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Abstract: An Nd:YAG-based Raman lidar provides a mature technology to derive profiles of the
optical properties of aerosols over a wide altitude range. However, the derivation of micro-physical
parameters is an ill-posed problem. Hence, increasing the information content of lidar data is desirable.
Recently, ceilometers and wind lidar systems, both operating in the near-infrared region, have been
successfully employed in aerosol research. In this study, we demonstrate that the inclusion of
additional backscatter coefficients from these two latter instruments clearly improves the inversion of
micro-physical parameters such as volume distribution function, effective radius, or single-scattering
albedo. We focus on the Arctic aerosol and start with the typical volume distribution functions
of Arctic haze and boreal biomass burning. We forward calculate the optical coefficients that the
lidar systems should have seen and include or exclude the backscatter coefficients of the ceilometer
(910 nm) and wind lidar data (1500 nm) to analyze the value of these wavelengths in their ability to
reproduce the volume distribution function, which may be mono- or bimodal. We found that not only
the coarse mode but also the properties of the accumulation mode improved when the additional
wavelengths were considered. Generally, the 1500 nm wavelength has greater value in correctly
reproducing the aerosol properties.

Keywords: Raman lidar; wind lidar; regularized inversion of lidar data; micro-physical aerosol particle
properties; Arctic bimodal size distribution; Arctic haze; biomass burning; coarse-mode retrieval

1. Introduction

Aerosols impact the radiative budget of our planet via scattering, absorption, and
cloud formation. All of these processes are not yet entirely understood [1]. Considering
that both the sources and sinks of aerosols vary over time, aerosol-related uncertainties
continue to pose a challenge for climate modeling [2].

This is especially true for the Arctic regions, which show a vulnerable climate with
accelerated warming (“Arctic Amplification” [3,4]). Due to the high surface albedo and
large solar zenith angles, aerosols can potentially warm the Arctic, which would otherwise
cool the low- and mid-latitudes. Recently, refs. [5–7] provided overviews of the Arctic
aerosol seasonal cycle, knowledge gaps, and possible future changes. In this work, the
variable size distribution and chemical composition, which determine the complex index
of refraction of the aerosol, will be especially important. Although the classic “Arctic Haze”
phenomenon [8], the Arctic springtime air pollution, seems to decrease over time [9], other
aerosol sources like biomass burning in summer are gaining importance [10].

Ny-Ålesund is a research village on Spitsbergen in the European Arctic at 78.9◦N,
11.9◦E. For many years, aerosol in situ measurements have been carried out at the nearby
mountain station Zeppelin [11] and the ground station at Gruvebadet observatory [12].
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Aerosol remote sensing is performed by photometry [13] and Raman lidar [14]. Therefore,
Ny-Ålesund needs to be a key site for the validation of regional climate models with
explicit treatment of aerosols. However, given the complex orography of the site with fjords,
mountains, and glaciers, which introduce many micro-meteorological phenomena [15],
aerosol measurements at different nearby locations may not agree on an hourly or even
daily scale [16].

While lidar is a well-established instrument to measure the optical properties of
aerosols [17], deriving micro-physical properties from this type of instrument requires solv-
ing the inverse scattering problem, which is ill-posed [18,19]. While successful comparisons
between aerosol in situ and remote sensing instruments (“aerosol closure”) have already
been performed in Ny-Ålesund [20,21], this is, generally speaking, a difficult task.

To constrain the impact of aerosols on the climate system, their vertical distribution
is important [22,23]. Therefore, balloon-borne instruments have been employed at Ny-
Ålesund, e.g., in [24]. As these balloons typically only cover the lowest atmosphere and can
only be launched at calm wind speeds, it is important to increase the information retrieval
of lidar data, as this instrument covers a much larger vertical fraction of the atmosphere.

One easy and obvious strategy to achieve this aim is to add more wavelengths to
the evaluation. For the inversion of micro-physical aerosol properties from lidar data
(essentially, the volume or size distribution and the complex refractive index), typically, the
three backscatter coefficients at 355 nm, 532 nm, and 1064 nm, as well as the extinction coef-
ficients at 355 nm and 532 nm, from an Nd:YAG-based system, are employed [17,18,25–27].
However, recently, wind lidar systems have become a reliable tool, as they also provide
aerosol backscatter profiles [28,29]. Coherent Doppler wind lidars typically operate in the
near-infrared, sometimes around 1.5 µm [30]. Further, ceilometers are also used to deter-
mine backscatter profiles [31,32]. Some of these instruments (e.g., from the manufacturer
Vaisala) operate at 910 nm [33].

Hence, the aim of this work is to show the benefit of retrieving aerosol micro-physical
properties using more wavelengths. In addition to the three backscatter coefficients (at
355 nm, 532 nm, and 1064 nm) and the extinction coefficients (at 355 nm and 532 nm) of a
typical Nd:YAG laser, backscatter coefficients at 910 nm and 1500 nm are simulated based
on Mie calculations of aerosol size distributions found in the Arctic.

2. Instruments

In this work, we used data from the traditional Raman lidar KARL (“Koldewey Aerosol
Raman Lidar”). This is an Nd:YAG system that records the elastic channels of 355 nm,
532 nm, and 1064 nm with 50 Hz and around 10 W per color. Further, the inelastically
scattered light from N2 at 387 nm and 607 nm is recorded. The system uses a 70 cm mirror
with a field of view of around 1.5 mrad. It has an overlap range of about 700 m, so no
data are analyzed below this altitude. Further details of the system can be found in [34].
Typically, the aerosol classes visible in a lidar in the Arctic are Arctic haze [35] or biomass
burning [36].

Moreover, at the Ny-Ålesund site, a CL51 Vaisala ceilometer, operating at 910 nm
using a pulsed InGaAs laser, is located, which produces lidar backscatter profiles nominally
up to a 15 km altitude. Even though the data quality of this instrument is lower than that of
a Raman lidar, ceilometers of this type have been used to derive backscatter profiles from
boreal forest fires [37] or Arctic aerosols [38]. However, absorption by water vapor needs to
be considered at this wavelength [39].

Recently, wind lidar systems have also been used to derive aerosol profiles, e.g.,
instruments like the StreamLine series by Halo Photonics that operate at 1.56 µm [40]. This
instrument also captures the particle depolarization [41]. The Alfred Wegener Institute
plans to install such an instrument at Ny-Ålesund later this year.
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3. Retrieval of Micro-Physical Particle Properties from Optical Data of Different Devices

The basic software used, which is able to retrieve micro-physical particle properties
from multiwavelength Raman lidar data, was investigated in [19,42]. The detailed math-
ematical background can be found in [18,43–45]. Here, we briefly describe some basic
properties and the software used for the convenience of the reader. The software was
extended to deal not only with the standard Raman lidar wavelengths (355 nm, 532 nm,
and 1064 nm) but also with variable wavelengths from other devices.

The optical parameters Γ(λ) are connected with the particle volume size distribution
(PVSD) v(r) by a Fredholm integral equation of the first kind

Γ(λ) =
∫ rmax

rmin

K(r, λ; m)v(r)dr (1)

with the kernel function K(r, λ; m) = 3
4r Q(r, λ; m), where λ is the wavelength, r is the

radius, rmin and rmax are the appropriate lower and upper radii, m is the complex refractive
index (CRI), Γ(λ) denotes either the optical extinction or backscatter coefficients of all used
devices, and Q stands for either the extinction or the backscatter efficiencies. Here, we
investigate two additional optical backscatter coefficients at the wavelengths 910 nm and
1500 nm.

It is well known that problem (1) is an inverse ill-posed problem [46]. The software’s
input data are the optical coefficients Γ(λ). Because of the ill-posedness, the inversion needs
to be executed very carefully to retrieve the unknown PVSD v(r). The software provides
two regularization techniques to invert Equation (1). The first one is the Truncated Singular-
Value Decomposition (TSVD) [18,42], whereas the second one is an iterative regularization.
Here, a generalized Runge–Kutta iteration [47], also known as the Padé iteration [44,48]
is implemented.

After the successful inversion of the PVSD, one can straightforwardly determine the
micro-physical parameters. Here, we investigate the following:

− The total volume concentration vt =
∫

v(r)dr (µm3cm−3);

− The effective radius reff = 3 vt
st

(µm) with st = 3
∫ v(r)

r dr (µm2cm−3);
− The mean wavelength-independent CRI;
− The single scattering albedo (SSA) at 532 nm.

Since Equation (1) acts between function spaces, it is necessary for the implementation
to use a discretization of Equation (1). We employ spline collocation for the discretization.
The PVSD v(r) is approximated with B-spline functions ϕj of variable order (acting as a
regularization parameter) by

vn =
n

∑
j=1

bjϕj. (2)

The variable order has advantages, in particular, for the retrieval of a multimodal
PVSD. The unknown coefficients bj may be computed by solving a linear equation system,
namely AB = Γ, newly formed from Equation (1). The matrix elements of the linear system
AB = Γ are determined by

Aij =
∫ rmax

rmin

K(λi, r; m)ϕj(r)dr (3)

where (i = 1, . . . , 5(7); j = 1, . . . , n), and B and Γ are vectors.
The infinite-dimensional ill-posed problem (Equation (1)) is substituted by a finite-

dimensional, frequently ill-conditioned system, i.e., the matrix equation (Equation (3)) has
a large, often huge condition number. Therefore, the system AB = Γ cannot be solved by
standard methods alone. We still need regularization techniques with a parameter choice
rule (see [46,49]). As mentioned previously, two techniques are implemented.
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First, utilizing the TSVD technique, the linear system is transformed by expanding
the matrix A using SVD. Potential noise in the input data and the calculated matrix (3)
is amplified because the singular values cluster above zero. Regularization may prevent
this behavior by including only a part of the singular values, i.e., defining a certain cutoff
level k (acting as a regularization parameter), below which the noisiest solution parts are
filtered out.

Second, using the Padé iteration, the linear system is solved by an iteration method
with the initial vector Bi = 0, i = 0 (see above Equation (2)), whereas for well-conditioned
matrices, the iteration may proceed “nearly” to infinity. However, in our case, we have
to terminate the iteration after a few eligible iteration steps (acting as a regularization
parameter) early enough to eliminate the amplification of the noise.

While the TSVD method works with a permanent node grid on the radius axis (equidis-
tant or non-equidistant) throughout the procedure, the Padé iteration starts with an equidis-
tant node grid on the radius axis. The number of nodes used is a variable, and one may
increase this number if necessary, e.g., for a multimodal PVSD. For our case studies, we use
16 nodes. But, the node grid is non-permanent during the procedure, i.e., the nodes shift
automatically from the initial equidistant grid to a non-equidistant grid. Strong slopes of
the PVSD, which occur in a multimodal PVSD, need more and closer nodes. The advantage
is that such multimodal PVSDs are better modulated. Moreover, the iteration is a projected
iteration, meaning that potentially negative values of the PVSD during the iteration are
projected onto zero (see [45]). For the case studies here, we use 100 iteration steps.

The kernel function in Equation (1) depends on the CRI, which is an unknown value.
The software deals with a CRI grid of possible real and imaginary parts of the CRI [36,42].
Reasonable candidates for proper pairs of real and imaginary parts are often located in a
diagonal pattern [18,43]. Therefore, the CRI cannot be uniquely retrieved. We only obtain a
mean value of possible CRIs. Roughly speaking, a cluster of physically meaningful pairs
on the CRI grid, which also produces a PVSD with a similar shape, is selected. With respect
to the CRI grid in [26], Figures 6 and 7, and [50], the same property of a diagonal pattern is
observed, which mostly covers the true CRI. The length and width of the diagonal pattern
depend on the input noise level, the kind of noise, and the number of input coefficients
used. In [26], the diagonal pattern is called a canyon trajectory.

4. Retrieval Results of Typical Arctic Aerosol Size Distribution

For our studies, we investigate six aerosol size distributions, each with two different
Arctic-typical CRIs: m = 1.5 + 0.005i (weak absorption) and m = 1.5 + 0.01i (moderate
absorption) (see Table 1). We select one synthetic monomodal log-normal distribution and
five Arctic-typical bimodal distributions from the literature. The aerosol size distributions
are described by three parameters per mode: the median radius of the distribution (rmed), its
width (σ), and the total number concentration (nt) of particles per volume. The quantities
of these parameters are presented in Table 1. The subscripts 1 and 2 denote the fine
(accumulation) and coarse modes of the aerosols. The PVSDs for Examples 2 and 3 were
obtained by retrieving Arctic lidar data from MOSAiC in spring 2020 [35] and from an
intense biomass burning event measured over Ny-Ålesund in July 2015 [36] (Examples 4–6).

Table 1. Six investigated examples: One monomodal PVSD and five Arctic bimodal PVSDs retrieved
from Raman lidar measurements at Ny Ålesund. The first entries refer to the accumulation mode,
and the second entries in brackets () refer to the coarse mode, if it exists.

Kind of Investigated PVSD Median Radii rmed1(2) [µm] Mode Widths σ1(2) nt1(2) [cm−3]

1. Synthetic monomodal PVSD [19] 0.1 (-) 2.3 (-) 1.0 (-)

2. Retrieved bimodal PVSD [35] 0.54 (1.44) 1.38 (1.16) 10.46 (0.2)

3. Retrieved bimodal PVSD [35] 0.016 (2.26) 2.03 (1.09) 30,899 (0.04)
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Table 1. Cont.

Kind of Investigated PVSD Median Radii rmed1(2) [µm] Mode Widths σ1(2) nt1(2) [cm−3]

4. Retrieved bimodal PVSD [36] 0.24 (1.2) 1.56 (1.18) 168 (2.1)

5. Retrieved bimodal PVSD [36] 0.26 (1.04) 1.42 (1.25) 326 (1.1)

6. Retrieved bimodal PVSD [36] 0.23 (0.97) 1.61 (1.36) 367 (3.4)

Our software retrieves PVSD functions without any conditions or restrictions on the
function type (e.g., log-normal or Gamma distribution), as was done in [26,27] with a fixed
log-normal size distribution shape. The shape in our software is completely free. The five
Arctic-typical bimodal distributions generally look very similar to log-normal distributions.
Therefore, we fitted log-normal distributions to the retrieved bimodal distributions. The
fitted log-normal parameters can be found in Table 1, as mentioned above. Next, we use
these fitted bimodal log-normal distributions for our new simulations with additional
infrared wavelengths and call them initial distributions.

The regarded radius range is between rmin = 0.001 µm and rmax = 3(4) µm. This is
sufficient for long-range advected aerosols in the Arctic (see the figures later on).

It is known that there is a correlation between the observed particle radius and the
wavelength of light in Mie scattering theory, which is used in the model (Equation (1)), and
we need to respect this fact. Specifically, the radius should be approximately the same size
as the wavelength. In the Mie model (Equation (1)), from a mathematical point of view, this
fact is reflected by the kernel function K(r, λ; m) = 3

4r Q(r, λ; m), i.e., it is transported into
the surface property. Such an integral equation is mildly ill-posed in the case of a highly
structured surface of the kernel function and severely ill-posed if the surface is smooth. In
Figures 1 and 2 in [51,52], one can observe that the structure of the surface depends on the
CRI and the size ratio

s =
2πr

λ
. (4)

Regarding the CRI m = 1.5 + 0.01i and using Equation (4), one can observe that the
domain of s, where the retrieval of the PVSD works well, should not be bigger than approx-
imately s = 20 (rule of thumb). Therefore, for the wavelength λ = 1064 nm, the radius
should not exceed 3390 nm. Using an additional larger wavelength, e.g., λ = 1500 nm,
the radius range is enlarged to 4780 nm. But one needs to keep in mind that the smallest
wavelength λ = 355 nm contributes input information only up to a radius of 1130 nm.

In fact, using an additional larger wavelength than λ = 1064 nm improves the retrieval
of the coarse mode. In our studies, we use two additional wavelengths, namely 910 nm
and 1500 nm, first separately and then jointly.

Figure 1a–d show Example 3 (Arctic haze with a pronounced accumulation mode
and a weak and widely separated coarse mode). As one can clearly see in Figure 1a,b,
using only the current standard wavelengths (a) (3β and 2α) or one additional wavelength
of 910 nm (b), i.e., smaller than 1064 nm, the coarse mode is not retrieved at all. Using
one additional wavelength of 1500 nm (c), i.e., larger than 1064 nm, or two additional
wavelengths of 910 nm and 1500 nm (d), the coarse mode is well retrieved. Even the
accumulation mode retrieval is somewhat improved, as the maximum value of the PVSD
rises to about 40 µm3/(cm3 µm). Further, it can be seen from Figure 1b that the addition of
the 910 nm wavelength, while improving the representation of the fine mode, shows an
erroneous coarse mode around a 0.6 µm radius.

When analyzing Example 4 (biomass burning with a strong bimodal distribution) (see
Figure 2a–d), the result is slightly different. Here, it is enough to use an additional wave-
length of 910 nm to retrieve both modes very well. A possible reason for this could be that
both radii at the maximum peak height are smaller than those in Example 3, as no aerosol
larger than 2 µm in radius is present in this example. Still, the inclusion of either the 910 nm
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or 1500 nm wavelengths significantly increases the representation of the coarse mode in
terms of the median radius and widths of the distribution.

When evaluating Example 2 (Arctic haze with close accumulation and coarse mode)
(see Figure A1a–d in Appendix A), we observe a similar result as in Example 3. The
accumulation and coarse modes are both only clearly retrieved using the long wavelength
of 1500 nm. Neither a traditional 3 + 2 system nor the inclusion of the 910 nm wavelength
is sufficient to correctly reproduce the initial PVSD.

Regarding Example 5 (weakly bimodal biomass burning) (see Figure A2a–d in
Appendix A), the situation is as follows: Using only 3 + 2 wavelengths, the correct coarse
mode is not retrieved, but a wrong second coarse mode is “found” with larger radii (see
the blue line in Figure A2a between 1.7 and 3 µm). Using 4 (additionally 910 nm) + 2 wave-
lengths, the correct coarse mode appears in the solution, while the wrong coarse mode
becomes weaker (see the orange line between 2.2 and 3 µm). One reason for retrieving a
second wrong coarse mode could be an artificial mathematical oscillation because of the
severe ill-posedness at larger radii. But again, if the retrieval uses an additional wavelength
of 1500 nm, only one course mode, i.e., the correct one, is retrieved (see the green and red
lines in Figure A2c,d).

(a) (b)

(c) (d)

Figure 1. Example 3 with m = 1.5 + 0.01i, using different configurations of input coefficients.

Example 6 (almost monomodal biomass burning) (see Figure A3a–d), shows more
or less the same properties as the previous example (Example 5) with a wrong coarse
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mode, but the previously described behavior is not so pronounced. The correct coarse
mode (slightly hidden between 0.75 and 2.0 µm) can only be retrieved with the additional
information of the 1500 nm wavelength. However, the inclusion of the backscatter at
910 nm clearly improves the retrieval compared to a 3 + 2 system.

Even the potentially easier case of a monomodal PVSD (Example 1, Figure A4a,b)
clearly improves with the addition of both longer wavelengths of 910 nm and 1500 nm
(see Figure A4a,b). As this distribution extends up to a 4 µm radius, the original 3 + 2 data
again indicate a weak and erroneous coarse mode.

From these examples, we conclude that deriving the PVSD for aerosols larger than
approximately 2 µm in radius is challenging and error-prone for a traditional 3 + 2 Raman
lidar. Hence, a clear and precise separation of both the accumulation and coarse modes is
challenging. An overview of the residuals of the retrievals for all six examples is depicted
in Figure A5a–f in Appendix A. It can be seen that, in general, the information content
is higher at 1500 nm compared to 910 nm. Only in Figure A5d (clearly bimodal with a
radius < 2 µm) is the residual at 910 nm smaller.

(a) (b)

(c) (d)

Figure 2. Example 4 with m = 1.5 + 0.005i, using different configurations of input coefficients.

5. Retrieval Results of Micro-Physical Properties

We investigated a few micro-physical properties, namely the effective radius (reff [µm]),
the total volume concentration vt [µm3/cm3], and the SSA (532 nm) (see Tables 2–4). Only
the mean CRI was retrieved since it was not unique in the diagonal pattern, as previously
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discussed. We investigated Example 1 (monomodal) and Examples 2–6 (bimodal) with
m = 1.5 + 0.005i, each for two cases, i.e., first using only 3β and 2α, and second using
the full amount (5β and 2α) (see Table 2). We analyzed whether the additional two IR
wavelengths also improved the representation of the accumulation mode. As expected, we
found that the total volume concentration was clearly better retrieved for all six examples
using 5β and 2α (blue lettering). The same was true for the effective radius, with two small
exceptions, and for the SSA (one tiny exception). It is worth mentioning that there was no
difference for the CRI m = 1.5 + 0.01i.

Table 2. Micro-physical parameters for Examples 1–6 with m = 1.5 + 0.005i for the smaller (accumu-
lation) mode, considering two cases: one with 5β + 2α and one with 3β + 2α in brackets (). The values
in blue indicate which solution, 5 + 2 or 3 + 2, is closer to the exact solution. It can be seen that the
inclusion of longer wavelengths generally improves the representation of the small aerosol modes.

Example reff vt SSA532

No. 1 Exact 0.553 0.0924 0.9436

Retrieval 0.552 (0.587) 0.0919 (0.0991) 0.9543 (0.9397)

No. 2 0.785 13.77 0.9117

0.756 (0.763) 13.59 (13.20) 0.9075 (0.9313)

No. 3 0.0766 7.054 0.9350

0.0651 (0.0585) 6.593 (3.988) 0.9391 (0.9509)

No. 4 0.556 40.89 0.9498

0.518 (0.565) 42.71 (46.59) 0.9481 (0.9391)

No. 5 0.390 48.23 0.9662

0.375 (0.459) 50.76 (63.06) 0.9664 (0.9613)

No. 6 0.498 71.74 0.9539

0.479 (0.517) 74.86 (80.18) 0.9522 (0.9490)

We are not only interested in previous differences but also the effect on the micro-
physical properties when considering uncertainties in the lidar input data. First, we
retrieved the micro-physical properties with “exact” (only computational rounding errors
are included, similar to Table 2) input data for the backscatter and extinction coefficients.
Second, we generated 10 cases of real uncertainties, which are described in Tables 3 and 4.
This uncertainty estimation was performed in a way that we assumed a ±10% error in the
retrieval of the two extinction coefficients, a ±5% error in the retrieval of the backscatter
coefficient from the Nd:YAG laser, and a ±7% error in the retrieval of the backscatter at
910 nm or 1500 nm (to account for the weaker signal quality in the latter wavelengths).
Hence, “high” or “low” in Tables 3 and 4 mean that the inversion of the micro-physical
properties was performed using lidar input data, which were 5%, 7%, or 10% higher or
lower than the exact input data.

Table 3. Micro-physical parameters for the monomodal example (Example 1), considering uncertain-
ties in the lidar input data for two cases: one with 5β + 2α and one with 3β + 2α in brackets (). Blue
values indicate stable results (lidar uncertainties hardly affect the micro-physical aerosol properties).
Bold values indicate unstable results.

Uncertainty Realization Real (RI) Imag (RI) reff vt SSA532

Exact Solution 1.5 0.0050 0.553 0.0924 0.9436

“Exact” input 1.495 (1.495) 0.0040 (0.0051) 0.552 (0.587) 0.0919 (0.0991) 0.9543 (0.9397)

αaer
355nm high, αaer

532nm high 1.495 (1.486) 0.0055 (0.0051) 0.533 (0.569) 0.0978 (0.1062) 0.9413 (0.9465)
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Table 3. Cont.

Uncertainty Realization Real (RI) Imag (RI) reff vt SSA532

Exact Solution 1.5 0.0050 0.553 0.0924 0.9436

αaer
355nm low, αaer

532nm low 1.511 (1.502) 0.0053 (0.0050) 0.549 (0.571) 0.0837 (0.0886) 0.9422 (0.9420)

αaer
355nm low, αaer

532nm high 1.477 (1.481) 0.0055 (0.0053) 0.635 (0.637) 0.1060 (0.1038) 0.9329 (0.9366)

αaer
355nm high, αaer

532nm low 1.492 (1.524) 0.0050 (0.0051) 0.496 (0.397) 0.0922 (0.0792) 0.9415 (0.9467)

all βaer low 1.478 (1.479) 0.0054 (0.0051) 0.612 (0.563) 0.1009 (0.0961) 0.9367 (0.9449)

all βaer high 1.504 (1.494) 0.0049 (0.0050) 0.555 (0.598) 0.0929 (0.1006) 0.9458 (0.9409)

all βaer low, αaer
355nm low, αaer

532nm high 1.469 (1.468) 0.0056 (0.0053) 0.630 (0.612) 0.1060 (0.1020) 0.9323 (0.9388)

all βaer low, αaer
355nm high, αaer

532nm low 1.495 (1.517) 0.0058 (0.0050) 0.477 (0.396) 0.0887 (0.0797) 0.9349 (0.9480)

all βaer high, αaer
355nm low, αaer

532nm high 1.480 (1.483) 0.0047 (0.0055) 0.646 (0.639) 0.1073 (0.1058) 0.9404 (0.9332)

all βaer high, αaer
355nm high, αaer

532nm low 1.491 (1.531) 0.0050 (0.0054) 0.526 (0.389) 0.0957 (0.0800) 0.9405 (0.9436)

Mean value 1.490 (1.496) 0.0052 (0.0052) 0.565 (0.542) 0.0966 (0.0946) 0.9403 (0.9419)

Standard deviation 0.012 (0.020) 0.0005 (0.0002) 0.058 (0.098) 0.0077 (0.0108) 0.0063 (0.0046)

Deviation from exact value 0.015 (0.020) 0.0005 (0.0002) 0.059 (0.099) 0.0089 (0.0110) 0.0072 (0.0049)

Percentile 25 1.477 (1.481) 0.0050 (0.0050) 0.533 (0.397) 0.0922 (0.0800) 0.9349 (0.9420)

Percentile 50 1.492 (1.490) 0.0054 (0.0051) 0.584 (0.570) 0.0968 (0.0983) 0.9405 (0.9466)

Percentile 75 1.495 (1.517) 0.0055 (0.0053) 0.635 (0.612) 0.1060 (0.1038) 0.9415 (9.3320)

Table 4. Micro-physical parameters for the bimodal example (Example 4) (accumulation mode),
considering uncertainties in the lidar input data for two cases: one with 5β + 2α and one only with
3β + 2α in brackets (). Blue: stable results; bold: unstable results.

Uncertainty Realization Real (RI) Imag (RI) reff vt SSA532

Exact Solution 1.5 0.0050 0.556 40.89 0.9498

“Exact” input 1.496 (1.496) 0.0050 (0.0056) 0.518 (0.565) 42.71 (46.59) 0.9481 (0.9391)

αaer
355nm high, αaer

532nm high 1.495 (1.489) 0.0050 (0.0055) 0.487 (0.562) 43.98 (50.52) 0.9515 (0.9413)

αaer
355nm low, αaer

532nm low 1.517 (1.503) 0.0051 (0.0051) 0.476 (0.574) 36.27(42.73) 0.9508 (0.9438)

αaer
355nm low, αaer

532nm high 1.477 (1.474) 0.0046 (0.0047) 0.609 (0.627) 52.22 (55.12) 0.9502 (0.9478)

αaer
355nm high, αaer

532nm low 1.529 (1.512) 0.0051 (0.0041) 0.304 (0.324) 35.04 (40.29) 0.9541 (0.9568)

all βaer low 1.499 (1.486) 0.0050 (0.0049) 0.482 (0.551) 40.18 (46.55) 0.9516 (0.9466)

all βaer high 1.498 (1.500) 0.0053 (0.0054) 0.500 (0.584) 44.72 (47.23) 0.9426 (0.9406)

all βaer low, αaer
355nm low, αaer

532nm high 1.474 (1.470) 0.0050 (0.0041) 0.601 (0.620) 51.75 (53.06) 0.9472 (0.9554)

all βaer low, αaer
355nm high, αaer

532nm low 1.520 (1.511) 0.0046 (0.0044) 0.305 (0.325) 35.37 (39.19) 0.9573 (0.9560)

all βaer high, αaer
355nm low, αaer

532nm high 1.480 (1.479) 0.0044 (0.0045) 0.620 (0.630) 53.34 (54.58) 0.9521 (0.9504)

all βaer high, αaer
355nm high, αaer

532nm low 1.520 (1.510) 0.0049 (0.0049) 0.299 (0.299) 38.09 (43.88) 0.9513 (0.9446)

Mean value 1.500 (1.494) 0.0049 (0.0048) 0.473 (0.515) 43.06 (47.25) 0.9506 (0.9475)

Standard deviation 0.019 (0.015) 0.0003 (0.0005) 0.121 (0.130) 6.87 (5.53) 0.0038 (0.0064)

Deviation from exact value 0.018 (0.015) 0.0003 (0.0006) 0.149 (0.138) 7.23 (8.67) 0.0039 (0.0068)

Percentile 25 1.480 (1.479) 0.0046 (0.0044) 0.305 (0.325) 36.27 (42.73) 0.9502 (0.9438)

Percentile 50 1.498 (1.494) 0.0050 (0.0049) 0.484 (0.568) 42.08 (46.89) 0.9516 (0.9472)

Percentile 75 1.520 (1.510) 0.0053 (0.0051) 0.601 (0.620) 51.75 (53.06) 0.9541 (0.9554)
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Both examples show the same qualitative behavior. For the four cases—αaer
355nm high

and αaer
532nm high, αaer

355nm low and αaer
532nm low, all βaer low, and all βaer high—the retrieval

behavior is quite stable (blue lettering). For the other six cases, instabilities may occur (bold
black lettering) independently of the two cases (3β and 2α) (22 times) and one-third less for
5β and 2α (15 times).

The Ångström exponents of backscatter Aβ and extinction Aα between two wave-
lengths λ1 and λ2 are defined as:

Aβ =

log
(

βaer
λ1

βaer
λ2

)
log

(
λ1
λ2

) , Aα =

log
(

αaer
λ1

αaer
λ2

)
log

(
λ1
λ2

) . (5)

These Ångström exponents are related to the size of the aerosol (see e.g., [53]). We
note that the cases that tend to instability have different Ångström exponents. As expected,
the effective radius generally increases if the extinction ratio between shorter and longer
wavelengths decreases, and vice versa. The instability in the inversion of micro-physical
properties in these cases may be explained by the fact that the size of the aerosol, expressed
by the Ångström exponents, contains most of the information.

Regarding all uncertainty cases, the standard deviation and the deviation from the
exact value are slightly better for 5β and 2α, namely 60%. This result is also easy to
understand: when there are errors or uncertainties in two additional backscatter coefficients,
or in the retrieval of one color, they can be more easily balanced by the information from
the other wavelengths.

Finally, we qualitatively show six refractive index grids (RIGs) for Example 4 with
m = 1.5 + 0.005i (see Figure 3). The first column shows RIGs when one uses only 3β
and 2α optical coefficients. The second column investigates cases when 5β and 2α optical
coefficients are available. Figure 3a,b examines the case with “exact” input, whereas (c–f)
show retrievals with noisy input, i.e., (c,d) represent a stable uncertainty case (all βaer low),
and (e,f) represent an unstable uncertainty case (all βaer low, αaer

355nm high, αaer
532nm low). It

is obvious that in all three cases (second column), the length and width of the diagonal
pattern are smaller, indicating that even the retrieval of the CRI is stabilized using the
additional backscatter coefficients at wavelengths of 910 and 1500 nm. Of course, it is still
ambiguous, but it makes the retrieval of the mean CRI of all CRIs under consideration
easier, i.e., to select a cluster of CRIs inside the diagonal pattern where the connected PVSDs
have a similar shape. In Section 3, we remarked that the length and width of the diagonal
pattern depend on the input noise level and the kind of noise. We clearly see that as the
uncertainty noise increases from the “stable” uncertainty case (Figure 3c,d) to the unstable
uncertainty case (Figure 3e,f), this holds true.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. (a–f) The refractive index grid for Example 4 with m = 1.5 + 0.005i. (a,c,e) Retrieval with
only 3 + 2 coefficients, i.e., without 910 and 1500 nm. (b,d,f) Retrieval with 5 + 2 coefficients, i.e.,
additionally using 910 and 1500 nm. (a,b) With “exact” input. (c,d) With “stable” uncertainty input,
i.e., all βaer low. (e,f) With “unstable” uncertainty input, i.e., all βaer low, αaer

355nm high, and αaer
532nm low.

Color scale: Inside the diagonal pattern (brown, yellow, green, cyan, and turquoise), the percentage
of deviation from the “exact” optical coefficients ranges from about 0.02 to 0.6%; the boundary of
the diagonal pattern (3 navy blue levels) corresponds to deviations of about 1.5–7.5%; and the 3 final
light blue levels represent deviations larger than about 75%.
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6. Summary and Outlook

In this work, we used particle volume size distributions (PVSDs) from Arctic haze
and boreal biomass burning events, as well as a realistic monomodal size distribution,
to analyze the extent to which an improved inversion of the micro-physical properties
can be expected if additional backscatter coefficients from typical, commercially available
instruments like ceilometers or wind lidars are included in addition to the Raman lidar.

We found that an improved representation, especially of the coarse mode, always
occurred. This is relevant for Arctic conditions, as due to the increased gravitational sinking
of large aerosols, the coarse mode in long-range advected air masses is typically only weak
or even non-existent (but may wrongly show up in the evaluation, as seen in Examples 5
and 6 in Figures A2a and A3a). Nevertheless, and somewhat surprisingly, the derivation of
the fine (accumulation) mode also improved with the addition of backscatter coefficients
at long wavelengths. Further, the stability of the inversion of the aerosol micro-physical
properties with respect to uncertainties of the lidar input data also increased.

In five out of six cases, the additional information content at 1500 nm was larger
than at 910 nm. This means that a wind lidar is a more useful complement to a Raman
lidar compared to a ceilometer. This fact is positive from a data evaluation perspective
for three reasons: Firstly, the choice of a lidar ratio (the ratio between aerosol extinction to
backscatter) is absolutely uncritical for 1500 nm. This is because the extinction is negligibly
low in any case; hence, the Klett solution [54] hardly depends on the value of the lidar ratio.
Secondly, the 1500 nm wavelength is not affected by water vapor absorption, which needs
to be corrected in the ceilometer. And finally, the data quality of long-range wind lidars is
typically better than that of ceilometers (although at a clearly higher cost compared to the
former instrument).

Still, the 910 nm information is useful as well. Our two cases, in which the volume
distributions from the accumulation mode and coarse mode overlapped, showed different
behavior depending on whether the 910nm channel contributed to a more precise retrieval
of the aerosol modes.

Given the importance of aerosols (and their impact on clouds) to the climate system,
an improved information content of lidar data is clearly desirable. For this reason, we
suggest repeating a study like this for other aerosol distributions, typical of other regions
of the world.
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Appendix A. Additional Figures

(a) (b)

(c) (d)

Figure A1. Example 2 with m = 1.5 + 0.005i, using different configurations of input coefficients.

(a) (b)

Figure A2. Cont.
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(c) (d)

Figure A2. Example 5 with m = 1.5 + 0.005i, using different configurations of input coefficients.

(a) (b)

(c) (d)

Figure A3. Example 6 with m = 1.5 + 0.01i, using different configurations of input coefficients.
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(a) (b)

Figure A4. Example 1 with m = 1.5 + 0.005i, using different configurations of input coefficients.

(a) (b)

(c) (d)

Figure A5. Cont.
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(e) (f)

Figure A5. (a–f) Top: Initial PVSDs (black lines) for the 6 examples from Table 1. (a–f) Bottom:
Differences between the retrieved PVSDs and the initial ones for four cases (inclusion or omission of
mentioned wavelengths), as described in the legends.
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