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Abstract: Object detection in UAV aerial images faces domain-adaptive challenges, such as changes in
shooting height, viewing angle, and weather. These changes constitute a large number of fine-grained
domains that place greater demands on the network’s generalizability. To tackle these challenges, we
initially decompose image features into domain-invariant and domain-specific features using practical
imaging condition parameters. The composite feature can improve domain generalization and single-
domain accuracy compared to the conventional fine-grained domain-detection method. Then, to
solve the problem of the overfitting of high-frequency imaging condition parameters, we mixed
images from different imaging conditions in a balanced sampling manner as input for the training
of the detection network. The data-augmentation method improves the robustness of training and
reduces the overfitting of high-frequency imaging parameters. The proposed algorithm is compared
with state-of-the-art fine-grained domain detectors on the UAVDT and VisDrone datasets. The
results show that it achieves an average detection precision improvement of 5.7 and 2.4, respectively.
The airborne experiments validate that the algorithm achieves a 20 Hz processing performance for
720P images on an onboard computer with Nvidia Jetson Xavier NX.

Keywords: aerial image; object detection; imaging condition; feature decomposition

1. Introduction

Aerial image target-detection technology can quickly and efficiently extract ground
feature information and extend the scene understanding capability of UAVs. It spawns
diverse application scenarios [1–4] and is one of the current popular and cutting-edge
research directions. The large-scale mobility of the UAV’s airborne imaging equipment
brings more changes, and Figure 1 shows the imaging diagram of the optical camera
mounted on the UAV platform at different flight heights and different perspectives of the
gimbal. These factors and some external conditions, such as weather and illumination, are
regarded as imaging condition parameters, which means the aerial image data are divided
into many fine-grained domains (see Figure 2). Suppose the detector is directly trained
on imbalanced fine-grained domain data; the model will overfit the domain with high
frequency, underfit the domain with low frequency, and lack the generalization performance
for different fine-grained domains.

In aerial imagery, the imaging condition can be clearly obtained from the sensors of the
UAV. The shooting height can be obtained from the onboard GPS or barometer. The viewing
angle can be obtained from the pitch angle in the gimbal. Also, the shooting time can be
obtained from the onboard computer’s clock module. Therefore, the efficient use of these
free data is the focus of this paper. So far, there has been a lot of research work on domain
adaptation [5–10]. However, they all explicitly assume one or more source domains and
a target domain with no label information. Then, they use a transfer learning algorithm
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to adapt the model trained in the source domain to the target domain. The feasibility of
generalizing these methods to handle many fine-grained domains is questionable [11].

Figure 1. The imaging diagram of the imaging equipment mounted on the UAV platform at different
flight heights and different pan/tilt angles; these altitude and angle data can be read out by sensors
on the UAV.

Figure 2. Fine-grained domains in aerial images under different imaging conditions.

There are also some studies on fine-grained domain detectors for aerial images;
Wu et al. [11] proposed an adversarial training framework dubbed Nuisance-Disentangled
Feature Transform (NDFT) to learn fine-grained domain-invariant features, thereby obtain-
ing more robust detection effects in multiple fine-grained domains. Lee et al. [12] improved
the problem of the slow convergence of NDFT and used feature replay and slow learner
techniques to speed up the learning of domain-invariant features. In addition to the idea of
learning domain-invariant features, Kiefer et al. [13] believed that domain-specific features
have a positive effect on fine-grained domain detection and the unbalanced domain dis-
tribution leads to a decrease in detection performance. Therefore, they proposed to add
independent detection sub-networks for each domain to extract domain-specific features
and reduce the problem of imbalance in domain distribution.

Furthermore, recent advancements in object detection have introduced novel tech-
niques such as DETRs with hybrid matching [14], Adaptive Rotated Convolution for
Rotated Object Detection [15], Rank-DETR for High-Quality Object Detection [16], and V-
DETR for 3D object detection [17]. These approaches have pushed the boundaries of object
detection, offering promising avenues for improving detection performance in various
domains. Moreover, AdaDet, an Adaptive Object-Detection System based on Early-Exit
Neural Networks [18], has demonstrated its efficacy in handling diverse object-detection
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tasks. However, the application of these techniques to fine-grained domain detection in
aerial imagery remains unexplored.

The above observations can be summarized as follows. Firstly, both domain-invariant
and domain-specific features can improve fine-grained domain-detection performance.
Second, adding a separate detection sub-network for each fine-grained domain will add
more parameters. Moreover, the network structure needs to be changed when new fine-
grained domains are introduced. Lastly, the above algorithms are all modified for two-stage
detectors, which are not conducive to micro and small UAV deployment. Therefore, we
propose a fine-grained feature-disentanglement network to learn domain-specific and
domain-invariant features using airborne metadata simultaneously. Furthermore, we
propose a fine-grained domain mix augmentation algorithm to better combine the fine-
grained domain learning module with the YOLOv5 [19] framework and achieve better
detection performance than NDFT (two-stage detector) on a single-stage detector.

In summary, our contributions are as follows:

1. We propose a fine-grained feature-disentanglement network. It uses airborne meta-
data as supervision information to disentangle domain-invariant and domain-specific
features. These decomposed features improve cross-domain generalization and single-
domain detection accuracy.

2. We propose a domain mix augmentation algorithm. It alleviates the problem of
fine-grained domain-distribution imbalance and solves the problem that Mosaic
augmentation cannot be used for airborne metadata label learning.

3. The proposed method achieves state-of-the-art performance on both VisDrone and
UAVDT datasets. Meanwhile, it is able to process 720P images at 20 Hz on an Nvidia
Jetson Xavier NX airborne computer (Nvidia Corporation, Santa Clara, CA, USA).

2. Related Work
2.1. Domain Shift of Remote Sensing

Domain shift is a common problem in aerial remote-sensing images. The model of
aerial images is easily affected by various imaging conditions, such as viewpoint geometry,
atmospheric effect, sensor properties, and temporal variability. Studies such as [11,13]
showed that there are obvious differences in detection performance under different per-
spectives on the VisDrone and UAVDT datasets. The same is true for similar satellite
remote-sensing images. Weir et al. [20] found that the existing satellite image datasets are
taken from the vertical top view. When the detector trained on these datasets encounters the
input image under a certain offset view, its detection performance is significantly reduced.
Tasar et al. [10] also observed that even when the same satellite is used to sense different
regions, the model performance deteriorates due to changes in color distribution.

In the context of this problem becoming more prominent, many domain-adaptation
algorithms involving remote sensing orientations have been proposed [5–10]. Nevertheless,
these studies all assume one or more source (ideal) domains and one target (non-ideal)
domain, which requires explicit retraining whenever a new target domain emerges. On the
contrary, this paper focuses on building a robust detector for fine-grained domains.

2.2. Fine-Grained Domain Object Detection

Most off-the-shelf detectors are typically trained with less variable, field-limited data.
In contrast, a large number of external imaging conditions specific to UAVs (such as
altitude changes, viewpoint changes, and weather changes) cause UAV-based detection
models to run in a large number of different fine-grained domains. To the best of our
knowledge, NDFT [11] is a pioneering work to demonstrate the effectiveness of fine-
grained domain-invariant learning in UAV images. They added NDFT to Faster R-CNN,
obtained a 2% mAP increase on the UAVDT dataset, and only used metadata recorded by
drones without additional annotation work. Since then, Lee et al. [12] proposed feature
replay and slow learner techniques to improve the problem of slow NDFT training further.
Kiefer et al. [13] believed that domain imbalance is an essential factor leading to the
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performance degradation of fine-grained domain detection. They proposed using different
heads to learn domain-specific features so that the detector will not be affected by domain
bias caused by fine-grained domain imbalance.

In comparison, our proposed algorithm utilizes metadata to disentangle invariant
features and specific features in different fine-grained domains. It makes full use of them
to obtain a more robust detection, taking into account the different ideas from the above
literature. In addition, this paper proposes a fine-grained domain-mix-augmentation
algorithm, which achieves higher accuracy and speed on the one-stage detection framework.
The proposed method will be verified in the subsequent experimental part. As a key
indicator to evaluate the performance of the object detection model, mAP represents the
area under the average precision and recall curve of all categories, which we will use for
evaluation. It has significant advantages when deployed on UAVs.

2.3. Disentangled Representation Learning

As an efficient feature-decomposition mechanism, Disentangled Representation Learn-
ing (DRL) is effective in many tasks, such as image style transfer [21] and few-shot learn-
ing [22]. Lee et al. [21] used DRL to decompose image features into one domain-invariant
content space and another domain-specific attribute space. These are used to capture
cross-domain shared information and improve the diversity of image style transfer, re-
spectively. Peng et al. [23] proposed to decompose category-invariant features, domain-
invariant features, and domain-specific features to achieve domain adaptive classification
tasks. However, this work only considers the classification representation at the overall
image level.

Wu et al. [24] used DRL for domain-invariant feature learning in object detection to
achieve domain-adaptive object detection, but this paper is different from them in two
respects. The first is that their framework has a clear definition of the source domain and
target domain, which cannot be directly applied to fine-grained domain object detection.
Second, they pay more attention to domain-invariant feature learning while ignoring the
contribution of domain-specific features to the detector.

3. Approach
3.1. Problem Definition

We define an aerial image object detection training dataset D = {(xi, yi)}, where
xi is an input image and the label yi includes objects’ category and bounding box coor-
dinates. The images in the dataset X can be divided into many fine-grained domains
{Xd1 ,Xd2 , ...,Xdn} ∈ X according to the shooting conditions. There is a covariate shift in
the distributions pda : Xda × Y → R+ and pdb

: Xdb
× Y → R+ of any two fine-grained

domains. In other words, suppose pda(y|x) = pdb
(y|x), but pda(x) = pdb

(x) [25].

3.2. Framework

Considering the computational performance constraints of onboard computing de-
vices, we use a single-stage detector as the main network framework and propose two
sub-modules named Fine-grained Domain Mix Augmentation and Fine-grained Feature
Disentanglement. Using these sub-modules along with the free information recorded by
the airborne sensors, we achieve better detection performance than the two-stage fine-
grained detector NDFT [11] on two typical aerial image datasets, UAVDT and VisDrone.
The specific network structure diagram is shown in Figure 3.

The Fine-grained Domain Mix Augmentation (FDM) module mixes the fine-grained
domain images and outputs the fine-grained domain mask labels corresponding to the
mixed images. The Fine-grained Feature Disentanglement (FGFD) module decomposes the
features of the object on the image into fine-grained domain-invariant features and fine-
grained domain-specific features and simultaneously uses them to improve detection perfor-
mance. For the detailed description of the above two modules, please refer to the following
Sections 3.3 and 3.4, respectively.
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Figure 3. Illustration of the proposed main framework, including fine-grained domain mix augmenta-
tion and fine-grained domain feature disentanglement modules, and combining them as components
in the YOLOv5 series. ‘Diff’ and ‘GRL’ separately indicate the difference disentanglement and
Gradient Reversal Layer [26,27].

3.3. Fine-Grained Domain Mix Augmentation

There are many advanced single-stage detectors [28–30] using Mosaic augmentation,
which effectively improves detection accuracy and robustness. However, the simultane-
ous application of Mosaic augmentation and imaging condition disentangled learning is
complex. Because the airborne imaging condition information is for a single input image,
such as an image taken at low altitude, front view, and night, Mosaic augmentation needs
to mix four input images, and the position of each image is also random. This makes
it difficult for single-stage detectors to directly use the training framework proposed by
Wu et al. [11] to handle combinations of imaging condition. Besides that, abandoning the
use of Mosaic augmentation also leads to a large drop in accuracy. Therefore, we propose a
new enhancement method to deal with the above problems, called fine-grained domain
mix (FDM). The main algorithm flow is shown in Algorithm 1.

Algorithm 1: FDM augmentation

Input: A batch β of B images, bounding box labels {yb
i }, and its corresponding

imaging condition labels {yn
i } from training data D, where yn

i ∈ {0, 1}m

and m is the number of conditions
Output: A batch of fine-grained domain samples β̂
β̂← ∅;
for i← 1, B do
S ← {(xi, yi)};
for j← sample(D, 3) do
S ← S ∪

{(
xj, yj

)}
;

end
Collate crops from 4 images in S into x̂i;
Recompute all box coordinates in S into ŷb

i ;
Create mask label ŷn

i ∈ Rh×w×m, where h, w are the height and width of x̂i,
and assign the imaging condition labels {0, 1} of the corresponding crops to
the mask;

β̂← β̂ ∪
{(

x̂i, ŷb
i , ŷn

i

)}
;

end

For each image in the batch, three images are randomly selected from the training data
D to form a 2× 2 mixed fine-grained domain collage image. The difference from Mosaic
augmentation is that FDM needs to build imaging condition labels during each image
mixing process and convert the imaging condition labels of each image into mask labels of
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the collage images, where h, w are the height and width of the collage image, and m is the
number of imaging condition labels. For example, the first condition (high altitude) of the
image in the upper left area of the collage image is 1. Then its corresponding mask area is
assigned the value of 1. Additionally, we build a weight-balanced sampler on sampling
uniformly from each fine-grained domain.

3.4. Fine-Grained Feature Disentanglement

The right half of Figure 3 shows the Feature Disentangled Head (FDH) proposed
in this paper, which is combined with the structure of a single-stage detector YOLOv5
series. EDI is a convolutional layer with a kernel of 3× 3, and EH is the head network of
YOLOv5; specifically, a 3× 3 convolutional layer is followed by a 1× 1 convolutional layer.
The number of input channels is consistent with the output of the YOLOv5 feature fusion
network, which are 128, 256, and 512, respectively. Given a sample x̂i after fine-grained
domain mix augmentation, the detector first extracts high-level semantic features through
a feature-extraction network and then obtains multi-scale object representations through
a feature pyramid network. Take one of the scale feature maps as an example, and let it
be Fb. FDH uses a convolution operation EDI to disentangle the domain-invariant features
Fdi in Fb. Here, Fb contains both domain-invariant and domain-specific features; that is,
Fb = Fdi + Fds, and domain-specific features Fds are the difference between Fb and Fdi:

Fdi = EDI(Fb), Fds = Fb − Fdi (1)

where EDI represents the domain-invariant feature extractor and Fdi and Fds are the domain-
invariant and domain-specific features obtained by FDH disentanglement, respectively.

Next, we discuss how to use imaging condition labels ŷn
i to train Fdi and Fds and im-

prove the accuracy and robustness of fine-grained object detector. In order to obtain more
domain-specific features, we design a pixel-by-pixel classification network Cds to classify
the imaging condition labels of mixed images. Cds consists of a 3× 3 kernel convolutional
layer and a pixel-wise cross-entropy loss layer. The output channels of the convolutional
layer are consistent with the number of imaging condition labels. A value of 0 means that
the imaging condition label of the image to which the current pixel belongs is false, and 1
means the opposite. Then, the loss function of training Fds is as follows:

Lds = −[ŷn
i log yn

i + (1− ŷn
i ) log(1− yn

i )] (2)

where yn
i = Cds(Fds), Lds is used to generate fine-grained domain-specific features. Mean-

while, Ldi = −[ŷn
i log ỹn

i +(1− ŷn
i ) log(1− ỹn

i )], and a GRL (Gradient Reversal Layer) [26,27]
module generates fine-grained domain-invariant features, where ỹn

i = GRL(Cds(Fdi)).
Furthermore, the key to feature disentanglement is maintaining the independence of

each component. Here, based on vector-decomposition theory, the orthogonality of the
disentanglement components can effectively improve their independence. On this basis,
we add an additional orthogonal loss L⊥ to Fdi and Fds. Considering that the detector
is more concerned with the independence of object features, the orthogonal loss can be
expressed as

L⊥ =
1
b

b

∑
i=1
|

c

∑
j=1

[
∥∥∥1obj (Fdi)

∥∥∥2

2
⊙

∥∥∥1obj (Fds)
∥∥∥2

2
]i,j | (3)

where 1
obj (Fdi) ∈ Rb×c indicates that the corresponding anchor in the Fdi feature map

can cover the spatial position of an object and b and c represent the number of selected
spatial locations and the number of feature channels of Fdi, respectively. ⊙ represents
the element-wise product, and | · | and ∥ · ∥2

2 represent the absolute value operation and
L2 normalization, respectively.

When the orthogonal loss is minimized, the independence of Fdi and Fds is increased,
minimizing Ldi and Lds making Fdi and Fds retain more fine-grained domain-invariant and
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specific features. Finally, the detection head is run on the concatenated feature maps of Fdi
and Fds to better utilize both domain-invariant and domain-specific features, and ablation
studies can also prove this point well. The overall training loss function is as follows:

Ldet = Lobj + Lcls + Lloc + µLdi + µLds + νL⊥ (4)

where Lobj , Lcls and Lloc represent the objectness loss, classification loss, and localization
loss, respectively; these three losses are consistent with the standard loss in YOLOv5.

4. Experiments
4.1. Datasets

We evaluate our proposed algorithm on two datasets, UAVDT and VisDrone.
UAVDT is the first dataset to explore object detection and tracking in unconstrained

scene aerial images. The dataset collected 10 h of airborne raw video and extracted about
80,000 representative image frames. This dataset completely annotate the objects’ bound-
ing boxes and 14 additional imaging condition labels (such as flight altitude, camera
angle of view, weather conditions) in these images, covering the three UAV-specific fine-
grained domains used in the paper. UAVDT contains about 41,000 frames of images and
840,000 bounding boxes in the object-detection task. These objects include three categories,
namely, cars, trucks, and buses. However, the category distribution is hugely unbalanced,
and the number of trucks and buses accounts for less than 5% of the total. Therefore,
referring to the original author’s agreement, these three categories are combined into the
vehicle category, and our quantitative evaluation is carried out on this basis.

VisDrone is a representative dataset based on a micro-UAV platform, including
263 video clips, 179,264 video frames, and 10,209 still images. Various drone platforms
collected these images in 14 different urban scenes in China. In terms of the object-detection
task, VisDrone contains 10,209 static images in unconstrained scenes, of which 6471 are used
as the training set, 548 are used as the validation set, and 1580 are used as the test-challenge
set. Reference [11] has already annotated the training set with labels of imaging conditions.
Therefore, we used the same settings to conduct experiments and quantitative evaluations
on the VisDrone validation set.

4.2. Implementation Details

We used YOLOv5m as the baseline model for the experimental part. The feature-
disentanglement module, Equation (1), is added after the model’s 23rd layer. The inputs
of this module are the feature maps generated by the FPN network at three scales with
128, 256, and 512 channels, respectively; the outputs of the module are the domain-invariant
and domain-specific features corresponding to the input feature maps with the same
number of channels as the inputs. The output fine-grained domain mask label of FDM is
the same size as the input mixed image, which is 1280 × 1280 pixels. The domain-invariant
features Fdi generate a feature map with the same dimension as the number of imaging
conditions through a GRL layer and a convolutional layer. The output feature map and
mask labels are calculated through pixel-wise cross-entropy loss for domain-invariant
feature learning. The learning of domain-specific features Fds is similar except that the GRL
layer is removed.

The other training parameters mainly include the initial learning rate, which is 0.01;
the final OneCycle [31] learning rate, which is 0.002; the momentum, which is 0.94; and the
optimizer weight decay, which is 5 × 10−4. There are 4 and 32 training epochs on the
UAVDT and VisDrone datasets, respectively, because of the large number of similar images
on UAVDT. In terms of training loss, the weight of objectness is 0.35, and the weight of
classification and box regression are 0.5 and 0.05. The feature disentanglement learning loss
µ1 = µ2 = 0.05, µ3 = 0.2, and the orthogonal loss ν = 0.1. In terms of data augmentation,
Mosaic or FDM is enabled by default. The range of image scale augmentation is [0.72, 1.28],
the range of image translation augmentation is [−45, 45] pixels, and the probability of
image horizontal flipping is 0.5. Our training and testing experiments were performed on



Remote Sens. 2024, 16, 1626 8 of 15

an Nvidia GTX 1080Ti graphics card, including the experiments testing the inference time.
Some more specific implementation details can be found in the open-source code.

4.3. Evaluation Metrics

The evaluation criteria in the experiments follow the evaluation protocol in the
COCO [32] dataset. The main evaluation metrics we use are AP50 and AP70, which repre-
sent the average precision overall classes with IoU thresholds of 0.5 and 0.7, respectively.
This is based on the evaluation metrics used on UAVDT and VisDrone datasets in refer-
ences [11,12]. Specifically, the AP70 evaluation metric is used on the UAVDT datasets,
and the AP50 evaluation metric is used on VisDrone. We also used the evaluation metric
AP, which is the average of the evaluation results, with the IoU threshold ranging from
0.5 to 0.95.

4.4. Ablation Study

We carried out ablation studies of the proposed algorithm on the UAVDT dataset. In
UAVDT, all image frames are manually annotated with UAV-specific imaging conditions,
including flying altitude (low, medium, and high), camera views (front-view, side-view,
and bird-view), and weather conditions (daylight, night). Consistent with [11], a small
number of foggy conditions were ignored in the experiment. These three conditions are
referred to as A, V, and W for short.

4.4.1. Influence of Imaging Conditions on Fine-Grained Feature Disentanglement

We first tested the effect of a single A, V, W fine-grained domain disentanglement
on the AP70 by adjusting the coefficient µ in Equation (4). µ1, µ2, and µ3 represent the
learning coefficients of A, V, and W, respectively. Then, we gradually extended the test to
verify the gain in detection performance with two and three imaging conditions. Tables 1–3
show the benefit of fine-grained domain disentanglement of independently adding fly
altitude (A), camera view (V), and weather (W) conditions, respectively. For FGFD training,
the corresponding condition coefficient µ is nonzero. The baseline model without FGFD
has a µi = 0(i = 1, 2, 3). As can be seen from Table 1, when µ1 = 0.05, an overall
AP70 improvement of 3.0 can be obtained. Similarly, in Table 2, when µ2 = 0.05, a maximum
overall AP70 improvement of 2.8 is obtained. Table 3 shows the effect of weather condition
on AP70, and it can be seen that when µ3 = 0.2, the overall AP70 increases by 3.4.

Table 1. Learning FGFD on altitude condition with different µ1 values.

µ1

A
Low Med High Overall

0.0 75.5 60.4 23.2 53.5
0.02 75.4 60.2 28.4 55.9
0.05 75.4 59.6 31.5 56.5
0.1 76.7 61.2 25.6 55.6
0.2 76.8 61.6 23.8 55.4

Table 2. Learning FGFD on view angle condition with different µ2 values.

µ2

V
Front Side Bird Overall

0.0 59.8 69.1 34.6 53.5
0.02 61.0 69.3 38.1 55.8
0.05 60.8 69.6 39.9 56.3
0.1 60.0 70.2 36.0 55.6
0.2 60.3 69.3 33.3 54.4
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Table 3. Learning FGFD on weather condition with different µ3 values.

µ3

W
Day Night Overall

0.0 63.8 72.1 53.5
0.02 64.9 72.8 54.8
0.05 64.7 72.6 54.6
0.1 64.4 73.7 55.2
0.2 66.0 65.4 56.9

Next, we further tested the performance of the combination of two or three conditions
in FGFD learning. Table 4 shows the full results of this experiment, where A+V means
that both flying altitude and camera view conditions are used for FGFD training. A+V+W
stands for simultaneously using flying altitude, camera view, and weather conditions. To
obtain the maximum AP70 performance and refer to the experimental results shown in
Table 1–3, for altitude condition, we set µ1 = 0.05; at the same time, for the view angle and
weather condition, we set µ2 = 0.05 and µ3 = 0.2, respectively. It can be observed that as
more conditions are introduced, the AP70 also increases. The final model, A+V+W, achieves
better performance in each fine-grained domain and improves the AP70 by 4.2 compared to
the baseline model. Improving the object detection performance of UAVs at a high altitude,
from a bird’s-eye view, and in night scenes can also further improve the reliability and
robustness of the model in potentially harsh scenarios.

Table 4. Learning FGFD with multiple conditions on the UAVDT dataset.

Baseline A V W A+V+W

Flying Altitude

Low 75.5 77.3 75.2 75.4 77.6
Med 59.6 61.6 59.5 59.3 61.9
High 23.2 26.3 23.4 23.1 28.1

Camera View

Front 59.8 59.7 60.8 59.6 61.0
Side 69.1 68.9 69.6 69.0 70.3
Bird 34.6 34.9 39.9 34.5 38.8

Weather Condition

Day 62.8 62.5 62.7 66.0 66.9
Night 70.1 70.5 70.3 73.7 73.9

Overall 53.5 56.1↑2.6 55.2↑1.7 56.3↑2.8 57.7↑4.2

4.4.2. Effectiveness of the Fine-Grained Domain Mix

Compared with the two-stage fine-grained domain detector NDFT proposed by
Wu et al. [11], whose paper reported the highest AP70 of 52.03 on the UAVDT dataset, our
best model achieves an AP70 improvement of 5.7 to an AP70 of 57.7. Using a single-stage
detector to achieve such an AP70 is inseparable from the introduction of the fine-grained
domain mix data augmentation. To verify this, we performed the following ablation experi-
ments. YOLOv5m is used as the baseline model in this comparison experiment, where ‘-’
indicates that the Mosaic augmentation is not used, ’Mosaic’ means that Mosaic augmen-
tation is applied, and the other parameters remain the same. As can be seen in Table 5,
the baseline model YOLOv5m has an AP70 improvement of 2.6 after the use of Mosaic
augmentation. FGFD has an AP70 improvement of 4.6 after the use of FDM, showing the
contribution of the proposed FDM in this paper.

4.4.3. Effectiveness of Invariant and Specific Features

Using both domain-invariant and domain-specific features to improve the performance
of fine-grained domain object detection is an essential innovation of this paper. As shown in
Figure 3, we used a fine-grained domain mask segmentation loss to learn domain-specific
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features Fds; meanwhile, a gradient-reversal layer was used to learn fine-grained domain-
invariant features Fdi, where Fds and Fdi are obtained from a common feature map Fb by
feature vector decomposition, i.e., Fb = Fds + Fdi. Finally, the head network outputs the
object-detection results based on the concatenation of the Fds and Fdi feature maps. In order
to verify the contribution of Fds and Fdi to AP70, their corresponding losses Lds and Ldi
are, respectively, assigned to 0, other parameters are kept the same, and the effect on the
overall AP70 is observed; the results are shown in Table 6. We can see that the learning of
both domain-invariant and domain-specific features contributes to the overall AP. We also
reproduced the YOLOv5m+NDFT [11] algorithm, and its AP is comparable to the result of
using only domain-invariant features in this paper.

Table 5. Effects of the proposed fine-grained domain mix augmentation on the UAVDT dataset.

Model Augmentation AP AP50 AP70

YOLOv5m - 38.8 69.3 50.9
YOLOv5m Mosaic 41.5 72.9 53.5

FGFD - 40.4 71.6 53.1
FGFD FDM 44.1 75.8 57.7

Table 6. Effects of the proposed invariant and specific feature learning on the UAVDT dataset, where
✓ indicates to activate the corresponding feature map.

Model Invariant Features Specific Features AP AP50 AP70

YOLOv5m+NDFT [11] ✓ 42.6 75.1 56.8
FGFD ✓ 42.4 74.9 56.9
FGFD ✓ 43.8 75.3 57.1
FGFD ✓ ✓ 44.1 75.8 57.7

4.4.4. Effectiveness of Loss Functions

The independence of each feature vector after feature disentanglement is another
essential factor in improving fine-grained domain detection performance. The ablation
experiments in this section verify the proposed orthogonal loss L⊥, and the results are
shown in Table 7, where Lobj , Lcls , and Lloc are the objectness loss, classification loss,
and localization loss in the baseline model YOLOv5m, respectively. Ldi and Lds are used
to learn fine-grained domain-invariant and specific features, respectively. L⊥ is used to
increase the independence of fine-grained domain-invariant features and specific features.
From Table 7, we can see that the proposed orthogonal loss helps AP70 improve by 1.1.

Table 7. Effects of proposed orthogonal loss on the UAVDT dataset, where ✓ indicates the use of the
corresponding loss function.

Model Lobj +Lcls +Lloc Ldi +Lds L⊥ AP AP50 AP70

FGFD ✓ 41.6 73.0 54.1
FGFD ✓ ✓ 43.0 74.8 56.6
FGFD ✓ ✓ ✓ 44.1 75.8 57.7

4.5. Comparisons with the State of the Art
4.5.1. UAVDT

We compared the proposed method with the currently popular fine-grained domain ob-
ject detectors on the UAVDT [33] dataset. The comparison methods include the fine-grained
domain-object-detection algorithm NDFT proposed by Wu et al. [11], an improved version
A-NDFT based on NDFT by Lee et al. [12], and a multi-branched fine-grained domain
detector proposed by Kiefer et al. [13]. In addition, Faster RCNN [34] and YOLOv5m [19]
are added to the comparison as two-stage and single-stage baseline models, respectively.
Table 8 shows the quantitative evaluation results on the UAVDT dataset, where NDFT+FPN
is the combined method of NDFT and FPN [35], and it is also the model with the highest
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AP reported on UAVDT in the literature [11]. Note that all algorithm implementations used
the same Pytorch framework and did not use acceleration techniques such as TensorRT.
The experimental results show that the single-stage detector YOLOv5 and our FGFD have
significant advantages over the two-stage detector, obtaining higher AP at a lower input
image resolution, and the algorithm inference time is much less than the two-stage detector.
Furthermore, our proposed FGFD improves AP by 5.7 compared to NDFT+FPN and by
4.2 AP compared to YOLOv5m, and the inference time is comparable to YOLOv5m. It is
more conducive to deployment on existing airborne computing platforms. Figure 4 shows
some representative examples of visual comparisons.

Table 8. Quantitative results on the UAVDT dataset.

Model Input Size Backbone AP70 Avg. Time (ms)

Faster RCNN [34] 800 × 1280 ResNet-101 45.6 136.2
NDFT [11] 800 × 1280 ResNet-101 47.9 138.4

NDFT+FPN 800 × 1280 ResNet-101 52.0 106.1
A-NDFT [12] 800 × 1280 ResNet-101 48.1 138.1

Kiefer et al. [13] 800 × 1280 ResNet-101 49.4 125.7
YOLOv5m [19] 800 × 1280 CSPDarknet 53.5 28.5

FGFD (ours) 800 × 1280 CSPDarknet 57.7↑5.7 29.2

Figure 4. Several visualization results of the proposed algorithm compared with NDFT and
YOLOv5m. The red circles are some representative hard-to-detect objects.

4.5.2. VisDrone

We validated the proposed FGFD on VisDrone dataset using the same experimental
parameters, µ1 = µ2 = 0.05 and µ3 = 0.2. The comparative experimental results on
VisDrone are shown in Table 9. The algorithms involved in the comparison include the
two-stage baseline model Faster RCNN with FPN, and the single-stage baseline models
YOLOv5s, YOLOv5m, and YOLOv5l. Moreover, the popular fine-grained domain-object-
detection algorithms NDFT-DE-FPN [11] , PG-YOLO [36], ASNet [37], and Kiefer et al. [13]
are also added to the comparison.
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Table 9. Quantitative results on the VisDrone dataset.

Model Input Size Backbone AP50 Avg. Time (ms)

Faster RCNN+FPN 800 × 1280 ResNet-101 40.0 108.5
NDFT-DE-FPN [11] 800 × 1280 ResNeXt-101 64-4d 52.8 227.8

Kiefer et al. [13] 800 × 1280 ResNet-101 49.6 127.1
PG-YOLO [36] 800 × 1280 CSPDarknet 49.6 53.3

ASNet [37] 800 × 1280 ResNet-50 52.3 92.1
YOLOv5s [19] 800 × 1280 CSPDarknet 44.8 21.5
YOLOv5m [19] 800 × 1280 CSPDarknet 51.1 32.7
YOLOv5l [19] 800 × 1280 CSPDarknet 52.0 51.9
FGFD (ours) 800 × 1280 CSPDarknet 55.2↑2.4 32.9

NDFT-DE-FPN is based on the best-performing single model reported in the leader-
board [38], which utilized FPN with a ResNeXt-101 64-4d backbone, and then the fine-
grained domain learning module NDFT proposed by [11] is added on it. From Table 9, we
can see that the proposed FGFD also leads the inference speed and AP on the VisDrone
dataset. Specifically, FGFD leads to a 2.4-point improvement in mAP, indicating a sub-
stantial increase in detection accuracy. This improvement suggests that the fine-grained
feature-disentanglement technique effectively enhances the model’s ability to detect and
classify objects due to the better handling of domain-invariant and domain-specific fea-
tures.The inference speed gains are even more striking. FGFD’s processing speed is 6.9 times
faster than that of NDFT-DE-FPN, which underscores the efficiency of FGFD, making it
particularly suitable for real-time applications where fast processing is crucial, such as
drone-based object detection tasks. Additionally, comparing FGFD with a single-stage
detector baseline, YOLOv5m, reveals further insights. FGFD manages to improve mAP by
4.1 points while maintaining a comparable inference speed. This balance between accuracy
and speed suggests that FGFD is a valuable upgrade over existing single-stage detectors,
offering a boost in accuracy without sacrificing efficiency.

Hanging flight experiment: We further validated the performance of FGFD in real
environments by deploying the model learned on the VisDrone training dataset to our
flight platform (see Figure 5). The flight platform we use is a self-developed 5 kg class
quadrotor drone equipped with the Pixhawk open-source flight controller and an optical
pod. The gimbal pitch angle, flight altitude, and time information when taking pictures
can be obtained in real time during the flight. To ensure data consistency, we marked
images taken below 20 m as low altitude, images taken from 20 m to 60 m as medium
altitude, and images taken above 60 m as high altitude. Meanwhile, images taken with
a pitch angle of −10◦ to 10◦ were marked as front view, images taken with a pitch angle
of 10◦ to 80◦ were marked as side view, and images taken with a pitch angle of 80◦ to
100◦ were marked as bird view. The effectiveness of FGFD is verified by the hanging
flying experiment, and some representative results are shown in Figure 6. For example,
when the drone is flying at a low altitude, the FGFD can stably detect larger objects,
and the false detection rate of small objects is low. In high-altitude flight, FGFD can stably
detect dense small objects and greatly reduce the false-detection rate for large objects, see
the comparison within the red circle. During the deployment phase, we accelerated the
detection network with TensorRT technology and used INT8 quantization for inference.
Some speed comparisons are shown in Table 10. On an onboard computer with Nvidia
Jetson Xavier NX, the proposed algorithm can process images with 720P (1280 × 720)
resolution at a rate of 20 (±2) Hz.



Remote Sens. 2024, 16, 1626 13 of 15

Figure 5. Experimental flight platform hardware and definition of flight height and gimbal an-
gle conditions.

Figure 6. Several visualization results of the proposed algorithm compared to the NDFT in our
hanging flight experiment.

Table 10. Comparison of the inference speed of detection models on the Nvidia Jetson Xavier NX
onboard computer, where ✓ indicates whether to use TensorRT and INT8 acceleration.

Model Input Size Backbone TensorRT INT8 FPS

Faster RCNN+FPN 720 × 1280 ResNet-101 ✓ ✓ 4±1
YOLOv5m 720 × 1280 CSPDarknet ✓ ✓ 21±2

FGFD (ours) 720 × 1280 CSPDarknet ✓ ✓ 20±2

5. Conclusions

This paper proposes a new fine-grained domain-object-detection algorithm, FGFD.
The algorithm effectively improves the performance of fine-grained domain object detection
by learning both domain-invariant and domain-specific features using imaging conditional
decomposition. Meanwhile, the fine-grained domain mix augmentation proposed in this
paper combines the advantages of domain-invariant features and domain-specific features
and enables single-stage detectors to use airborne sensors’ “free” data to improve object
detection AP while ensuring data augmentation performance.

Whether flying at low or high altitudes, FGFD can effectively respond to changes in
imaging conditions such as altitude and weather, thereby improving generalization and
accuracy. The results show that it has good performance and fast inference speed. It is more
convenient to deploy the algorithm on airborne platforms with limited computing power.
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