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Abstract: Aircraft targets, as high-value subjects, are a focal point in Synthetic Aperture Radar (SAR)
image interpretation. To tackle challenges like limited SAR aircraft datasets and shortcomings in
existing detection algorithms (complexity, poor performance, weak generalization), we present the
Feature Enhancement and Multi-Scales Fusion Network (FEMSFNet) for SAR aircraft detection.
FEMSFNet employs diverse image augmentation and integrates optimized Squeeze-and-Excitation
Networks (SE) with residual network (ResNet) in a SdE-Resblock structure for a lightweight yet
accurate model. It introduces ssppf-CSP module, an improved pyramid pooling model, to prevent
receptive field deviation in deep network training. Tailored for SAR aircraft detection, FEMSFNet
optimizes loss functions, emphasizing both speed and accuracy. Evaluation on the SAR Aircraft
Detection Dataset (SADD) demonstrates significant improvements compared to the contrasted
algorithms: precision rate (92%), recall rate (96%), and F1 score (94%), with a maximum increase of
12.2% in precision, 12.9% in recall, and 13.3% in F1 score.

Keywords: residual network; feature enhancement; multi-scales fusion; SAR; aircraft detection

1. Introduction

Synthetic Aperture Radar (SAR) stands out as an active microwave remote sensing
technology, offering uninterrupted, all-day, and all-weather Earth surface observation [1].
It remains unaffected by conditions such as illumination, clouds, or weather, making it
indispensable in remote sensing [2]. SAR has found extensive applications in both military
and civilian domains, emerging as a pivotal tool for information acquisition [3]. In military
contexts, the detection of aircraft holds a central position in air defense research, leveraging
the distinctive advantages offered by SAR images [4]. Consequently, there is a global
research emphasis on enhancing aircraft target detection in SAR imagery.

SAR imaging, distinct from optical methods, poses challenges in detecting and iden-
tifying aircraft targets due to its longer wavelength and complex mechanism [5]. The
irregular distribution of land clutter, marked by bright backscattering points, introduces
interference [6]. SAR images often showcase intricate terrain features, complicating aircraft
target detection as these features may mimic the representation of targets. Targets in SAR
images manifest as irregular bright spots, necessitating spot integration for effective recog-
nition. The varied imaging characteristics of aircraft targets in SAR images, combined with
fluctuating scattering conditions, reduce the relevance of traditional manually designed
features [6–9]. Detecting aircraft targets in SAR images is, therefore, a significant but
intricate research direction.

Traditional SAR image target detection relies heavily on model features, encompass-
ing characteristics like the target’s outline, size, texture, and scattering center [10–13].
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A common traditional algorithm is the constant false alarm rate (CFAR) based on clutter
statistics and threshold extraction [14]. Scholars have delved into statistical features and
non-uniform backgrounds, proposing improved CFAR algorithms like CA-CFAR [15],
SOCA-CFAR [16], GOCA-CFAR [17], OS-CFAR [18], and VI-CFAR [19]. Ai et al. [20]
proposed an SAR detection algorithm using bilateral fine-tuning thresholds, enhancing
performance in ocean backgrounds by fitting the target to clutter with higher contrast.
Chen et al. [21] introduced an improved constant false alarm rate detection algorithm
based on multiscale contrast and variable windows, elevating target detection accuracy
in SAR images. Model-based recognition methods achieve heightened target recognition
accuracy with an evolving template database. However, this approach demands multiple
iterations for high-precision simulated images, taxing computation speed, and model ac-
curacy. Furthermore, model-based methods suffer from high computational complexity
and low efficiency. Consequently, researchers are increasingly exploring machine learning
algorithms, such as support vector machines, neural networks, and adaptive enhancement,
for automatic interpretation of SAR targets.

Recently, deep learning-based target detection has experienced rapid development
across various fields [22–25]. Notable strides have been achieved in aircraft target recog-
nition in Synthetic Aperture Radar (SAR) images through deep learning [26–28]. This
progress is largely credited to the automatic learning and pattern recognition capabilities
inherent in deep learning methods for handling complex features. Zhao et al. [29] intro-
duced an SAR aircraft detection algorithm leveraging dilated convolution and attention
mechanisms, creating a novel pyramid dilation network to optimize aircraft feature extrac-
tion in SAR images. Wang et al. [30], utilizing the SSD object detection framework, applied
a strategy integrating transfer learning and data augmentation to enhance SSD’s target
detection performance in SAR images. In SAR aircraft target detection, scholars commonly
modify existing algorithms to meet specific requirements for satisfactory results [31,32].
However, achieving a balance between model complexity and detection accuracy can be
challenging, and existing algorithms may struggle in such scenarios. Moreover, aircraft
in SAR images may experience deformation due to radar geometry effects, altering the
target shape and complicating detection. Additionally, deep learning methods rely on
ample samples for supervised training, and inadequate samples can result in overfitting,
adversely affecting detection performance.

To address these challenges, we propose a Feature Enhancement and Multi-Scales
Fusion Network (FEMSFNet). This network aims to improve detection accuracy while
minimizing model complexity, achieving a balance between the two. Firstly, FEMSFNet
employs a diverse image enhancement technique [33–35], applying methods like noise, mo-
saic, mixup, rotation, and cropping to enhance image features. This addresses the scarcity
of SAR aircraft image data, enhancing sample diversity for improved generalization and ro-
bust network training. Secondly, drawing inspiration from Yolov4-tiny [36–38], FEMSFNet
utilizes the CSPDarknet53-tiny network [39] as the backbone to create a lightweight model.
It incorporates a residual module based on an improved attention mechanism, focusing
more on critical image regions for enhanced recognition accuracy. Thirdly, the paper intro-
duces superior CSP [40] structures based on an improved feature pyramid [41], preventing
a reduction in the network’s receptive field and the loss of target feature information in
deep structures. Finally, tailored for SAR aircraft target detection, FEMSFNet optimizes
loss functions [42,43] while implementing cosine annealing learning rate decay [44], and
includes label smoothing [45] techniques to prevent overfitting, expedite convergence, and
improve regression accuracy.

The main contributions of our work are as follows:

• FEMSFNet, as proposed, prioritizes both speed and accuracy in target detection. It
leverages the lightweight CSPDarknet53-tiny as the backbone for efficient feature
extraction. The model’s performance has undergone evaluation using the SAR Aircraft
Detection Dataset (SADD).
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• To maintain a lightweight model without compromising detection accuracy, we inte-
grate the optimized Squeeze-and-Excitation Networks (SE) attention module with the
ResNet module in the backbone, forming the SdE-Resblock structure.

• To prevent the deep network from causing a deviation in the receptive field during
training, leading to ineffective global feature fusion and loss of feature information,
we propose a CSP structure based on an improved pyramid pooling model, called
ssppf-CSP.

• Considering the unique characteristics of SAR aircraft target detection, FEMSFNet op-
timized the network’s loss functions while implementing techniques such as learning
rate cosine annealing decay and label smoothing to prevent overfitting, ultimately
enhancing convergence speed and regression accuracy.

The rest of the paper is arranged as follows. Section 2 describes the proposed aircraft
detection network in detail. Experimental results, as well as performance evaluation, are
presented in Section 3, and a detailed discussion of the results is provided at the end of this
section. Section 4 briefly summarizes this paper.

2. Materials and Methods
2.1. Overview of FEMSFNet

Yolov4-tiny, a lightweight variant of the YOLO (You Only Look Once) object detection
series, is tailored for real-time object detection on devices with constrained computational
resources. In contrast to Yolov4 [36], Yolov4-tiny boasts a smaller model size and reduced
computational complexity. With outstanding performance in natural settings, we adopt
Yolov4-tiny as the baseline for our work. The overall structure of FEMSFNet is illustrated
in Figure 1.

Figure 1. The overall structure of FEMSFNet.

FEMSFNet comprises five key modules: Input, Image Enhancement, Backbone, Neck,
and Prediction. Recognizing the pivotal role of sample quality in network training effective-
ness, the Image Enhancement module employs various methods, including mosaic, mixup,
rotation, scaling, and cropping, with a certain probability. These diverse image enhance-
ment techniques augment the dataset, addressing limitations in quantity and diversity in
SAR aircraft image datasets. The results of image enhancement are illustrated in Figure 2.
Drawing inspiration from Yolov4-tiny, we select the lightweight CSPDarknet53-tiny as the
Backbone feature extraction network for FEMSFNet to strike a balance between detection
accuracy and efficiency. The Backbone network integrates the Basic-Conv convolutional
module, SdE-Resblock residual module, and ssppf-CSP deep feature fusion module. The
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Basic-Conv convolutional module consists of a convolution block, batch normalization
(BN) [46] block, and the SiLU [47] activation function block.

Figure 2. The results of images enhancement. (a) The saw images; (b) the enhanced images.

Following image enhancement and feature extraction by the Backbone network,
FEMSFNet channels feature maps of different scales to the Neck layer. This layer in-
corporates a feature pyramid structure with an attention mechanism, fusing feature maps
from the Backbone at three scales. During feature down-sampling, an attention mechanism
prioritizes the target region for high-resolution, semantically rich features. The result-
ing feature maps are then input into the Prediction module for inference. Subsequently,
predictions are compared with ground truth labels, and loss is computed. The error under-
goes backpropagation through the network, and the Adam optimizer [48] with a cosine
annealing learning schedule adjusts weights and parameters iteratively until the end of
the training loop. To address the nuances of SAR image aircraft single-object detection
and prevent issues like model overfitting, we utilize an optimized loss function in the
calculation. The subsequent section provides a detailed explanation of our methods.

2.2. SdE-Resblock

Residual Network [49,50] (ResNet) is a deep learning model architecture specifically
crafted to mitigate challenges like vanishing gradients and exploding gradients encountered
in the training of deep neural networks. ResNet facilitates the construction of exceptionally
deep networks without experiencing performance degradation. The fundamental concept
behind ResNet is the incorporation of residual blocks, allowing the input signal to be
directly forwarded to the block’s output via skip connections. This mechanism, termed
residual learning, enables the model to learn residuals rather than mapping directly. This
approach simplifies the training of deep networks and enhances their effectiveness. The
success of ResNet has served as inspiration for the design of numerous subsequent deep
learning architectures, establishing it as a classic example in the construction of deep neural
networks [51]. The residual structure in the Yolov4-tiny network is depicted in Figure 3. In
the illustrated residual network, there are four DarkNet blocks and one MaxPooling block.
The DarkNet module consists of fundamental convolutional layers, Batch Normalization
(BN) layers, and ReLU activation layers. It serves as one of the essential building blocks of
the entire FEMSFNet architecture. Here, the convolutional layers are tasked with extracting
features from images. The BN layers address the issue of increasing training difficulty and
slower convergence as the depth of the neural network grows. The ReLU activation layers
map the input from neurons to the output, introducing sparsity within the network by
rendering outputs of some neurons to zero. This sparsity reduces the interdependency
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of parameters, thereby mitigating the risk of overfitting. The input data undergo the first
convolutional block, producing Map1, which is then split into two parts. The second half
passes through the second convolutional block, resulting in Map2. Map2 undergoes further
computations in the third convolutional block, generating results. The obtained result is
concatenated with Map2 and input into the fourth convolutional block, producing Map3.
Finally, Map1 and Map3 are concatenated, and the result undergoes max-pooling to obtain
the final output.

Figure 3. The residual structure in the Yolov4-tiny network.

Attention mechanisms, known for selectively focusing on important information,
improve model performance on relevant tasks [52,53]. Integrating attention mechanisms
into ResNet enhances the network’s attention to crucial features [54]. Hence, we devised
the SdE-Resblock structure by combining the optimized Squeeze-and-Excitation (SE) atten-
tion [55] module with the ResNet module in the Backbone. This structure assigns varied
weights to different channels of the network’s feature maps, prioritizing the target region for
enhanced training efficiency. To counter overfitting during the Excitation phase, where non-
linear mapping and adjustment of squeezed features occur, we introduced Dropout [56]
techniques for regularization into SE module. The detailed network architecture is depicted
in Figure 4.

Figure 4. The detailed network architecture of SdE-Resblock.

Compared to the residual structure in Figure 3, the SdE-Resblock introduces an atten-
tion mechanism into the residual branch. Without altering the size and number of channels
of the feature map, it employs Squeeze-and-Excitation along with regularization operations
to assign varying weights to different channels in the residual branch. This enables the
network to concentrate more attention on the target region, facilitating easier and more
emphasized recognition of target features.
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To gain deeper insights into the model’s decision-making process, the distribution of
the attention mechanism was visualized through heatmaps. As illustrated in Figure 5, the
heatmap unveils the areas of focus while the model processes the input data. In this figure,
warmer colors (such as red) denote higher degrees of attention by the model to those areas,
whereas cooler colors (like blue) indicate lower levels of focus. This visualization method
clearly demonstrates the model’s tendency to concentrate on specific parts of the input data.
Notably, the model significantly zeroes in on the airplane regions within the input image,
aligning with expectations, as these areas typically contain crucial information necessary for
object recognition. Moreover, the heatmap further reveals the model’s ability to effectively
ignore background noise or information irrelevant to the task at hand, underscoring the
efficacy of the attention mechanism in enhancing the model’s focus on vital information
and improving overall performance. In summary, the attention mechanism’s heatmap not
only provides an intuitive view of the model’s learning and decision processes but also
affirms the model’s capability to efficiently identify and utilize key information within the
input data for accurate predictions.

Figure 5. Attention mechanism heatmaps.

2.3. ssppf-CSP

In typical scenarios, deep neural networks often exhibit a bias in the receptive field
during training, hampering effective integration of global features and causing loss of
feature information. To address this challenge, we propose the ssppf-CSP structure (soft-
spatial pyramid pooling-fast-CSPnet), leveraging an enhanced pyramid pooling model.
This structure employs multi-level pooling operations to extract and merge local and global
features, thereby improving the model’s receptive field. The sppf (spatial pyramid pooling-
fast) structure [57] achieves pooling effects of large-sized layers through stacking smaller
layers, enhancing the network’s expressive capability through multi-scale feature fusion.
In contrast to traditional sppf modules using max-pooling, we employ soft-pooling in the
ssppf module to minimize information loss during pooling, preserving detailed information
for detection. Integrated with the final feature extraction module, CSPnet, in FEMSFNet,
the ssppf module uses soft-pooling with four window sizes (6 × 6, 3 × 3, 2 × 2, 1 × 1) to
map high-level feature information to low-level features. Skip connections concatenate
high-level semantic information with shallow-level information after pooling, overcoming
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performance loss in deeper network structures. The detailed architecture of ssppf-CSP is
illustrated in Figure 6.

Figure 6. The detailed network architecture of ssppf-CSP.

In the ssppf-CSP structure, the input image undergoes convolutional operations,
leading to the division of feature channels into two segments. One part directly forms a
larger residual branch through skip connections, becoming an integral part of the final
output feature map. The other segment undergoes pooling operations and contributes to a
feature pyramid structure comprising four differently sized soft pooling layers. This process
maps high-level feature information to low-level feature maps. Finally, it is cascaded and
fused with high-level semantic information that has not undergone pooling, preserving
global information to the maximum extent. This approach helps avoid performance loss
caused by the limited feature representation capability of deep layers in the network.

2.4. Loss Function

The loss function plays a crucial role in deep learning models, quantifying the disparity
between predicted values and true labels [58]. Yolov4-tiny’s loss function includes bound-
ing box (LCIoU), confidence (Lconf), and class components (Lclass). The detailed process is
shown in Equations (1)–(7).

Lloss = LCIoU + Lconf + Lclass (1)

LCIoU =
S×S

∑
i=0

M

∑
j=0

Iobj
ij (2 − wi × hi)(1 − ACIoU) (2)

ACIoU = 1 − AIoU +
ρ2
(

b, b̂
)

c2 + αv (3)

α =
v

1 − AIoU + v
(4)

v =
4

π2

(
arctan

ŵ
ĥ
− arctan

w
h

)2
(5)

Lconf = −
S×S

∑
i=0

M

∑
j=0

Iobj
ij

[
Ĉilog(Ci) +

(
1 − Ĉi

)
log(1 − Ci)

]
− λnoobj

S×S

∑
i=0

M

∑
j=0

Inoobj
ij

[
Ĉilog(Ci) +

(
1 − Ĉi

)
log(1 − Ci)

]
(6)

Lclass = −
S×S

∑
i=0

M

∑
j=0

Iobj
ij ∑

c∈classes
[ p̂i(c)log(pi(c)) + (1 − p̂i(c))log(1 − pi(c))] (7)
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For FEMSFNet, focusing on SAR image aircraft single-object detection with a single
category output, the class loss function is omitted for computational simplicity. In object
detection, the imbalance between positive and negative samples, where most pixels are
background, is addressed by introducing the focal loss function in the confidence compo-
nent of the loss function. This helps the model handle class imbalance and concentrate
on challenging examples. To expedite model convergence and prevent overfitting, L2
regularization [59] is incorporated into the loss function for weight decay of model param-
eters. Here, φ represents the regularization coefficient. The detailed process is shown in
Equations (8)–(11).

Losstotal = LCIoU + Lconf+focal + φ
n

∑
i=0

ω2 (8)

Lconf+focal = Lconf + λLfocal4 (9)

Lconf = −
S×S

∑
i=0

M

∑
j=0

Iobj
ij

[
Ĉilog(Ci) +

(
1 − Ĉi

)
log(1 − Ci)

]
− λnoobj

S×S

∑
i=0

M

∑
j=0

Inoobj
ij

[
Ĉilog(Ci) +

(
1 − Ĉi

)
log(1 − Ci)

]
(10)

Lfocal = −(1 − ρt)
γlog(ρt)4 (11)

where Iobj
ij is used to determine whether there is a target object in the network—if yes,

it is set to 1; otherwise, it is set to 0; AIoU represents the intersection over union ratio of
the area between the true box and the predicted box; ρ2

(
b, b̂

)
is the Euclidean distance

between the center points of the predicted and true boxes; c is the diagonal distance of
the minimum closed region between the true box and the predicted box; ŵ, ĥ and w, h
represent the width and height of the true and predicted boxes, respectively; Ĉi and Ci are
the confidences of the true and predicted samples; Inoobj

ij is the inverse of Iobj
ij —it is set to 0

if there is an object in the grid, and 1 if there is no object; λ is an adjustment parameter used
to balance the importance of two losses; ρt is the model’s probability of a sample being
positive; γ is the parameter controlling attention.

3. Experiments and Results
3.1. Datasets

Currently, there is a scarcity of publicly available datasets for SAR image aircraft detec-
tion. Consequently, we exclusively utilize the SAR Aircraft Detection Dataset (SADD) [60]
to validate our approach.

SADD is derived from the German Terra-SAR-X satellite, operating in the x-band and
HH polarization mode. It provides image resolutions ranging from 0.5 to 3 m. Expert
SAR Automatic Target Recognition (ATR) analysts manually annotate the ground truth
of aircraft based on prior knowledge and corresponding optical images. After cropping
large images, the SADD comprises 2966 non-overlapping 224 × 224 slices, containing
7835 annotated aircraft targets with clear structures, outlines, and main components. The
dataset includes aircraft targets of varying sizes, with a significant number being small-scale
targets. The SADD backdrop features a complex environment with diverse scenes such as
airport runways, aprons, and civil aviation facilities. Negative samples are predominantly
found in areas surrounding the airport, including open spaces and forests. Refer to Figure 7
for visual representations of sample images within the SADD.

In this article, to validate our method and enable comparison with other relevant
papers using the same dataset, we randomly divide the SADD images into the training
and test sets at a 5:1 ratio [60]. The training set comprises 799 positive samples and
1673 negative samples, totaling 6948 annotated aircraft boxes. The test set includes
85 positive samples, 409 negative samples, and a total of 887 annotated aircraft boxes, as
summarized in Table 1.
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Figure 7. Visual representations of sample images within the SADD. The green boxes are detected aircrafts.

Table 1. Division of the dataset.

Dataset Positive Samples Negative Samples Ground Truth

Train 799 1673 6974
Test 85 409 861

Figure 8 showcases sample images from the SADD. The images exhibit notable vari-
ations in the size of aircraft targets, and the backgrounds surrounding specific aircraft
targets are particularly intricate, presenting challenges for accurate aircraft positioning.
Furthermore, the intricate background clutter points may be misleadingly identified as
aircraft components, further complicating the detection process.
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Figure 8. The variational size of aircraft targets within SADD. (a) The size of aircraft targets is less
than 20 pixels. (b) The size of aircraft targets is between 20 and 40 pixels. (c) The size of aircraft
targets is more than 40 pixels.

3.2. Evaluation Metrics

In SAR aircraft detection, precision rate and recall rate serve as common evaluation
criteria. Yet, there is often a trade-off between precision and recall, meaning enhancing
one may reduce the other. To mitigate this, we introduce the F1 score as a supplementary
metric, providing a holistic indicator that balances accuracy and recall. The calculation
formulas are detailed in Equations (12)–(14):

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 =
2 × Precision × Recall

Precision + Recall
(14)

where the meaning of TP, FN, and FP are as shown in Table 2.

Table 2. The meaning of TP, FN, and FP.

Label
Prediction

Positive Negative

Positive TP FN
Negative FP TN

3.3. Experimental Setup

FEMSFNet utilizes a 224 × 224 image resolution for both training and testing phases.
During the training stage, random rotation, random mixup, and mosaic data-enhancement
methods are employed. All these methods are validated on an NVIDIA 4060Ti GPU. The
configuration details of experimental parameters are outlined in Table 3.
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Table 3. Hyperparameter settings during model training.

Hyperparameters Value

Optimizer Adam
Learning rate 0.001

Learning decay method Cosine Annealing
Batch size 128

Momentum 0.937
Worker number 4

3.4. Comparison to Existing Algorithms

To showcase the efficacy of FEMSFNet, we visualized its detection confidence maps
in comparison to the baseline Yolov4-tiny, depicted in Figure 9. FEMSFNet demonstrates
superior accuracy in locating aircraft targets and effectively suppressing background clutter
interference, resulting in agiler detection confidence compared to the baseline Yolov4-tiny.

Figure 9. Detection confidence visualization. (a) Ground truth of SADD; (b) Baseline detection
confidence map; (c) FEMSFNet detection confidence map. The green box indicates the ground truth,
while the red box shows the predicted result.

To rigorously validate our algorithm, we compare it against two two-stage meth-
ods (Faster R-CNN [61] and Cascade R-CNN [62]) and four one-stage methods (SSD [63],
Yolov3 [64], SEFEPNet [60], and Yolov4-tiny [36]), as outlined in Table 4. To specify,



Remote Sens. 2024, 16, 1589 12 of 19

the model complexities are as follows: Faster R-CNN at 160MB, Cascade R-CNN at
319 MB, SSD at 96 MB, Yolov3 at 236 MB, Yolov4-tiny at 19 MB, and FEMSFNet at
23 MB. The results demonstrate that FEMSFNet excels across various metrics, particu-
larly in Precision and Model Size, with a maximum improvement of 92.7% in model
size (compared to cascade R-CNN), 12.2% in precision, 12.9% in recall, and 13.3% in
F1 score compared to the contrasted algorithms. This success is attributed to enrich-
ing dataset diversity through image enhancement, incorporating attention modules in
the residual structure, and integrating pyramid modules in the CSP network within
the FEMSFNet architecture. These components enable FEMSFNet to capture deeper,
broader, and more accurate target information. Figure 10 illustrates the detection re-
sults of FEMSFNet and other methods. In support of further research in Synthetic Aper-
ture Radar (SAR) aircraft target detection, we plan to open-source FEMSFNet soon at
https://github.com/WenboEth/Sar-Aircaft-Target-Detection, accessed on 10 May 2024.

Table 4. Comparisons to the state-of-the-art models.

Model

Indicator
P R F1 Model Size (MB)

faster R-CNN 0.86 0.89 0.87 160
cascade R-CNN 0.90 0.95 0.92 319

SSD 0.84 0.89 0.86 96
Yolov3 0.83 0.97 0.89 236

Yolov4-tiny 0.82 0.85 0.83 19
SEFEPNet 1 0.89 0.98 0.93 ×

FEMSFNet (ours) 0.92 0.96 0.94 23
1 The data come from the original article [60], and there are no data about the SEFEPNet’s model size.

The results below highlight that while FEMSFNet may make mistakes in complex tar-
get recognition scenarios, it consistently outperforms the compared algorithms, especially
in terms of precision, recall, and model size. We anticipate that FEMSFNet has untapped
potential, and with further optimization, broader expansion, and deeper evolution, it can
achieve even better results in the future.

In the realm of deep learning-based object detection, assessing a network’s generaliza-
tion ability is crucial. A network model with robust generalization performance excels on
unseen, complex, or even distorted data, serving as a key metric of the model’s practical
utility. The FEMSFNet network enhances its training data through methods including
rotation, scaling, and cropping, aiding the model in learning a broader range of variations
to boost generalization performance. Moreover, techniques like dropout are utilized within
the SdE-Resblock module, randomly “dropping” a portion of neurons during training to
decrease the model’s dependency on specific data and enhance its generalization capabil-
ity. To validate the generalization performance of the FEMSFNet network, a non-learned
dataset (n-LD) was created. This dataset consists of targets the network has never “learned”
from, not included in training, validation, or test sets. To challenge the network’s general-
ization and robustness, the n-LD was complicated and distorted, increasing the difficulty
of target recognition. Examples of the n-LD cases are shown in Figure 11. The n-LD was
then fed into both the FEMSFNet and state-of-the-art models for comparative testing and
validation of FEMSFNet’s generalization ability, with results presented in Table 5. The
charts reveal that FEMSFNet performs exceptionally well across various metrics, including
accuracy, error rate, and omission rate. Such outcomes are attributable to the superior
SdE-Resblock module and the ssppf-CSP structure of FEMSFNet.

https://github.com/WenboEth/Sar-Aircaft-Target-Detection
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Figure 10. Visualization of SAR aircraft detection results of different algorithms. Yellow boxes
indicate false alarms, red boxes represent missing targets, and green boxes denote correct detections.
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Table 5. Generalization performance comparison.

Indicator

Model
Faster R-CNN Cascade R-CNN SSD Yolov3 Yolov4-Tiny FEMSFNet

Accuracy Rate 0.91 0.93 0.89 0.88 0.85 0.94
Error Rate 0.04 0.04 0.06 0.04 0.06 0.02

Omission Rate 0.05 0.03 0.05 0.08 0.08 0.04

Figure 11. Examples of the n-LD cases.

3.5. Ablation Study

To enhance readers’ understanding of each module’s impact, we conducted an ablation
study. Yolov4-tiny serves as the base framework for evaluating the effects of various feature
modules on aircraft detection in SAR images, as outlined in Table 6. In the ablation
comparison experiments, the “×” mark in the loss function column indicates the use of
the pre-improvement Yolov4-tiny loss function, detailed in Equations (1)–(7). The “

√
”

mark indicates the use of the improved loss function, as detailed in Equations (8)–(11).
Simultaneously, Figure 12 presents the results of the ablation study conducted on the
SADD dataset. The charts illustrate sequential application of different modules leading to
improvements across various metrics. Precision sees the highest enhancement, with a 7.0%
increase, while recall and F1 score exhibit improvements of 6.9% and 6.8%, respectively.
It highlights that the ssppf-CSP module, integrating a soft feature pyramid into the CSP
architecture, enhances network depth and incorporates features from multiple scales.
This results in a substantial improvement in overall accuracy and recall metrics. The
SdE-Resblock module, integrating an optimized attention mechanism into the residual
structure, enhances the network’s focus on target detection, leading to improvements in
recognition rate and recall. While the improved loss function module may not show a
significant increase in evaluation metrics, its main impact lies in accelerating convergence
and reducing computational complexity. As illustrated in Figure 13, we have compared
the iteration process of the loss function before and after improvements. It is evident from
the figure that the improved loss function demonstrates an overall reduction in loss values
compared to its prior state, along with a notably faster convergence rate. Furthermore,
when comparing the same iteration round, there is a maximum enhancement of 26% in the
loss value.
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Table 6. Ablation study.

ssppf-CSP SdE-Resblock Loss Function P R F1

(a) × × × 0.86 0.90 0.88
(b)

√
× × 0.90 0.93 0.91

(c)
√ √

× 0.92 0.95 0.93
(d)

√ √ √
0.92 0.96 0.94

Figure 12. Ablation study results presentation. Yellow boxes indicate false alarms, red boxes represent
missing targets, and green boxes denote correct detections. (a) None; (b):ssppf-CSP; (c) ssppf-CSP
and SdE-Resblock; (d) ssppf-CSP, SdE-Resblock, and loss function.

Figure 13. Comparison of accelerated iteration of loss function before and after optimization.

3.6. Result and Discussion

From the comparative validation analysis presented earlier, it is clear that in the do-
main of aircraft target detection in remote sensing SAR imagery, the FEMSFNet model
excels across several metrics, including detection precision, recall rate, F1 score, and model
size, achieving varying degrees of improvement. Specifically, it surpasses other algo-
rithms, with a maximum increase of 12.2% in precision, 12.9% in recall, and 13.3% in
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F1 score. Moreover, in terms of model size, FEMSFNet achieves an 88% reduction com-
pared to the largest model size benchmarked. The primary reason for this performance
is that, unlike general-purpose state-of-the-art neural networks, FEMSFNet is a unique
network specifically tailored for SAR imagery of aircraft targets. It eliminates unnecessary
components for this task, such as the Region Proposal Network and multiple cascading
detection heads, refining the network architecture. Initially, to address the challenges of
limited remote sensing SAR image data, complex backgrounds due to noise, and various
obstructions making target detection difficult, FEMSFNet incorporates a data augmentation
module. This module complexifies or even distorts the source image data, tackling the
issue of data scarcity while training the network to enhance its generalization capabil-
ity and robustness with complicated images. Furthermore, addressing the diversity in
target scales and complex angles in SAR imagery, FEMSFNet introduces the ssppf-CSP
and SdE-Resblock modules. Optimized residual modules are employed to extract more
feature information, and multi-scale fusion modules ensure the detection and recognition
of targets across various scales, thereby improving the network’s accuracy. Lastly, in the
specialized task of single-object detection for aircraft in SAR images, focusing on a singular
category output, the class loss function is omitted to simplify computations. This approach
addresses the imbalance between positive and negative samples—mostly background—by
incorporating the focal loss function into the confidence measure of loss calculation. This
modification significantly enhances the model’s capability to manage class imbalances and
prioritize complex examples. Moreover, to ensure faster convergence and prevent overfit-
ting, L2 regularization is integrated into the loss function, facilitating the weight decay of
model parameters.

4. Conclusions

This paper introduces FEMSFNet, an SAR aircraft detection model prioritizing both
speed and accuracy. FEMSFNet utilizes the lightweight CSPDarknet53-tiny as its back-
bone for efficient feature extraction. To maintain a lightweight yet accurate model, we
integrate the optimized SE attention module with the ResNet module, forming the SdE-
Resblock structure. A novel CSP structure, ssppf-CSP, prevents deviations in the receptive
field during training, enhancing global feature fusion. Addressing unique characteristics
in SAR aircraft target detection, FEMSFNet optimizes loss functions and employs tech-
niques like learning rate cosine annealing decay and label smoothing to prevent overfitting,
improving convergence speed and regression accuracy. For increased sample diversity,
FEMSFNet employs multi-faceted image augmentation with techniques like noise addition,
mosaic, mixup, rotation, and cropping, enhancing training generalization and robustness.
Experiments on the SADD dataset demonstrate FEMSFNet’s effectiveness, surpassing
state-of-the-art object-detection algorithms. FEMSFNet exhibits significant improvements
compared to the contrasted algorithms in terms of precision rate (92%), recall rate (96%),
and F1 score (94%). Notably, it surpasses contrasted algorithms with a maximum increase
of 12.2% in precision, 12.9% in recall, and 13.3% in F1 score. Anticipating untapped poten-
tial, further optimization, broader expansion, and deeper evolution are expected to propel
FEMSFNet to even better results in the future.
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