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Abstract: To address the matching challenge between the High Resolution Imaging Science Experi-
ment (HiRISE) Digital Elevation Model (DEM) and the Mars Orbiter Laser Altimeter (MOLA) DEM,
we propose a terrain matching framework based on the combination of point cloud coarse alignment
and fine alignment methods. Firstly, we achieved global coarse localization of the HiRISE DEM
through nearest neighbor matching of key Intrinsic Shape Signatures (ISS) points in the Fast Point
Feature Histograms (FPFH) feature space. We introduced a graph matching strategy to mitigate
gross errors in feature matching, employing a numerical method of non-cooperative game theory to
solve the extremal optimization problem under Karush–Kuhn–Tucker (KKT) conditions. Secondly,
to handle the substantial resolution disparities between the MOLA DEM and HiRISE DEM, we
devised a smoothing weighting method tailored to enhance the Voxelized Generalized Iterative
Closest Point (VGICP) approach for fine terrain registration. This involves leveraging the Euclidean
distance between distributions to effectively weight loss and covariance, thereby reducing the results’
sensitivity to voxel radius selection. Our experiments show that the proposed algorithm improves
the accuracy of terrain registration on the proposed Curiosity landing area’s, Mawrth Vallis, data by
nearly 20%, with faster convergence and better algorithm robustness.

Keywords: MOLA; HiRISE; point cloud registration; FPFH; graph matching

1. Introduction

Since 1975, humans have conducted numerous Mars exploration missions [1], yielding
a wealth of images and topographic data. The key challenge in Mars mapping using multi-
sensor and multi-source data lies in addressing the spatial reference data issue. In deep
space photogrammetry, systematic errors in satellite orbital position parameters, typically
stemming from planetary orbiter clock errors, star sensor measurement errors, and the
Doppler effect, often range from hundreds to thousands of meters. Moreover, due to the
low accuracy of satellite attitude orbit measurement data and the absence of control points
on the planetary surface, Mars surface models reconstructed directly from satellite images
frequently exhibit significant absolute offsets [2]. Previous studies [3–7] have demonstrated
that Mars Orbiter Laser Altimeter (MOLA) [8,9] data can aid in the geometric positioning
of Mars photogrammetry. The MOLA Digital Elevation Model (DEM) serves as an excellent
global control reference for determining orbit and attitude parameters in Mars exploration
missions and mapping endeavors [10]. By employing the MOLA DEM’s results as the
reference data, a large number of matching approaches were widely developed to further
align the topography information from images and point cloud.
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Topographic matching studies can be broadly categorized into two groups: image-
based approaches and point cloud-based approaches. The image-based method involves
rasterizing the 3D model and encoding elevation information into image grayscale, fol-
lowed by employing image matching techniques for terrain alignment [11,12]. On the other
hand, the point cloud-based method involves sampling terrain data into discrete point
clouds and achieving terrain matching through registration between these point clouds.
Point cloud registration is commonly implemented and further improved based on geomet-
ric feature descriptors matching or local distribution-based point-to-point alignment [13].
Feature-based methods are primarily utilized for coarse registration. Classic feature extrac-
tion algorithms for point clouds include Harris3D [14], SIFT 3D [15], Local Surface Patches
(LSP) [16], MeshDoG [17], and Intrinsic Shape Signatures (ISS) [18], among others. Point
cloud feature description methods include SHOT (Signature of Histograms of Orienta-
tions) [19], PFH (Point Feature Histogram) [20], FPFH (Fast Point Feature Histogram) [21],
3DSmoothNet [22], and more. On the other hand, the point-based approach achieves fine
registration by establishing correspondence between the points in point clouds. Typical
DEM fine registration methods include Least Z-difference (LZD) [23] and Iterative Closest
Point (ICP) [24], both of which are constructed based on the least squares principle and
require an initial pose estimation. As important as images, point cloud information [1,25]
has been widely used for Martian topography descriptions in recent years. To provide
accurate topographic maps of Mars (i.e., no distortion), it is important to develop matching
approaches that use a point cloud.

The High Resolution Imaging Science Experiment (HiRISE) is a high-resolution imag-
ing instrument carried by the Mars Reconnaissance Orbiter (MRO), capable of capturing
ultra-high-resolution images of the Martian surface with a resolution of 0.25 m. It cur-
rently stands as the highest resolution camera for Mars exploration. The HiRISE has been
proven to be highly effective in conducting local sub-meter terrain reconstruction and
exploring geomorphology on Mars [2,10], playing a crucial role in studying the landing
sites of missions such as Spirit [26] and Curiosity [27]. For precise positioning, the attitude
orbit of HiRISE data should be calibrated by MOLA orbit data [28]. The DEM registration
allows for the alignment of orbit data, combining HiRISE’s high-resolution capabilities with
MOLA’s extensive coverage. This integration enables detailed analysis of Martian surface
features, essential for geological studies, navigation, and planning. The process also aligns
discrepancies in coordinate systems, ensuring accurate data comparison and analysis.

To achieve the absolute orientation of HiRISE data, our studies and contributions in
this paper can be summarized as follows:

(1) DEM coarse registration. A DEM coarse registration framework based on the combi-
nation of ISS + FPFH features is proposed, and the feature matching gross errors are
removed based on a graph strategy.

(2) DEM fine registration. For the problem of large difference in resolution between
MOLA DEM and HiRISE DEM raw observation data, the loss and covariance are
weighted by the Euclidean distance between distributions, and a smoothing weighting
method is constructed to take into account the specificity and improve the VGICP fine
registration algorithm.

(3) Experiment and analysis. To validate the proposed method, we apply it to real experi-
mental data from Mars. The results demonstrate the effectiveness of our approach in
solving the local terrain registration problem on Mars.

The algorithm flow chart of this paper is shown in Figure 1:
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Figure 1. Framework for terrain registration method based on 3D point cloud. 
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m/pixel, while the resolution of the HiRISE image can be as fine as 0.25 m/pixel. In this 
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30 m resolution to match the order of magnitude of the HiRISE DEM point cloud. Mean-
while, the repeatability and identifiability of ISS feature points are better than other 3D 
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the combination of ISS + FPFH features. The DEM coarse registration algorithm contains 
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Similar to image key point detection, the ISS algorithm [18] expresses the degree of 

point specificity by investigating the relationship between a sample point and a set of 3D 
points in its neighborhood. Before the coarse terrain registration, we first extract ISS key 
points from the point cloud to prepare for subsequent feature description and matching. 

By statistically analyzing the spatial relationship between key points and their neigh-
boring points, the Point Feature Histogram (PFH) can be established [20]. This histogram 
captures the geometric properties in the vicinity of the feature points. The high-dimen-
sional histogram space offers a measurable information space that remains invariant to 
three-dimensional rotation and translation of the point cloud, and it exhibits a robustness 
against variations in sampling density and noise. As shown in Figure 2a, the key point 𝑝௤ 
(red) is taken as the center, and 𝑘 nearest neighbor 𝑝௞೔ (blue) is searched for in the neigh-
borhood of radius 𝑟. The 𝑘 +  1 points are paired two by two to generate 𝑘(𝑘 +  1)/2 
point pairs. The geometric features of all of the point pairs are calculated, and then the 

Figure 1. Framework for terrain registration method based on 3D point cloud.

2. DEM Coarse Registration Based on 3D Features

The MOLA DEM [29] was released by the Planetary Data System (PDS), and can be
obtained from the United States Geological Survey (USGS) with a resolution of 463 m/pixel,
while the resolution of the HiRISE image can be as fine as 0.25 m/pixel. In this paper, a
uniform 64 × 64 pixel grid is used for stereo reconstruction, and its resolution can still
reach 16 m or so. In order to maintain the advantages of high-resolution terrain data
and standardize the algorithm input, we first up-sampled the 463 m/pixel MOLA DEM
at 30 m resolution to match the order of magnitude of the HiRISE DEM point cloud.
Meanwhile, the repeatability and identifiability of ISS feature points are better than other
3D key point detection algorithms [18,30], and the FPFH can achieve fast and robust feature
description and matching tasks [21], so we choose to achieve coarse registration through
the combination of ISS + FPFH features. The DEM coarse registration algorithm contains
the following steps: (1) Extracting 3D key points using the ISS algorithm. (2) Calculating
FPFH local feature descriptors based on the key point neighborhood and feature space
nearest neighbor search to obtain the initial matched point pairs. (3) The initial point pairs
usually contain a large number of mismatched point pairs due to local feature similarity or
insignificant specificity of key points. In this paper, we introduce a graph matching strategy
to eliminate the mismatches of the initial point pairs.

2.1. ISS Key Points and PFH/FPFH Features

Similar to image key point detection, the ISS algorithm [18] expresses the degree of
point specificity by investigating the relationship between a sample point and a set of 3D
points in its neighborhood. Before the coarse terrain registration, we first extract ISS key
points from the point cloud to prepare for subsequent feature description and matching.

By statistically analyzing the spatial relationship between key points and their neigh-
boring points, the Point Feature Histogram (PFH) can be established [20]. This histogram
captures the geometric properties in the vicinity of the feature points. The high-dimensional
histogram space offers a measurable information space that remains invariant to three-
dimensional rotation and translation of the point cloud, and it exhibits a robustness against
variations in sampling density and noise. As shown in Figure 2a, the key point pq (red) is
taken as the center, and k nearest neighbor pki

(blue) is searched for in the neighborhood
of radius r. The k + 1 points are paired two by two to generate k(k + 1)/2 point pairs.
The geometric features of all of the point pairs are calculated, and then the PFH feature
descriptor of pq can be obtained statistically. The specific algorithm is as follows:
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The time complexity of PFH features is 𝑂(𝑛𝑘ଶ), which is computationally inefficient. 
Rosu et al. proposed the FPFH algorithm [19], which reduces the time complexity to 𝑂(𝑛𝑘) while preserving the feature description performance. The algorithm is improved 
as follows: 

Figure 2. Point cloud feature calculation neighborhood. (a) PFH descriptor; (b) FPFH descriptor.

(1) Given the point pair {ps, pt}, a local coordinate system ps − µνω is established
with ps as the origin, corresponding to the direction of the coordinate axes as

µ = ns, ν = µ × pt − ps

∥pt − ps∥2
, ω = µ × ν (1)

where × denotes the vector outer product and ∥pt − ps∥2 is the point-to-point Euclidean distance.
(2) Based on the local coordinate system, the point pair features can be represented by

the < α, ϕ, θ, d > quadruple notation

α = ν·ns

ϕ = µ· pt−ps
d

θ = arctan(ω·nt, µ·nt)
d = ∥pt − ps∥2

(2)

where · denotes the vector inner product, α, ϕ, θ are the angular features, d is the Euclidean
distance, and ns, nt are the normal vectors at ps, pt.

(3) The feature quadruplets < α, ϕ, θ, d > of each point pair in the neighborhood of
key point pq are calculated, and each dimensional feature is divided into n intervals. The
number of interval votes is counted to obtain the histogram, and the feature vector with
dimension n4 is generated as the FPH feature descriptor of pq (as shown in Figure 3).
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Figure 3. Example of PFH features histogram (n = 5).

The time complexity of PFH features is O
(

nk2
)

, which is computationally inefficient.
Rosu et al. proposed the FPFH algorithm [19], which reduces the time complexity to
O(nk) while preserving the feature description performance. The algorithm is improved
as follows:

(1) When calculating the point pair features, only the angular components < α, ϕ, θ >
are retained.
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(2) The triplets of < α, ϕ, θ > are processed separately, and the histogram corresponding
to each dimensional feature is simply stitched, so that the dimensionality of the syn-
thetic features is reduced from n3 to 3n, effectively eliminating the spatial redundancy
in the feature description process.

(3) Only the < α, ϕ, θ > features corresponding to the point pairs
{

pq, pki

}
formed by

the points pq and the k nearest neighbors are calculated (as shown in Figure 2b),
and the SPFH (Simplified PFH) features are obtained using statistical histograms.
Weighted fusion of the SPFH features corresponding to the k nearest neighbor points
is performed to obtain the FPFH features

FPFH
(

pq
)
= SPFH

(
pq
)
+

1
k

k

∑
i=1

1
ωi

SPFH
(

pki

)
(3)

The influence of point pairs
{

pki
, pkj

}
in the pq neighborhood is approximated by

SPFH
(

pki

)
, which facilitates parallel processing and improves computational efficiency.

Also, as shown in Figure 2b, FPFH expands the neighborhood range (up to 2r), which can
enhance the feature characterization.

2.2. Matching Gross Rejection Based on Structural Features

Establishing feature descriptions based on the spatial structure between key points
enables the coupling of global information, addressing the issue of mismatching caused by
local feature similarity. In scenarios where the proportion of feature mismatches is high or
the number of matches is limited, methods resembling RASANC [31,32] tend to converge
to local optima, making it challenging to achieve robust estimation of registration relation-
ships [33,34]. In recent years, graphs have seen widespread application in various research
domains, including feature matching [35], image or point cloud segmentation [36,37], and
object recognition [38,39]. Therefore, we employed a structure matching method incorpo-
rating high-dimensional spatial correlation to mitigate incorrect local feature matches. This
method can be formulated as a graph matching problem, which can be mathematically
described as:

max
X

vec(X)TKvec(X)

s.t.X ∈ {0, 1}N1×N2 , X1N2 = 1N1 , XT1N1 ≤ 1N2

(4)

where X is the assignment matrix and K is the affinity matrix, whose diagonal elements
represent the first-order node similarity information and non-diagonal elements represent
the second-order edge similarity information [40,41].

The purpose of graph matching is to compute the optimal assignment matrix X∗ by
optimizing the above objective function, which is an NP-hard problem [42]. However,
since the matching relationship between point clouds can be adequately described by a 3D
rigid-body transformation with shape and scale invariance, there is no need to consider
higher-order correlations between nodes. By focusing solely on feature similarity (i.e., node
similarity) and the similarity of edges formed by pairs of nodes, it becomes possible to
effectively reduce the search space and enhance the efficiency of graph matching algorithms.

In order to simplify the graph matching problem and improve the computational
efficiency, as shown in Figure 4, we constructed an association graph K corresponding
to the graph matching problem based on the key point pairs M = {piqi, i = 1, . . . , N}
obtained by feature matching. Each node xi in the graph represents a strategy (i.e., matching
Mi), reflecting the feature similarity between key points, and each edge represents the
correlation between different strategies Mi and Mj (i ̸= j), reflecting the second-order
similarity corresponding to the spatial relationship. Since local feature matching has
already filtered out most of the incorrect edges (i.e., mismatches), as well as nodes not
involved in matching, the size of the graph is substantially smaller compared to traditional
graph matching methods. This reduction in size is crucial for addressing the NP-hard
problem within polynomial time. Polynomial time refers to a complexity class where the
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time required to solve a problem increases polynomially, rather than exponentially, with
the size of the input, making the solution computationally feasible for larger datasets. By
leveraging this approach, the graph matching problem can be transformed into a graph-
based gross error rejection problem.
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Let the initial state N sets of matches Mi(i = 1, . . . , N) have the same confidence level
and equal weights as 1

N , i.e., xi =
1
N . On the basis of the distance similarity Cdist [43], the

normal vector angle constraint Cangle is introduced, and then the correlation Kij between
match i and match j can be defined as

Cdist(i, j) = e−(∥pi−pj∥2−∥qi−qj∥2)
2

Cangle(i, j) = e−(|cos<pi−pj ,npi>|−|cos<qi−qj ,nqi>|)2

Kij =
1
2 ×

(
Cdist(i, j) + Cangle(i, j)

) (5)

It should be noted that Cangle can reduce the influence of nearby points of optimal matching
on the results and improve the robustness of the algorithm to resolution differences.

In the optimization process, the overall gain G(x, K) is maximized by adjusting the
weight vector x and reallocating the confidence degree of each node, similar to the non-
cooperative game problem solving process. The matching game’s objective function is
defined as

(x, K) = xTKx s.t.∀i, xi > 0,
N

∑
i=1

xi = 1 (6)

x̂ = argmax
x

G(x, K) s.t.∀i, xi ≥ 0,
N

∑
i=1

xi = 1 (7)

The graph matching problem is further transformed into a conditional extremal prob-
lem under inequality constraints as in (11). It can be solved by the Lagrange multiplier
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method under the KKT [44] condition. The Lagrangian function of the matching game
function under the inequality constraint is defined as

L(x,µ, λ) = G(x, K) + λ

(
1 −

N

∑
i=1

xi

)
+ µ·x (8)

where G(x, K) is the game objective function, λ
(

1 − ∑N
i=1 xi

)
is the equation constraint,

and µ·x is the inequality constraint. The corresponding KKT conditions are

∂L
∂x = 0

λ ̸= 0, µi ≥ 0, µixi = 0
1 − ∑N

i=1 xi = 0, xi ≥ 0
(9)

Referring to the numerical approach for non-cooperative games [45], the system
of KKT conditional equations above is solved iteratively to obtain the weight vector x̂
corresponding to maximum overall gain G(x, K).

xi(t) = xi(t − 1)
∑N

j=1 Ki,j·xj(t − 1)

∑N
i=1 ∑N

j=1 Ki,j·xi(t − 1)xj(t − 1)
, i = 1, . . . , N (10)

where t denotes the t-th iteration and xi(0) = 1
N .

Since the goal of coarse registration is to calculate the coarse alignment matrix based
on a small number of good quality matches, we rearranged the weight vectors x̂ obtained
from the solution in descending order, taking the top 10% matches as good quality matches,
and obtaining the coarse alignment matrix by least squares estimation.

3. DEM Fine Registration Based on Improved VGICP

The coarse registration algorithm serves as an effective solution to the point cloud
registration problem, particularly when the relative positions are entirely unknown. How-
ever, the registration process is affected by the distribution and density of key points, and
considering only a limited number of key point pairs makes it challenging to achieve precise
local alignment. Since the goal of terrain matching is to attain the absolute orientation
of the reconstructed Digital Elevation Model (DEM), performing local fine registration
becomes essential.

Building upon feature coarse registration, accurate correspondence between point
clouds is achieved by minimizing the point-to-point distance metric function. The classical
Iterative Closest Point (ICP) algorithm [24] determines the optimal transformation between
point clouds by minimizing the distance from each source point to its nearest neighbor
in the target point cloud, enabling point-to-point registration. However, this method is
sensitive to gross errors and resolution disparities. In contrast, the point-to-plane ICP [46]
minimizes the distance from each source point to the plane where the corresponding target
point is located, leveraging spatial information from the neighborhood of the target point
for point-to-distribution registration. This approach exhibits faster convergence and greater
resistance to gross errors compared to traditional ICP, but it does not consider the local
information of the source point, making it challenging to handle mismatches caused by
gross errors in the source point cloud. The Generalized Iterative Closest Point (GICP)
algorithm [47] addresses these limitations by weighting the distance loss based on both
the local geometric information of the source and target points, achieving distribution-
to-distribution alignment. GICP outperforms both point-to-point ICP and point-to-plane
ICP in terms of registration accuracy and robustness. Another approach, the Normal
Distributions Transform (NDT) algorithm [48], voxelizes the target point cloud before
matching and determines the optimal transformation by maximizing the response value of
the probability function corresponding to the projection of the source points onto the target
voxel distribution. NDT operates as a voxel-based point-to-distribution method. However,



Remote Sens. 2024, 16, 1620 8 of 18

NDT is often highly sensitive to the choice of voxel resolution, and its registration accuracy
tends to be lower than that of ICP methods. The geometric interpretation of the distance
cost associated with these methods is illustrated in Figure 5.
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The Voxelized Generalized Iterative Closest Point (VGICP) [49] algorithm borrows the
concept of voxels, considers the relationship between the source point distribution and all
distributions within the nearest neighboring voxels, and weights the inter-distribution loss
by the number of points within the voxel grid to achieve distribution-to-multi-distribution
smoothness matching, which can improve the GICP algorithm in terms of both running
speed and robustness. VGICP simultaneously calculates the distance between the source
point ai ∼ N

(
âi, CA

i

)
to multiple target points bj ∼ N

(
b̂j, CB

j

)
in a neighborhood of

radius r. The cumulative sum d̂′
i is taken as a single point loss

d̂′
i = ∑

j

(
b̂j − Tâi

)
(11)

By considering multiple local distributions, the local features can be smoothed effec-
tively. Assuming that ai and bj are independent of each other, it follows that

d′
i ∼ N

(
∑

j

(
b̂j − Tâi

)
, ∑

j

(
CB

j + TCA
i TT

))
= N

(
0, ∑

j

(
CB

j + TCA
i TT

))
(12)

Converting the solution process of the registration matrix T to a maximum likelihood
problem as

T∗ = argmin
T

∑
i

(
∑

j

(
b̂j − Tâi

))T(
∑

j

(
CB

j + TCA
i TT

))−1(
∑

j

(
b̂j − Tâi

))
(13)

T∗ = argmin
T

∑
i

Ni

(
∑j b̂j

Ni
− Tâi

)T(
∑j CB

j

Ni
+ TCA

i TT

)−1(
∑j b̂j

Ni
− Tâi

)
(14)

where Ni is the number of points in the neighborhood (i.e., within the voxel).
VGICP takes into account local smoothing, which is robust against local area differ-

ences resulted from point cloud sampling granularity and source data resolution, and thus
better solves the MOLA DEM and HiRISE DEM registration problems. However, similar
to NDT, the voxel radius r has a large impact on the registration accuracy. In order to
reduce the sensitivity of voxel radius r selection, we improved VGICP by smoothing and
weighting the loss and covariance terms in (18) using the Euclidean distance from ai to bj,
so that the weights of different points within the voxel are different (as in Figure 6). The
maximum likelihood problem of our improved method can be described as
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T∗ = argmin
T

∑
i


(

∑
j

ωij

)(
∑j ωijb̂j

∑j ωij
− Tâi

)T(
∑j ωijCB

j

∑j ωij
+ TCA

i TT

)−1(
∑j ωijb̂j

∑j ωij
− Tâi

) (15)

ωij = exp

−
∥∥b̂j − Tâi

∥∥2

2σ2

 (16)
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∑j ωijC

B
j

∑j ωij
. To improve the computational

efficiency, we approximate Tâi by the geometric center br
i of the points bj inside the voxel,

then the expression ωij after the approximate substitution is defined as

ωij = exp

−

∥∥∥b̂j − br
i

∥∥∥2

2σ2

 (17)

where br
i =

∑j b̂j
Ni

, σ is the width parameter of the Gaussian kernel function.

4. Experiment and Analysis
4.1. Experimental Data

In order to verify the effectiveness of the proposed method, topographic data for the
proposed Curiosity landing area, Mawrth Vallis, were selected for the experiments. Mawrth
Vallis is located in the Oxia Palus quadrangle, sitting approximately two kilometers below
the Martian datum. It is a channel that was formed by massive ancient floods on Mars.
Orbital data have revealed the presence of hydrated minerals and abundant deposits of
light-colored clays in the Mawrth Vallis region, indicating that it was once submerged in
a water environment. Clays are excellent at preserving biosignatures, making this region
an ideal target for studying the history of life on Mars. Additionally, its location between
the southern highlands and the northern lowlands offers a relatively flat terrain, making it
more suitable for rover landings.

The experimental data include Mars Orbiting Laser Altimeter (MOLA) DEM and
HiRISE DEM. MOLA DEM is a digital elevation model covering the globe of Mars based
on MOLA data carried by NASA MGS, with a horizontal positioning accuracy of 100 m,
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an elevation accuracy of 3 m, and a pixel resolution of 463 m. Global MOLA DEM images
use a simple cylindrical projection with a size of 23,040 × 46,080 pixels (Figure 7a). In
this paper, the target point cloud was generated by resampling the DEM images within
the study area (longitude 19.15◦W~18.94◦W, latitude 23.74◦N~24.19◦N), and the sampling
resolution was 16 m in order to ensure the point cloud order of magnitude was consistent
with HiRISE DEM (as in Figure 7b).
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tance (CD), and so on. Due to the large difference in the detail resolution between the 
HiRISE DEM and the MOLA DEM, we used the statistical mean value of point pair errors 𝑚௜ in the local area as the unit loss, and we took the sum by inverse variance weighting 
as the global registration error of the terrain. The algorithm is as follows: 

1. Calculate the k nearest neighbors 𝒃௝௟(𝑙 = 1, … , 𝑘) in the target point cloud for point 𝒂௝ in the source point cloud, and calculate their mean 𝒃෡௝ as a virtual nearest neighbor. 

Figure 7. MOLA experimental data. (a) Global MOLA DEM image; (b) MOLA sampling result.

The HiRISE DEM was generated by the Mars orbit image photogrammetry processing
software developed by our team. This software was developed in the C + + language
and has functions such as line-array image intensive matching, jitter correction, bundle
block adjustment, etc. The generated DEM achieves a sub-pixel accuracy in terms of back
projection error. The HiRISE stereo image pairs are PSP_008469_2040 and PSP_008825_2040
from the Mawrth Vallis area (Figure 8a) with a ground resolution of 0.25 m. Due to the
large amount of data, the experiments in this paper use a uniform grid of 64 × 64 pixels to
extract the thinning and perform a semi dense surface reconstruction to obtain the HiRISE
DEM grid with 16 m resolution (as in Figure 8b).
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Comparing Figures 7b and 8b, it is easy to see that the sampling area of MOLA DEM
is relatively larger, the topographic resolution of HiRISE DEM is much higher than that of
MOLA DEM, and the difference in local details between the two is huge, while the average
elevation difference between the two is greater than 3000 m.

4.2. Evaluation Metrics

Common point cloud registration evaluation metrics include L2 Norm Loss (Squared
Error), Root Mean Square Error (RMSE), Largest Common Point Set (LCP), Chamfer
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Distance (CD), and so on. Due to the large difference in the detail resolution between the
HiRISE DEM and the MOLA DEM, we used the statistical mean value of point pair errors
mi in the local area as the unit loss, and we took the sum by inverse variance weighting as
the global registration error of the terrain. The algorithm is as follows:

1. Calculate the k nearest neighbors bjl(l = 1, . . . , k) in the target point cloud for point
aj in the source point cloud, and calculate their mean b̂j as a virtual nearest neighbor.

b̂j =
∑k

l=1 bjl

k
(18)

2. Block the registration area with a homogeneous grid and calculate the mean and
variance of the registration coordinate differences of the point pairs within the grid.

mi =
∑aj∈Ai ,bj∈Bi∥b̂j−Taj∥

Ni

σ2
i =

∑aj∈Ai ,bj∈Bi (∥b̂j−Taj∥−mi)
2

Ni

(19)

3. Weight the mean value of the registration coordinate differences mi for all grids
using the inverse variance 1

σ2
i

and then calculate the mean value as the terrain registration

error δTM:

δTM =
Nbs

∑
i=0

mi

σ2
i

/
Nbs

∑
i=0

1
σ2

i
(20)

where Nbs is the number of grids.
In addition, the RMSE, LCP, and CD metrics can be defined as

RMSE =

√
∑N

i=0∥bi−Tai∥2

N
LCP = count{ai|∥bi − Tai∥ < ϵ, ai ∈ A, bi ∈ B}

CD = 1
N1

∑
ai∈A

min
bj∈B

∥bi − Tai∥+ 1
N2

∑
bj∈B

min
ai∈A

∥∥bj − Tai
∥∥ (21)

4.3. Coarse Registration Results

Before terrain coarse registration, we generated the point cloud grid corresponding to
HiRISE and MOLA terrain data with 16 m spacing using the reconstruction and resampling
methods. According to the method in Section 2, ISS key point extraction and key point
FPFH feature descriptions are performed first, then nearest neighbor matching is performed
to obtain the initial correspondence of key points, and reliably matched point pairs are
obtained after graph matching to reject gross errors.

The number of experimental point clouds, ISS feature point extraction results and
matching results are shown in Table 1.

Table 1. Coarse registration results.

Number Points ISS Key Points Initial Matching Graph Match Optimization

MOLA 349,674 2409
1336 136

HiRISE 143,774 3639

Although the number of sampling points for the MOLA DEM is much larger than
that for the HiRISE DEM, the number of ISS key points is less instead because of its lower
initial resolution and the relatively gentle elevation undulation between sampling points.
As shown in Figure 9a, there are a large number of mismatches among the 1336 pairs
of initial matches obtained by the feature space nearest neighbor search. We performed
the mismatch rejection using the structural feature method proposed in Section 2.2 and
obtained 136 pairs of high-quality correspondences (as in Figure 9b). From the visual
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perspective, a large number of matching gross errors were eliminated and the remaining
matches had a good spatial consistency.
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Figure 10. Coarse registration results. (a) Coarse registration mapping; (b) 3D views of registration 
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From Figures 7b and 8b, it can be seen that, before the alignment, the average eleva-
tion in the HiRISE DEM was −5600 m, while in the MOLA DEM it was −2200 m. After 
coarse registration, the average elevation difference was reduced from >3000 m to about 
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differences in elevation at the junction. The accuracy evaluation indexes of the coarse reg-
istration algorithm are shown in Table 2. 

Figure 9. Key points matching results. (a) FPFH feature matching; (b) optimization based on graph
matching. The initial feature matching contains numerous mismatches (a), but after applying graph
matching to remove gross errors, the remaining matches are correct (b).

The results of the coarse registration are shown in Figure 10. The black line in
Figure 10a is caused by elevation differences, reflecting the fact that the accuracy of the
coarse registration is still limited, as is the difference in elevation of the elliptically labelled
area in Figure 10b and the uneven occlusion in Figure 10c (ideally, the greyscale MOLA
DEMs should be uniformly distributed with the color HiRISE DEMs).
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From Figures 7b and 8b, it can be seen that, before the alignment, the average eleva-
tion in the HiRISE DEM was −5600 m, while in the MOLA DEM it was −2200 m. After 
coarse registration, the average elevation difference was reduced from >3000 m to about 
101 m, and the overall terrain fits with MOLA DEM. Therefore, the coarse registration 
algorithm can realize the rough positioning of HiRISE DEM in the global range. However, 
as shown in Figure 10b, there are still some areas with poor registration, resulting in clear 
differences in elevation at the junction. The accuracy evaluation indexes of the coarse reg-
istration algorithm are shown in Table 2. 

Figure 10. Coarse registration results. (a) Coarse registration mapping; (b) 3D views of registration
result; (c) Top view of point cloud registration. The black dots, lines, and boundaries in (a) represent
elevation discrepancies at the edges of DEM registration, and the ellipses in (b) highlight areas with
significant elevation differences.

From Figures 7b and 8b, it can be seen that, before the alignment, the average elevation
in the HiRISE DEM was −5600 m, while in the MOLA DEM it was −2200 m. After coarse
registration, the average elevation difference was reduced from >3000 m to about 101 m,
and the overall terrain fits with MOLA DEM. Therefore, the coarse registration algorithm
can realize the rough positioning of HiRISE DEM in the global range. However, as shown
in Figure 10b, there are still some areas with poor registration, resulting in clear differences
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in elevation at the junction. The accuracy evaluation indexes of the coarse registration
algorithm are shown in Table 2.

Table 2. Coarse registration precision.

Algorithm δTM/m RMSE/m LCP CD/m

ISS + FPFH 101.261 143.276 623 675.100

4.4. Fine Registration Results

The coarse registration achieves geometric localization on a global scale. The coarse
registration result can be used as the initial registration state to further realize point-by-
point registration based on the improved VGICP and to compare it with the classical ICP,
GICP, and VGICP methods. In the experiment, in order to eliminate the local mismatch
caused by the difference in the original resolution of the HiRISE DEM and MOLA DEM,
and verify the terrain registration capability of the algorithm based on sparse point clouds,
the source and target point clouds were sampled sparsely with the same resolution; the
down-sampled grid size was taken as Vs = 400 m, which is similar to the original resolution
of the MOLA DEM. The upper limit for the algorithm iterations was set to 50. During
the algorithm iterations, we evaluated the accuracy using checkpoints selected from the
original point cloud (16 m resolution). The variation in the RMSE metrics of the four
algorithms with the number of iterations is shown in Figure 11.
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A visualization of the mean value of the coordinate differences within the grid when
the iterations converge is shown in Figure 12 (corresponding to δTM). The accuracy statistics
are shown in Table 3.

Table 3. Fine registration precision.

Algorithm δTM/m RMSE/m LCP CD/m

ICP 97.226 128.760 709 664.771
GICP 93.273 123.804 757 630.082

VGICP 91.836 122.014 770 642.532
Ours 79.072 104.068 830 620.426



Remote Sens. 2024, 16, 1620 14 of 18Remote Sens. 2024, 16, 1620 14 of 19 
 

 
Figure 12. Visualization of the mean spatial registration error 𝑚௜ within the grids using Equation 
(19). Uneven spatial errors are caused by the difference in spatial resolution between the MOLA 
DEM and HiRISE DEM. 

Table 3. Fine registration precision. 

Algorithm 𝜹𝑻𝑴/m RMSE/m LCP  CD/m 
ICP 97.226 128.760 709 664.771 

GICP 93.273 123.804 757 630.082 
VGICP 91.836 122.014 770 642.532 
Ours 79.072 104.068 830 620.426 

By comparing the accuracy metrics in Tables 2 and 3, it can be seen that all four of the 
above fine registration algorithms can improve the coarse registration results, which is 
consistent with the results in Figure 12. At the same time, the performance of our method 
was better than the other three comparison algorithms in all of the evaluation indexes, and 
the mean value of the statistical pointing error of the grid 𝛿்ெ was reduced to below 80 
m, and the number of LCP common points with MOLA DTM also significantly increased. 
As shown in Figure 10, compared with the existing best-performing VGICP algorithm, 
our algorithm converges faster and the RMSE is reduced by nearly 20%, which can achieve 
a high accuracy and high efficiency of HiRISE DEM absolute positioning. The final top 
view of the point cloud registration is shown in Figure 13. In terms of visual effects, the 
pixel ratios of the MOLA DEM and HiRISE DEM are the most similar in the top view 
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Figure 12. Visualization of the mean spatial registration error mi within the grids using Equation (19).
Uneven spatial errors are caused by the difference in spatial resolution between the MOLA DEM and
HiRISE DEM.

By comparing the accuracy metrics in Tables 2 and 3, it can be seen that all four of
the above fine registration algorithms can improve the coarse registration results, which is
consistent with the results in Figure 12. At the same time, the performance of our method
was better than the other three comparison algorithms in all of the evaluation indexes, and
the mean value of the statistical pointing error of the grid δTM was reduced to below 80 m,
and the number of LCP common points with MOLA DTM also significantly increased. As
shown in Figure 10, compared with the existing best-performing VGICP algorithm, our
algorithm converges faster and the RMSE is reduced by nearly 20%, which can achieve
a high accuracy and high efficiency of HiRISE DEM absolute positioning. The final top
view of the point cloud registration is shown in Figure 13. In terms of visual effects, the
pixel ratios of the MOLA DEM and HiRISE DEM are the most similar in the top view
corresponding to our method, and the distribution is more random, which means that the
terrain fits better and the inconsistency of the registration results reflects the difference in
the resolution ability of the terrain itself more rather than the gross errors in the registration.
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Meanwhile, in order to verify the stability of the selection of voxel radius r, a compari-
son experiment with VGICP was designed by taking r = {Vs, 2Vs, . . ., 5Vs}, and the number
of iterations as 50. The variation in the RMSE index with the number of iterations is shown
in Figure 14, and the statistical results are shown in Table 4.
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Figure 14. Influence of voxel radius r. The overlapping lines of our method indicate that the results
are almost identical, demonstrating our method remains best performance when different voxel
radius r is chosen.

Table 4. Influence of voxel radius r.

Algorithm r (Vs = 400 m) RMSE/m

VGICP

Vs 127.38818962202778
2Vs 139.79158193437294
3Vs 138.31933973779917
4Vs 129.55025475600053
5Vs 111.60038788194028

Ours

Vs 104.06773202236396
2Vs 104.06773202298623
3Vs 104.06773202298623
4Vs 104.06773202298623
5Vs 104.06773202298623

Analyzing the experimental results, it can be seen that, when r = Vs, 2Vs, . . ., 5Vs, the
RMSE difference corresponding to the smoothing weighting method used in this paper is
less than 10−9 m. Therefore, the method in this paper is not sensitive to the selection of
the voxel radius r, which can avoid the influence of r on the fine registration results and
effectively improves the robustness of the algorithm.

The fine registration mapping results are shown in Figure 15.



Remote Sens. 2024, 16, 1620 16 of 18

Remote Sens. 2024, 16, 1620 16 of 19 
 

Table 4. Influence of voxel radius  𝑟. 

Algorithm 𝒓(𝑽𝒔 = 𝟒𝟎𝟎 𝐦) RMSE/𝐦 

VGICP 

𝑉௦ 127.38818962202778 2𝑉௦ 139.79158193437294 3𝑉௦ 138.31933973779917 4𝑉௦ 129.55025475600053 5𝑉௦ 111.60038788194028 

Ours 

𝑉௦ 104.06773202236396 2𝑉௦ 104.06773202298623 3𝑉௦ 104.06773202298623 4𝑉௦ 104.06773202298623 5𝑉௦ 104.06773202298623 

Analyzing the experimental results, it can be seen that, when 𝑟 = Vୱ, 2Vୱ, … , 5Vୱ, the 
RMSE difference corresponding to the smoothing weighting method used in this paper is 
less than 10ିଽ m. Therefore, the method in this paper is not sensitive to the selection of 
the voxel radius 𝑟, which can avoid the influence of r on the fine registration results and 
effectively improves the robustness of the algorithm. 

The fine registration mapping results are shown in Figure 15. 

 
 

(a) (b) 

Figure 15. Fine registration results. (a) Registration mapping; (b) 3D visualization. 

5. Conclusions 
In this paper, a DEM coarse registration framework based on the combination of ISS 

+ FPFH features was proposed to obtain the initial feature correspondence between dif-
ferent terrain data according to a feature description of key points and nearest neighbor 
matching in the feature space, and to reject the feature matching gross errors by introduc-
ing the strategy of graph matching, which finally achieves the global coarse localization 
of HiRISE DEM. In the process of fine registration, in order to solve the problem of large 
difference in detail resolution between MOLA DEM and HiRISE DEM, we modified the 
VGICP method by smoothly weighting the loss and covariance through the Euclidean 
distance between distributions, which improved the robustness of the algorithm. Experi-
ments show that the proposed algorithm has the highest registration accuracy in the 
HiRISE DEM orientation task by comparing it with classical ICP, GICP, and VGICP algo-
rithms. The method in this paper is adapted to multi-source terrain matching problems 
with large differences in detail resolution. 

In future work, we plan to further explore the application of this method to position-
ing problems involving various Martian DEM data such as Tianwen-1 High Resolution 
Imaging Camera (HiRIC), HiRISE, and MOLA. Additionally, we aim to investigate direct 
registration methods between orbital imagery and DEMs, such as employing deep learn-
ing techniques to correlate features between images and point clouds to enhance the algo-
rithm’s stability. To counteract resolution differences, we are also considering studying 
error-adaptive weighted registration methods. 
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5. Conclusions

In this paper, a DEM coarse registration framework based on the combination of
ISS + FPFH features was proposed to obtain the initial feature correspondence between
different terrain data according to a feature description of key points and nearest neighbor
matching in the feature space, and to reject the feature matching gross errors by introducing
the strategy of graph matching, which finally achieves the global coarse localization of
HiRISE DEM. In the process of fine registration, in order to solve the problem of large
difference in detail resolution between MOLA DEM and HiRISE DEM, we modified the
VGICP method by smoothly weighting the loss and covariance through the Euclidean dis-
tance between distributions, which improved the robustness of the algorithm. Experiments
show that the proposed algorithm has the highest registration accuracy in the HiRISE DEM
orientation task by comparing it with classical ICP, GICP, and VGICP algorithms. The
method in this paper is adapted to multi-source terrain matching problems with large
differences in detail resolution.

In future work, we plan to further explore the application of this method to positioning
problems involving various Martian DEM data such as Tianwen-1 High Resolution Imaging
Camera (HiRIC), HiRISE, and MOLA. Additionally, we aim to investigate direct registration
methods between orbital imagery and DEMs, such as employing deep learning techniques
to correlate features between images and point clouds to enhance the algorithm’s stability.
To counteract resolution differences, we are also considering studying error-adaptive
weighted registration methods.
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