology. To address the above problems, a convolutional self-attention
mechanism feature fusion network model based on a U-shaped structure is proposed. The model
employs an encoder–decoder structure based on UNet. The encoder performs down-sampling to
extract deep features, while the decoder uses up-sampling to reconstruct the feature map. To capture
the key features of the image, Channel Spatial Attention Module (CSAM) is introduced in this work.
This module incorporates an attention mechanism for adaptive field-of-view adjustments. In the up-
sampling process, different channels are selected to obtain rich information. Contextual information
is integrated to improve the extraction of edge details. Feature fusion at the same layer between
up-sampling and down-sampling is carried out. The Feature Fusion Module (FFM) facilitates the
positional distribution of the image on a pixel-by-pixel basis. A clear boundary is distinguished using
an innovative loss function. Finally, the experimental results on the dataset GF1_WHU show that
the segmentation results of this method are better than the existing methods. Hence, our model is of
great significance for practical cloud shadow segmentation.

Keywords: cloud shadow segmentation; convolution neural network; attention mechanism; feature
fusion; deep learning

1. Introduction

With the decade-long development of remote sensing technology, the Gaofen series
of satellites has formed a “three-high” observation system with high spatial, temporal,
and spectral resolution [1], which uses sensors to acquire images by obtaining information
about the Earth over long distances. In the remote sensing image, the cloud shadow area
is an important identification; through the identification of the cloud shadow position
in the image, we can obtain the visible light, infrared rays, and other information on
the ground, used to monitor the cloud coverage, the type of cloud, and the direction
of cloud movement. This provides meteorologists and weather forecasters with critical
data to help them predict the weather more accurately. However, merely identifying
the location of cloud cover is insufficient. The presence of cloud shadows can obstruct
analysis in precision agriculture and other fields, leading to biases in the results. Therefore,
applications of cloud shadow detection are increasingly widespread in meteorological
forecasting, environmental monitoring, and natural disaster detection. The cloud detection
technology [2] is inadequate; thus, utilizing cloud and cloud shadow detection technology
to accurately detect cloud cover from remote sensing images is a crucial preprocessing
step for most satellite imagery. In this paper, we propose a segmentation algorithm for
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separating the three components of clouds, cloud shadows, and background in remote
sensing images.

Traditional cloud shadow segmentation methods can be broadly categorized into
the following five types: 1. thresholding-based methods; 2. morphology-based methods;
3. statistical-based methods; 4. texture feature-based methods; and 5. machine learning-
based methods. The thresholding method uses various physical methods, such as AVHRR
and NIR images, to set feature thresholds such as luminance, chromaticity, etc., to detect
the cloud shadows in the image. Early on in this research, people used fixed thresholds to
distinguish clouds from other parts. For instance, Saunders and Kriebel [3] processed the
NOAA-9 dataset over a week by determining thresholds for a range of physical parameters
including cloud-top temperatures, optical depths, and liquid water content. While the fixed
threshold method is straightforward and user-friendly, it lacks the adaptability needed to
accommodate various meteorological conditions, lighting scenarios, geographical regions,
and times of day. Additionally, it often necessitates manual threshold adjustments, which
pose numerous shortcomings and limitations. Later, many researchers proposed improve-
ments by using dynamic thresholding for cloud detection [4–7]. The dynamic thresholding
method adjusts thresholds based on environmental conditions through the construction
of diverse physical models, thereby enhancing the accuracy of automatic cloud analysis.
However, for complex cloud and feature types, this method can be challenging to apply
to the background, and it also incurs significant computational costs. Secondly, the mor-
phological method based on set theory proposes a series of operations, such as expansion,
erosion, open and close operations, and hit–hit–miss transformations for images. Danda
and Xiang Liu et al. [8,9] constructed skeleton features to help analyze the morphology
of the cloud and thus separate it from other regions by using a gray-level morphological
edge extraction method. Moreover, Tom et al. [10] established a common method based on
morphological data to create an efficient computational paradigm for the combination of
simple nonlinear grayscale operations such that the cloud detection filter exhibits spatial
high-pass properties, emphasizes cloud shadow regions in the data, and suppresses all
other clutter. A series of methods regarding morphology are more effective for the case
of blurred cloud edges and complex shapes, but they are difficult to apply directly to
multispectral images. Thirdly, statistical methods use various statistical and analytical tools
to establish regression equations for differences in reflectance, brightness, or temperature
between picture pixels in satellite data to detect clouds. For example, Amato et al. [11]
used PCA and nonparametric density estimation applied to the SEVIRI sensor dataset,
and Wylie et al. [12] combined time-series analyses of more than 20 years of polar-orbiting
satellite cloud data to predict future cloud trends. However, since the sample data used
in regression models are historical, this type of method is not widely used and is limited
to specific times and regions. Fourthly, the texture feature method identifies cloudy and
non-cloudy regions by extracting the texture features of images. For example, Abuhussein
et al. [13,14] conducted segmentation by analyzing the GLCM (Gray-Level Co-occurrence
Matrix) to capture spatial relationships and covariance frequencies between pixels of vary-
ing gray levels in the image. This process enables the extraction of crucial information
regarding the image texture. Reiter and Changhui et al. [15–17] completed segmentation by
using the wavelet transform to detect texture features and edge information in the image at
different spatial scales and to decompose the cloud image into details at different scales to
obtain local and global features of the cloud, while Surya et al. [18] used a clustering algo-
rithm to group texture regions similar to the cloud shadow. This method works better for
texture-rich cloud shadow images. To overcome the limitations of the first four traditional
methods, machine learning algorithms are proposed to realize cloud shadow segmentation
by training classifiers. Support vector machines, random forests, and neural networks
are typical classifiers. For instance, Li et al. [19] proposed a classifier based on support
vector machines to detect clouds in images, while Ishida et al. [20] quantitatively guided
the support vector machines with the help of classification effect metrics to improve the
feature space used for detecting cloud shadows and to reduce the frequency of erroneous
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results. Fu et al. [21] combined the ensemble thresholding method and random forest
for the FY-2G image set to improve the meteorological satellite cloud detection technique,
and Jin et al. [22] established a BP neural network backpropagation model for the MODIS
dataset, which improved the learning model to a certain extent. Although these methods
are indeed more effective, they necessitate manual feature engineering to select suitable
labels for training and testing a large volume of data annotations. Furthermore, the quality
of the model is directly influenced by the features selected.

To overcome the shortcomings of manual feature engineering, deep convolutional
neural networks (CNN) gradually emerged; a variety of convolutional neural networks
were proposed for remote sensing image segmentation tasks, and semantic segmentation
algorithms based on deep learning began to gradually become mainstream. Long et al. [23]
first proposed a fully convolutional neural network, FCN, for semantic segmentation
in 2015, which can directly realize end-to-end pixel-by-pixel classification. Mohajerani
et al. [24] applied the FCN network to the remote sensing image Landsat dataset cloud
detection technique in 2018, which dramatically improved the efficiency of the target
classification of remote sensing images; however, the results obtained were still not fine
enough and not sensitive enough for the detailed parts of the image. Since then, there has
been a surge in deep learning networks, with numerous CNN frameworks continuously
being proposed. In 2015, Badrinarayanan et al. [25] introduced SegNet, a segmentation
network based on an encoder–decoder structure, utilizing up-sampling with the unpooling
operation. Subsequently, in 2019, Lu et al. [26] adapted the SegNet network model for cloud
recognition in remote sensing images. Their approach improved the accuracy of cloud
recognition by preserving positional indices during the pooling process, thus retaining
image details through a symmetrical parallel structure. Although it demonstrated some
ability in cloud–snow differentiation, its training time was found to be excessively long
and inefficient. In 2016, Chen et al. [27] designed an inflated convolutional network called
DeepLab, aimed at expanding the sensory field by introducing voids in the convolutional
kernel. DeepLab enhances the robustness of image segmentation. However, it imposes
specific requirements on the size of the segmented target. It excels in segmenting fore-
ground targets within the general size range. Nonetheless, when faced with extreme size
variations in the target, such as very small or very large targets, DeepLab exhibits poor
performance and suffers from segmentation instability. In 2015, Ronneberger et al. [28]
proposed the UNet image segmentation network, named because the network framework
is shaped like the letter U. The contextual information is fused through feature splicing
in the channel dimension during the up-sampling process to achieve a more fine-grained
segmentation, which is suitable for highly detailed segmentation tasks. In 2017, Zhao
et al. [29] designed a pyramidal scene parsing network structure, PSPNet, which integrates
contextual information from different regions, applies convolutional kernels of different
sizes, and employs a multi-scale sensory field to efficiently combine local and global cues.
In 2022, Zhang et al. [30] proposed a dual pyramidal network, DPNet, inspired by PSPNet.
This multi-scale feature captures features of the image from different scales, thus enhancing
the network’s capability in feature extraction, but it also incurs greater computational cost,
making training and prediction slower.

Although existing CNNs perform better in remote sensing image segmentation tasks,
there is still a general problem: due to the down-sampling nature of the convolutional
operation, the network is prone to lose critical detail information during feature extraction
and scale reduction, which leads to many problems, such as inaccuracy and blurred
edges in segmentation results. Many studies have demonstrated that combining low-level
and high-level semantic information can significantly improve model performance [31].
However, traditional feature fusion methods are usually too simple and do not pay enough
attention to edge information and image features to effectively restore lost information,
especially for tasks with complex backgrounds, which may lead to missed detection of
fine targets and edge blurring. To address these challenges in semantic segmentation,
we propose a new approach for cloud shadow segmentation—an attention mechanism
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feature fusion network based on the UNet framework. The encoder–decoder architecture
of UNet effectively extracts and restores feature information across various scales, making
it particularly suitable for smaller-scale datasets. Therefore, we adopt this U-shaped
network structure as our baseline and integrate the channel attention mechanism and
spatial attention mechanism module into it. This integration allows for adaptive attention
to different channels of the image and feature map information, with the goal of enhancing
the fine detection of cloud shadows. The addition of the new feature fusion module can
effectively fuse the low-level and high-level features, restore the lost information, and
segment the fine features more accurately in such a complex context as the cloud shadow
segmentation task. The AFMUNet network framework is shown in Figure 1. After inputting
the image, the high-level image features are initially extracted through down-sampling.
Subsequently, during the up-sampling process and enhancement of feature map resolution,
we progressively enhance the receptive field adaptively and employ different channel
operations. In addition, the feature fusion module is utilized in each layer to integrate
contextual information more accurately and fuse low-level and high-level information.
Furthermore, an innovative loss function is employed during the training process, and
classification results are outputted after multiple samplings. Through the combined effect
of the above modules, the detection accuracy of our network was substantially improved.
The main contributions of this paper’s work are as follows:

• An integrated module of channel space attention mechanism, suitable for cloud
shadow segmentation tasks within a U-shaped structure, is proposed. This model
facilitates dynamic adjustment of feature map weights, enhancing the ability to capture
crucial image features and thereby improving segmentation accuracy.

• The feature fusion operation of the original network is updated, which helps to
better understand the target and background in the image, segment the image using
information from different scales, and deal with cloud shadow targets of different
sizes and shapes.

• An innovative weighted loss function is developed for the dataset, which improves
the accuracy of model learning and optimizes the model performance to some extent.

• A network that integrates the above three features and combines them with a feature
extraction network is proposed to segment high-resolution remote sensing images.
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2. Methodology

Since the purpose of the cloud–shadow segmentation task is to match labels on a pixel-
by-pixel basis on an image to distinguish between clouds, cloud shadows, and backgrounds,
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the task can be regarded as a semantic segmentation task for triple categorization. Recently,
CNNs have achieved great success in the field of computer vision, especially in image
segmentation tasks. As pointed out in Section 1, due to the diversity of cloud layers,
irregular shapes, and variations in lighting conditions and shooting locations, cloud shadow
segmentation tasks often require highly accurate models to cope with these complexities.
Nevertheless, traditional machine learning algorithms may face challenges in meeting the
stringent accuracy demands of cloud shadow segmentation tasks, particularly in scenarios
involving snowy mountainous terrain or under low-light conditions [32]. When dealing
with the cloud shadow segmentation task, we need an efficient network structure that can
fully capture the detailed features of clouds while preserving the surface information. To
fulfill this requirement, we choose the UNet structure as the backbone network framework,
which is appropriately modified to incorporate CSAM and FFM improvement modules
to further improve the performance of the model in capturing the complex structure and
irregular shape of cloud shadows.

2.1. UNet—A Network Based on Encoder–Decoder Architecture (Related Work)

UNet is a classical deep-learning architecture especially suited for image segmentation
tasks. It is designed as an encoder–decoder structure with special skip connections to better
capture features and details at different scales in segmentation tasks. The following are the
main features and working principles of UNet:

1. Encoder Part: The encoder part of UNet consists of multiple convolutional layers
that gradually halve the size of the feature map while increasing the number of feature
channels. This helps to extract high-level feature representations of the image and capture
semantic information at different scales. The encoder part usually includes operations such
as convolutional layers, pooling layers, etc.

2. Jump concatenation: UNet introduces jump concatenation to concatenate the fea-
ture maps of the encoder with the feature maps of the decoder to include more detailed
information in the decoder. This helps to overcome the problem of information loss that
may be introduced by pooling operations and improves the performance of the segmenta-
tion model.

3. Decoder Part: The decoder part of UNet consists of multiple convolutional and
up-sampling layers that gradually recover the spatial resolution of the feature map through
operations such as inverse convolution. The decoder part restores the low-resolution
feature map to the size of the original input image through the up-sampling operation and,
at the same time, performs feature extraction through the convolution operation.

4. Output Layer: The output layer of UNet is usually a convolutional layer whose
output is a segmentation mask indicating the class or segmentation result of each pixel in
the image. The number of channels in the output layer is usually equal to the number of
categories in the task.

The UNet architecture has achieved excellent performance in a variety of fields, such as
medical image segmentation, remote sensing image analysis, and automated driving, where
it can efficiently capture semantic information and details in an image while maintaining
high resolution. In our study, only the basic architecture of UNet is retained, based on
which innovations and modifications are made.

2.2. CSAM (Channel Spatial Attention Module)

To better understand the key features and structures in an image and to improve
the segmentation of complex scenes, we introduce the attention mechanism. The concept
of attention mechanism originated in the field of natural language processing. It serves
to emphasize words at different positions within an input sentence, thereby facilitating
improved translation into the target language [33,34]. For instance, in machine translation,
the attention mechanism helps the model focus on relevant parts of the input sentence when
generating each word of the translation. This allows for more accurate and contextually
appropriate translations, especially in cases where the input sentence is long or complex.
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Similarly, in text summarization, the attention mechanism aids in identifying important
sentences or phrases to include in the summary, resulting in more concise and informative
summaries. Now, we apply it to image semantic segmentation tasks to help process image
information more efficiently by focusing attention on key regions in the image while
suppressing irrelevant information. This is an approach that mimics the human visual
and cognitive system, which is similar to how the human cerebral cortex achieves efficient
analysis by focusing on specific parts when processing image and video information
in complex scenes. In general, the attention mechanism can be categorized into four
dimensions—channeling, spatial, temporal, and branching [35]—which play different roles
in different computer vision tasks.

As shown in Figure 2 below, we add the CSAM module to the basic structure of
UNet after the end of each sample in the up-sampling phase, which skillfully combines the
channel and spatial attention mechanisms. For a given feature map, the CSAM module is
capable of generating feature map information in the channel and spatial dimensions [36]
and multiplying them with the original input feature map to perform adaptive feature ad-
justment and correction. Eventually, the CSAM module outputs feature maps, adjusted by
the attention mechanism, with stronger semantic information and adaptability. This module
enhances our ability to focus on the channel information of the image during cloud shadow
segmentation tasks, thereby improving cloud perception and segmentation accuracy.
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2.2.1. CAB (Channel Attention Block)

CAB is an important component of the CSAM module. It focuses on weighting
attention given to the channel dimensions in the feature map [37,38]. The goal of the
channel attention mechanism is to enhance the attention given to different channels by
dynamically adjusting the weights between channels. This is crucial to improve the model’s
ability to perceive different features in the image. The CAB module works as follows:

The steps of the CAB module are shown in Figure 3 below. Step 1: Firstly, the input
feature map Fin is subjected to global average and maximum pooling operations, and the
input information is compressed and downgraded to obtain two 1 × 1 average pooled
features, Fc

avg, and maximum pooled features, Fc
max. Step 2: Then, they are fed into a

weight-sharing two-layer neural network, MLP. Step 3: Finally, the MLP output features
are subjected to an element-by-element summation operation, which is applied to the input
feature map after activation by the Sigmoid function to generate the final Channel Attention
Feature, Mc. The above computational process is expressed as Equation (1), shown below:

Mc(Fin)= σ(MLP(AvgPool(Fin)) + MLP(MaxPool(Fin)))

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max)))

σ(x)= sigmoid(x) =
1

1 + e−x

(1)

where σ(·) is the sigmoid function and W0/W1 represents the weights of the hidden/output
layer. The parameters of W0 and W1 are shared in MLP.
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Figure 3. Channel attention block.

Attention weights on the channel dimensions, indicating the contribution of different
channels to the final feature representation, were generated by CAB, and these weights
were applied to the original input feature map to generate features for the input spatial
attention mechanism module. Channel-level feature tuning is achieved by weighting each
channel’s features. This means that the model can better focus on the channel features that
are important to the task at hand, improving the representation of semantic information.

2.2.2. SAB (Spatial Attention Block)

Unlike CAB, the SAB module focuses on the spatial dimension of the feature map. Its
goal is to enhance the focus on different regions in the image by adjusting the weights of dif-
ferent spatial locations to improve the model’s perception of global contextual information.
The SAB module works in Figure 4 as follows:
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Figure 4. Spatial attention block.

Step 1: First, the feature map output from the CAB module is used as the input
of this module, Fin, and global maximum pooling and average pooling are done on the
channel dimensions; then, these two results are used in a splicing operation. Step 2: Next,
a 7 × 7 convolution kernel is chosen to perform a convolution operation on the splicing
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result, and the channel dimensions are reduced to 1. Step 3: Finally, after the Sigmoid
activation function maps the weights between 0 and 1 to represent the order of importance
of each position, these spatial attention weights are applied to the inputs to generate the
feature map of the spatial channel attention mechanism, Ms. The above computational
process is expressed as Equation (2), shown below.

Ms(Fin) = σ( f 7×7([AvgPool(Fin); MaxPool(Fin)]))
= σ( f 7×7(Fs

avg; Fs
max))

(2)

where 7 × 7 is the kernel of convolution. This size performs better than others.
SAB generates attention weights in the spatial dimension through a series of con-

volutional operations and activation functions that indicate the contribution of different
locations to the final feature representation. This means that the model can better focus on
key regions in the image, thus improving the perception of global contextual information.
The SAB module helps us to more accurately capture the contours and structure of objects
in tasks such as semantic segmentation.

2.3. FFM (Feature Fusion Module)

The introduction of the FFM module [39–41] plays a key role in the process of feature
fusion of information from different feature maps obtained from deeper and shallower
layers when jump connections in the original network structure are involved. The FFM
module allows us to efficiently fuse features of different scales and resolutions in order to
capture the complex structure and irregular shapes of cloud shadows.

The steps of the FFM module are depicted in Figure 5. Step 1: Accept two feature
maps with different resolutions from the encoder and decoder sections as input. Step
2: Perform a series of operations such as splicing, convolution, and so on, to fuse them
into an enhanced hybrid feature map, which strengthens the representation of the hybrid
features and makes them more suitable for subsequent processing. Step 3: Perform a global
averaging of the hybrid feature map pooling to reduce the spatial dimension to 1 × 1
to obtain global channel statistics. Step 4: Introduce two consecutive 1 × 1 convolution
operations via Relu and Sigmoid activation functions in order to enhance the nonlinearity
and show the importance of each channel. Step 5: Multiply the channel attention weights
with the element-by-element hybrid feature map obtained from Step 2 to perform the
mul operation to obtain a weighted feature map. Step 6: Finally, the weighted feature
map obtained from Step 5 is subjected to element-by-element add-sum operation with the
hybrid feature map obtained from Step 2, to produce the final fused feature map. The
above computational process is expressed as Equation (3), shown below.

Fconv = Conv(Concat(F1, F2))
α = relu( f 1×1(AvgPool(Fconv)))

MF(F1, F2) = Fconv + Fconv ⊗ σ( f 1×1(α))
relu(x) = max(0, x)

(3)

where Fconv is the fusion of the input from shallow and deep layers and α represents the
enhanced nonlinear result as an intermediate variable.

The FFM module is a well-designed feature fusion mechanism that effectively inte-
grates feature maps from shallow and deep layers by means of utilizing channel comple-
mentarity, adaptively adjusting the weights of the channel features dynamically to better
fuse information from different scales and semantic levels. This innovative fusion module
offers an effective tool for our research and improves the performance of the capture and
segmentation tasks of feature statistics.
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2.4. Loss Function

The loss function is an important component in various segmentation network models
based on deep learning [42]. It is used to measure the difference between the prediction
and true values of the network and guide the model to make more accurate predictions. In
the segmentation task, the reasonable selection, optimization, and innovation of the loss
function can enhance the learning process of the model to achieve better segmentation
results [43] as well as portability and application to other networks; thus, the study of the
loss function selection is particularly important. The commonly used loss functions [44]
are as follows:

1. Cross Entropy Loss Function

L = − 1
N

N

∑
i=1

N

∑
j=1

[yij log(pij) + (1 − yij) log(1 − pij)] (4)

where N denotes the number of samples, and M denotes the number of categories. As
the most commonly used loss function in image segmentation, which can be used in a
large number of semantic segmentation tasks, the cross-entropy loss can help the network
to correct categorization of the pixels after judging how good or bad the model is for
the dataset.

2. Weighted Cross-Entropy Loss Function

Lw = − 1
N

N

∑
i=1

N

∑
j=1

[wjyij log(pij) + (1 − yij) log(1 − pij)] (5)

Despite being similar to the cross-entropy loss function, multiplying all positive
samples by a coefficient for weighting allows the model to focus more on a smaller number
of samples, thus mitigating the problem of the imbalanced number of categories.

3. Focal Loss

LF = − 1
N

N

∑
i=1

N

∑
j=1

[(1 − pij)yij log(pij) + pij
γ(1 − yij) log(1 − pij)] (6)

In addition to the imbalance in the number of samples from different categories, the
problem of imbalance in the number of easily recognized samples and hard-to-recognize
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samples is often encountered, and the Focal Loss can help the network to better deal with
the imbalance in the distribution of samples.

4. Dice Loss

LD = 1 − 2|X ∩ Y|
|X|+ |Y| (7)

where |X ∩ Y| is the intersection between samples X and Y, |X| represents the number of X
samples, and |Y| stands for the number of Y samples.

Unlike the weighted cross-entropy loss function, the Dice Loss does not require
category reweighting; it calculates the loss directly from the Dice coefficients, which can
help the network better handle overlaps and boundaries between categories.

5. IOU Loss

LI = 1 − |X ∩ Y|
|X ∪ Y| (8)

where |X ∪ Y| depicts the union between samples X and Y.
The IOU loss measures how similar the predicted segmentation results are to the true

segmentation, and it helps to optimize the spatial consistency of the segmentation.
In summary, since the cloud shadows in the image are prone to overlap, and it is

desired to distinguish the boundary between the two more accurately, L and LD are selected
in this experiment for proper weighting to derive an innovative loss function applicable to
the task of the dataset in this paper.

Loss = α · L + β · LD (9)

From Table 1, it is evident that the last row, which utilizes different weight propor-
tions in the loss function weighted combination, achieves the best performance. This
finding aligns with our initial conjecture. The Dice Loss effectively distinguishes be-
tween overlap regions and boundaries, aiding in completing the classification task more
effectively. Moreover, continuous training is essential for further enhancing the model’s
classification accuracy.

Table 1. Effect of different combinations of weight coefficients on segmentation results.

α β MPA (%) MIoU (%)

0.2 0.8 65.93 58.69
0.3 0.7 71.97 58.79
0.4 0.6 77.04 65.77
0.5 0.5 76.59 65.07
0.6 0.4 81.86 78.22
0.7 0.3 87.32 86.30
0.8 0.2 96.88 93.02

3. Experimental Analysis
3.1. Dataset

To further validate the generalization performance of the proposed model, we em-
ployed the GF1_WHU cloud shadow dataset created by Li et al. [45] as a generalization
dataset. This dataset utilizes high-resolution GF-1 Wide Field of View (WFV) images with a
spatial resolution of 16 m and covers four multispectral bands, spanning from visible to
near-infrared spectral regions. The dataset consists of 108 GF-1 WFV 2a-level scene images,
manually labeled by experts in remote sensing image interpretation at the SENDIMAGE
laboratory of Wuhan University. These images encompass five main land cover types,
including water, vegetation, urban areas, snow and ice, and barren land, representing
different regions worldwide. During the model training process, we cropped the images
to 256 × 256 pixels, removing black borders and unclear images, resulting in a total of
5428 images used for training and 1360 images for validation and testing, to evaluate the
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model’s training results, detection accuracy, and generalization performance. To illustrate
the dataset effectively, we selected images from different scenes, as shown in Figure 6.
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Figure 6. Examples from GF1_WHU Wuhan University cloud shadow dataset: (a) water; (b) vegeta-
tion; (c) snow; (d) ice; (e) barren.

Each original image is captured by three channels of RGB: white represents clouds,
gray represents cloud shadows, and black is the background. In addition, to prevent
overfitting and to enhance the robustness of the model, we also augmented the dataset by
randomly flipping, clipping, rotating, scaling, and panning the images as well as adding
noise interference to the images.

3.2. Experimental Details

In this section, using the Legion Y740 laptop sourced from Lenovo in Beijing, China,
we harness PyTorch 2.0 to train and test all models on its GeForce RTX 2080Ti graphics
card based on the dataset introduced in the preceding dataset section. This comprehensive
evaluation aims to assess the efficiency and accuracy of our proposed network model for
cloud shadow segmentation. Through a series of ablation experiments and comparison
experiments, we thoroughly evaluated our model from both qualitative and quantitative
perspectives [46,47]. The quantitative metrics pixel accuracy (PA), precision (PC), recall
(RC), mean intersection over union (MIoU), reconciliation average (F1), and frequency
weighted intersection over union (FWIoU) are calculated as follows:

PA =
TP + TN

TP + TN + FP + FN
(10)

PC =
TP

TP + FP
(11)

RC =
TP

TP + FN
(12)

MIoU =
TP

TP + FP + FN
(13)

F1 =
2 × PC × RC

PC + RC
(14)

FWIoU =
TP + FN

TP + FP + TN + FN
× TP

TP + FP + FN
(15)

In Equations (10)–(15) above, TP represents true positives, which correspond to the
number of pixels correctly identified as positive samples. Similarly, FP denotes false
positives, indicating the number of pixels incorrectly classified as positive samples. TN
refers to true negatives, representing the number of pixels accurately identified as negative
samples. Lastly, FN signifies false negatives, indicating the number of pixels incorrectly
classified as negative samples.
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In this section, we provide a comprehensive evaluation of our proposed algorithm,
verifying the efficiency and sophistication of our algorithm for the task of remote sensing
image change detection through ablation experiments and comparison experiments. Our
experiments are conducted on the GF1_WHU dataset, with an initial learning rate of 0.001.
The number of samples used in each round is 4, the number of training samples is 5428,
the number of training times is 150, and the quantitative metrics used are PR, RC, MIoU
and F1.

3.3. Ablation Experiment

In conducting the ablation experiments, changes in the results are observed by censor-
ing part of the network architecture and testing the effect of different modules on the whole
model. Since UNet is the basic framework of our network, UNet is used as the starting
point for comparison, where we use metrics such as PA, RC, F1, and MIoU to evaluate
the performance of the model. As can be seen in Table 2 below, the combination of all
components achieves the optimization of the model’s performance.

Table 2. Performance comparison of different combinations of modules in the model.

Method PA (%) RC (%) PC (%) F1 (%) MIoU (%)

UNet 95.27 89.72 93.24 92.03 91.30
UNet + CSAM 96.48 (↑) 94.32 95.02 93.41 92.89
UNet + FFM 95.32 94.83 93.62 91.82 91.33

UNet + CSAM + FFM 96.93 (↑) 95.82 94.97 93.75 93.21
UNet + CSAM + FFM + Loss

AFMUNet (Ours) 97.12 96.03 93.21 93.90 93.42

The arrow means this kind of combination improves the performance of model. The bold indicates the highest
value in the column.

In order to enhance deep feature extraction, alleviate information loss resulting from
constant down-sampling, and effectively capture multi-scale contextual information, as
indicated by the ablation results of the deep feature sampling process, the CSAM Attention
Mechanism Module proves beneficial for information recovery to capture detailed infor-
mation. Additionally, the FFM module aids in better integrating contextual information,
facilitating the fusion of features from different scales. Table 2 demonstrates a significant im-
provement in model performance following the introduction of these modules. Notably, the
introduction of the Feature Fusion Module alone does not yield substantial improvements
to the original model.

3.4. Comparison Experiment

In this experiment, the core of the cloud–shadow segmentation task is semantic seg-
mentation, so our proposed network is compared with other semantic segmentation algo-
rithms. PA, FWIoU, F1, and MIoU are selected as the evaluation metrics to comprehensively
evaluate the performance of the model, as shown in Table 3.

From the comparison results of different methods in the experimental setting in
Table 3, it can be seen that our proposed algorithm outperforms the current traditional
segmentation methods in all five metrics and is also basically better than the latest methods.
Among all the networks considered, SegNet and FCN8 exhibit the poorest performance in
terms of the metrics evaluated. While the metrics of the other models show improvement
over successive iterations, they still fall short of the performance achieved by the models
proposed in this paper. According to Table 3, we found that the above methods can
achieve high-precision segmentation of cloud shadow datasets; to further visualize the
effectiveness of our methods, Figure 7 shows the visualization experiment results of cloud
shadow segmentation.
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Figure 7 shows the visualization effect of different methods for image segmentation in
the cloud shadow dataset. Eight examples are selected to demonstrate the segmentation
effect. It can be observed that the proposed method is more accurate for cloud segmentation,
especially in the segmentation of the edge region of the cloud. However, the performance
is poor for cloud shadows and thin or unclear clouds. The segmentation effect of the Segnet
model is relatively rough, the edge information is incompletely obtained, and too much
information is lost in the feature extraction stage. It can be found from Figure 7 that it
does not perform well at the boundary of the cloud and loses a lot of shape-striped feature
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information. When the texture is slightly complex, PSPNet cannot completely segment the
boundary of clouds and cloud shadows. HRNet, on the other hand, slightly improves the
effect compared to the above two models, with more delicate processing of the edges, but
still has shortcomings compared to our model. UNet is a classic segmentation network
known for its superior performance in training on smaller datasets and producing smoother
segmentation edges. However, it still requires improvement in processing details. Our
model addresses this limitation to some extent, effectively recognizing cloud and cloud
shadow boundaries while enhancing detail processing. Nonetheless, further refinement
is needed to effectively handle very low light or thin cloud bodies. In summary, from a
qualitative point of view, our method performs better in different environments compared
with other methods, which proves the importance and effectiveness of the model proposed
in this paper.

Table 3. Results on GF1_WHU dataset testing set.

Method PA (%) MPA (%) MIoU (%) F1 (%) FWIoU (%)

SegNet 94.80 93.90 88.28 90.77 90.16
UNet 96.33 95.49 91.32 93.21 92.80

FCN8s 95.20 94.84 90.58 92.92 92.36
PSPNet 96.51 95.78 91.76 93.89 93.31

DANet [48] 94.82 94.13 89.25 91.70 91.32
DeepLab V3Plus 96.27 95.42 91.18 93.11 92.56
BiseNet V2 [49] 95.76 94.85 90.27 92.34 91.87

HRNet [50] 96.87 95.73 92.02 93.93 93.40
SP_CSANet [51] 97.33 96.01 91.34 93.12 92.63

CDUNet [52] 97.21 96.53 93.33 95.03 94.58
AFMUNet (Ours) 97.40 96.62 93.28 95.10 94.43

In order to better illustrate the model generalization and effectiveness of the model
in the face of different environmental backgrounds, as shown in Figure 8 above, we chose
vegetation, land, desert, barren, and snowy mountainous areas for model testing. For the
images in the green vegetation environment in the first group, all are able to segment the
general outline of the clouds well, but the details in the middle and background overlapping
region are poor, and our model segments the edges of the clouds and the boundary well. In
the second group, PSPNet, SegNet, and HRNet perform poorly for the shallow, scattered,
and complex clouds, while UNet shows some improvement and recognizes the information
of some thin clouds but still demonstrates a large deficiency compared to our model. By
observing the third and fourth sets of images, it is not difficult to find that our model
smoothly distinguishes the neighboring regions of clouds and cloud shadows and handles
the edge information more naturally compared with other models. When confronted with
remote sensing images containing significant noise interference, the performance of UNet,
SegNet, and HRNet models is deemed insufficient. Instances of omission and misdetection,
such as in the snowy mountain zones depicted in the comparative images, are observed.
These models encounter challenges in accurately distinguishing between ice, snow, and
clouds. Although the PSPNet segmentation effect offers some improvement, the texture
features of the clouds are lost, and the boundary cannot be clearly reflected. None of the
aforementioned models are suitable for the challenging task of cloud shadow segmentation
across diverse and complex environments. In contrast, the algorithm proposed in this
paper adeptly addresses cloud shadow segmentation in various situations and scenarios.
By optimizing deeper features and leveraging the enhanced channel and feature fusion
capabilities enabled by the spatial attention mechanism module, our algorithm effectively
recovers high-definition remote sensing images.
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Figure 8. Fine comparison of different models in different contexts: (a) the original image; (b) the
corresponding label; (c) the prediction of UNet; (d) the prediction of PSPNet; (e) the prediction
of SegNet; (f) the prediction of HRNet; (g) the prediction of the proposed AFMUNet. (Red boxes
indicate better segmentation results, while green boxes segment poorer results).

To further analyze our algorithm, we compared the segmentation results of different
types of clouds, as shown in Figures 9 and 10. It can be observed that our proposed model
performs well in segmenting both thin and thick clouds, effectively delineating the overall
contours of the clouds and shadows and clearly distinguishing them from the background.
However, upon comparing the third row on the left with the second row on the right, it
is evident that AFMUNet exhibits superior segmentation performance for thick clouds
compared to thin clouds. Thick clouds only lose some fine texture details, while thin clouds
tend to lose fragmented point cloud and shadow information during segmentation.
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4. Conclusions

In remote sensing images, the accurate segmentation of cloud shadow regions is of
great practical significance for practical tasks such as meteorological prediction, environ-
mental monitoring, and natural disaster detection. In this paper, an attention mechanism
feature aggregation algorithm is proposed for cloud shadow segmentation, fully leveraging
the advantages of convolutional neural networks in deep learning. UNet is selected as the
backbone network, an innovative loss function is employed, and two auxiliary modules,
CSAM and FFM, are introduced. Our proposed model initiates constant down-sampling
to extract high-level features. Adaptive improvement of sensory fields and selection of
different channel operations are introduced during each up-sampling process to increase
the resolution of feature maps, enabling the acquisition of rich contextual information. This
facilitates the accurate fusion of low- and high-level information within each layer’s feature
fusion module, ultimately restoring the classification and localization of high-resolution
remote sensing images. Compared with previous deep learning and segmentation methods,
our approach achieves significant improvement in accuracy in cloud shadow segmenta-
tion tasks. Experiments demonstrate the remarkable noise resistance and identification
capabilities of this method. It accurately locates cloud shadows and segments fine cloud
crevices in complex environments, while also producing smoother edge segmentation.
Particularly noteworthy is its performance in the task of identifying thick clouds. However,
there are still some shortcomings in cloud shadow segmentation: (1) under the influence of
light, some inconspicuous cloud seams may be incorrectly segmented into other features
and thus recognized as background; (2) refinement is still needed for the segmentation
of thin clouds to capture the fragmented information of cloud shadows; (3) to be better
adapted to practical applications, in the future, we also need to appropriately compress
and simplify the model while maintaining the accuracy and reduce the segmentation result
time to improve the training speed of the network. In the future, augmented learning
can be implemented by incorporating a pre-training phase into the model, aiming to en-
hance segmentation accuracy and reduce training time. Additionally, efforts will be made
to explore its application in other domains, including river segmentation and medical
tumor segmentation.

Author Contributions: Conceptualization, Z.F.; methodology, W.D. and Z.F.; validation, W.D., Y.Y.
and R.Y.; writing—original draft preparation, W.D. and J.L.; writing—review and editing, Y.Y.;
visualization, J.L.; supervision, R.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data and the code of this study are available from the corresponding
author upon request (001163@nuist.edu.cn). The data are not publicly available due to restrictions
(e.g., privacy, legal or ethical reasons).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Xiong, J.H.; Wu, H.; Gao, Y.; Cai, S.; Liang, D.; Yu, W.P. Ten years of remote sensing science: NSFC program fundings, progress,

and challenges. Natl. Remote Sens. Bull. 2023, 27, 821–830. [CrossRef]
2. Mahajan, S.; Fataniya, B. Cloud detection methodologies: Variants and development—A review. Complex Intell. Syst. 2020, 6,

251–261. [CrossRef]
3. Saunders, R.W.; Kriebel, K.T. An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote

Sens. 1988, 9, 123–150. [CrossRef]
4. Hutchinson, K.D.; Hardy, K.R. Threshold functions for automated cloud analyses of global meteorological satellite imagery. Int. J.

Remote Sens. 1995, 16, 3665–3680. [CrossRef]
5. Xiong, Q.; Wang, Y.; Liu, D.; Ye, S.; Du, Z.; Liu, W.; Huang, J.; Su, W.; Zhu, D.; Yao, X.; et al. A cloud detection approach based on

hybrid multispectral features with dynamic thresholds for GF-1 remote sensing images. Remote Sens. 2020, 12, 450. [CrossRef]
6. Derrien, M.; Farki, B.; Harang, L.; LeGléau, H.; Noyalet, A.; Pochic, D.; Sairouni, A. Automatic cloud detection applied to

NOAA-11/AVHRR imagery. Remote Sens. Environ. 1993, 46, 246–267. [CrossRef]

https://doi.org/10.11834/jrs.20232644
https://doi.org/10.1007/s40747-019-00128-0
https://doi.org/10.1080/01431168808954841
https://doi.org/10.1080/01431169508954653
https://doi.org/10.3390/rs12030450
https://doi.org/10.1016/0034-4257(93)90046-Z


Remote Sens. 2024, 16, 1574 18 of 19

7. Clothiaux, E.E.; Miller, M.A.; Albrecht, B.A.; Ackerman, T.P.; Verlinde, J.; Babb, D.M.; Peters, R.M.; Syrett, W.J. An evaluation of a
94-GHz radar for remote sensing of cloud properties. J. Atmos. Ocean. Technol. 1995, 12, 201–229. [CrossRef]

8. Danda, S.; Challa, A.; Sagar BS, D. A morphology-based approach for cloud detection. In Proceedings of the 2016 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 80–83. [CrossRef]

9. Liu, X.; Shen, J.P.; Huang, Y. Cloud automatic detection in high-resolution satellite images based on morphological features. In
Proceedings of the Eleventh International Conference on Graphics and Image Processing (ICGIP 2019), Hangzhou, China, 12–14
October 2019; SPIE: Bellingham, WA, USA, 2020; Volume 11373, pp. 159–166. [CrossRef]

10. Tom, V.T.; Peli, T.; Leung, M.; Bondaryk, J.E. Morphology-based algorithm for point target detection in infrared backgrounds. In
Proceedings of the Signal and Data Processing of Small Targets 1993, Orlando, FL, USA, 12–14 April 1993; SPIE: Bellingham, WA,
USA, 1993; Volume 1954, pp. 2–11. [CrossRef]

11. Amato, U.; Antoniadis, A.; Cuomo, V.; Cutillo, L.; Franzese, M.; Murino, L.; Serio, C. Statistical cloud detection from SEVIRI
multispectral images. Remote Sens. Environ. 2008, 112, 750–766. [CrossRef]

12. Wylie, D.; Jackson, D.L.; Menzel, W.P.; Bates, J.J. Trends in global cloud cover in two decades of HIRS observations. J. Clim. 2005,
18, 3021–3031. [CrossRef]

13. Abuhussein, M.; Robinson, A. Obscurant Segmentation in Long Wave Infrared Images Using GLCM Textures. J. Imaging 2022, 8,
266. [CrossRef]

14. Shao, L.; He, J.; Lu, X.; Hei, B.; Qu, J.; Liu, W. Aircraft Skin Damage Detection and Assessment from UAV Images Using GLCM
and Cloud Model. IEEE Trans. Intell. Transp. Syst. 2023, 25, 3191–3200. [CrossRef]

15. Reiter, P. Cloud Detection Through Wavelet Transforms in Machine Learning and Deep Learning. arXiv 2020, arXiv:2007.13678.
16. Gupta, R.; Panchal, P. Cloud detection and its discrimination using Discrete Wavelet Transform in the satellite images. In Pro-

ceedings of the 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India,
2–4 April 2015; pp. 1213–1217. [CrossRef]

17. Changhui, Y.; Yuan, Y.; Minjing, M.; Menglu, Z. Cloud detection method based on feature extraction in remote sensing images.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 173–177. [CrossRef]

18. Surya, S.R.; Rahiman, M.A. Cloud detection from satellite images based on Haar wavelet and clustering. In Proceedings of the 2017
International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2), Chennai, India, 23–25 March 2017;
pp. 163–167. [CrossRef]

19. Li, P.; Dong, L.; Xiao, H.; Xu, M. A cloud image detection method based on SVM vector machine. Neurocomputing 2015, 169, 34–42.
[CrossRef]

20. Ishida, H.; Oishi, Y.; Morita, K.; Moriwaki, K.; Nakajima, T.Y. Development of a support vector machine based cloud detection
method for MODIS with the adjustability to various conditions. Remote Sens. Environ. 2018, 205, 390–407. [CrossRef]

21. Fu, H.; Shen, Y.; Liu, J.; He, G.; Chen, J.; Liu, P.; Qian, J.; Li, J. Cloud detection for FY meteorology satellite based on ensemble
thresholds and random forests approach. Remote Sens. 2018, 11, 44. [CrossRef]

22. Jin, Z.; Zhang, L.; Liu, S.; Yi, F. Cloud detection and cloud phase retrieval based on BP neural network. Opt. Optoelectron. Technol.
2016, 14, 74–77.

23. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 2015; pp. 3431–3440.

24. Mohajerani, S.; Krammer, T.A.; Saeedi, P. Cloud detection algorithm for remote sensing images using fully convolutional neural
networks. arXiv 2018, arXiv:1810.05782.

25. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

26. Lu, J.; Wang, Y.; Zhu, Y.; Ji, X.; Xing, T.; Li, W.; Zomaya, A.Y. P_SegNet and NP_SegNet: New neural network architectures for
cloud recognition of remote sensing images. IEEE Access 2019, 7, 87323–87333. [CrossRef]

27. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]
[PubMed]

28. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18. Springer International Publishing: Berlin/Heidelberg, Germany, 2015;
pp. 234–241. [CrossRef]

29. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

30. Zhang, Z.; Yang, S.; Liu, S.; Cao, X.; Durrani, T.S. Ground-based remote sensing cloud detection using dual pyramid network and
encoder–decoder constraint. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [CrossRef]

31. Tsotsos, J.K. Analyzing vision at the complexity level. Behav. Brain Sci. 1990, 13, 423–445. [CrossRef]
32. Ding, L.; Xia, M.; Lin, H.; Hu, K. Multi-level attention interactive network for cloud and snow detection segmentation. Remote

Sens. 2023, 16, 112. [CrossRef]
33. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 2014, 27.

[CrossRef]

https://doi.org/10.1175/1520-0426(1995)012%3C0201:AEOAGR%3E2.0.CO;2
https://doi.org/10.1109/IGARSS.2016.7729011
https://doi.org/10.1117/12.2557221
https://doi.org/10.1117/12.157758
https://doi.org/10.1016/j.rse.2007.06.004
https://doi.org/10.1175/JCLI3461.1
https://doi.org/10.3390/jimaging8100266
https://doi.org/10.1109/TITS.2023.3323529
https://doi.org/10.1109/ICCSP.2015.7322699
https://doi.org/10.5194/isprsarchives-XL-2-W1-173-2013
https://doi.org/10.1109/ICNETS2.2017.8067921
https://doi.org/10.1016/j.neucom.2014.09.102
https://doi.org/10.1016/j.rse.2017.11.003
https://doi.org/10.3390/rs11010044
https://doi.org/10.1109/TPAMI.2016.2644615
https://www.ncbi.nlm.nih.gov/pubmed/28060704
https://doi.org/10.1109/ACCESS.2019.2925565
https://doi.org/10.1109/TPAMI.2017.2699184
https://www.ncbi.nlm.nih.gov/pubmed/28463186
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/TGRS.2022.3163917
https://doi.org/10.1017/S0140525X00079577
https://doi.org/10.3390/rs16010112
https://doi.org/10.48550/arXiv.1409.3215


Remote Sens. 2024, 16, 1574 19 of 19

34. Hu, K.; Li, Y.; Zhang, S.; Wu, J.; Gong, S.; Jiang, S.; Weng, L. FedMMD: A Federated weighting algorithm considering Non-IID
and Local Model Deviation. Expert Syst. Appl. 2024, 237, 121463. [CrossRef]

35. Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention
mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [CrossRef]

36. Liu, Y.; Shao, Z.; Hoffmann, N. Global attention mechanism: Retain information to enhance channel-spatial interactions. arXiv
2021, arXiv:2112.05561.

37. Hu, K.; Zhang, D.; Xia, M.; Qian, M.; Chen, B. LCDNet: Light-weighted cloud detection network for high-resolution remote
sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4809–4823. [CrossRef]

38. Ji, H.; Xia, M.; Zhang, D.; Lin, H. Multi-supervised feature fusion attention network for clouds and shadows detection. ISPRS Int.
J. Geo-Inf. 2023, 12, 247. [CrossRef]

39. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341.

40. Hu, K.; Zhang, E.; Dai, X.; Xia, M.; Zhou, F.; Weng, L.; Lin, H. MCSGNet: A Encoder–Decoder Architecture Network for Land
Cover Classification. Remote Sens. 2023, 15, 2810. [CrossRef]

41. Wang, Z.; Xia, M.; Weng, L.; Hu, K.; Lin, H. Dual encoder-decoder network for land cover segmentation of remote sensing image.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 2372–2385. [CrossRef]

42. Wang, Q.; Ma, Y.; Zhao, K.; Tian, Y. A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 2020, 9, 187–212.
[CrossRef]

43. Hu, K.; Weng, C.; Shen, C.; Wang, T.; Weng, L.; Xia, M. A multi-stage underwater image aesthetic enhancement algorithm based
on a generative adversarial network. Eng. Appl. Artif. Intell. 2023, 123, 106196. [CrossRef]

44. Ma, J. Segmentation loss odyssey. arXiv 2020, arXiv:2005.13449. [CrossRef]
45. Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide

field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [CrossRef]
46. Ren, H.; Xia, M.; Weng, L.; Hu, K.; Lin, H. Dual Attention-Guided Multiscale Feature Aggregation Network for Remote Sensing

Image Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4899–4916. [CrossRef]
47. Jiang, S.; Dong, R.; Wang, J.; Xia, M. Credit card fraud detection based on unsupervised attentional anomaly detection network.

Systems 2023, 11, 305. [CrossRef]
48. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154.
49. Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. Bisenet v2: Bilateral network with guided aggregation for real-time semantic

segmentation. Int. J. Comput. Vis. 2021, 129, 3051–3068. [CrossRef]
50. Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution

representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [CrossRef]
51. Qu, Y.; Xia, M.; Zhang, Y. Strip pooling channel spatial attention network for the segmentation of cloud and cloud shadow.

Comput. Geosci. 2021, 157, 104940. [CrossRef]
52. Hu, K.; Zhang, D.; Xia, M. CDUNet: Cloud detection UNet for remote sensing imagery. Remote Sens. 2021, 13, 4533. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2023.121463
https://doi.org/10.1007/s41095-022-0271-y
https://doi.org/10.1109/JSTARS.2022.3181303
https://doi.org/10.3390/ijgi12060247
https://doi.org/10.3390/rs15112810
https://doi.org/10.1109/JSTARS.2023.3347595
https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/10.1016/j.engappai.2023.106196
https://doi.org/10.48550/arXiv.2005.13449
https://doi.org/10.1016/j.rse.2017.01.026
https://doi.org/10.1109/JSTARS.2024.3362370
https://doi.org/10.3390/systems11060305
https://doi.org/10.1007/s11263-021-01515-2
https://doi.org/10.1109/TPAMI.2020.2983686
https://doi.org/10.1016/j.cageo.2021.104940
https://doi.org/10.3390/rs13224533

	Introduction 
	Methodology 
	UNet—A Network Based on Encoder–Decoder Architecture (Related Work) 
	CSAM (Channel Spatial Attention Module) 
	CAB (Channel Attention Block) 
	SAB (Spatial Attention Block) 

	FFM (Feature Fusion Module) 
	Loss Function 

	Experimental Analysis 
	Dataset 
	Experimental Details 
	Ablation Experiment 
	Comparison Experiment 

	Conclusions 
	References

