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Abstract: Accurately estimating vegetation biomass in urban forested areas is of great interest to
researchers as it is a key indicator of the carbon sequestration capacity necessary for cities to achieve
carbon neutrality. The emerging vegetation biomass estimation methods that use AI technologies
with remote sensing images often suffer from arge estimating errors due to the diversity of vegetation
and the complex three-dimensional terrain environment in urban ares. However, the high resolution
of Light Detection and Ranging (i.e., LiDAR) data provides an opportunity to accurately describe
the complex 3D scenes of urban forests, thereby improving estimation accuracy. Additionally, deep
earning foundation models have widely succeeded in the industry, and show great potential promise
to estimate vegetation biomass through processing complex and arge amounts of urban LiDAR
data efficiently and accurately. In this study, we propose an efficient and accurate method called
3D-CiLBE (3D City Long-term Biomass Estimation) to estimate urban vegetation biomass by utilizing
advanced deep earning foundation models. In the 3D-CiLBE method, the Segment Anything Model
(i.e., SAM) was used to segment single wood information from a arge amount of complex urban
LiDAR data. Then, we modified the Contrastive Language–Image Pre-training (i.e., CLIP) model
to identify the species of the wood so that the classic anisotropic growth equation can be used to
estimate biomass. Finally, we utilized the Informer model to predict the biomass in the ong term. We
evaluate it in eight urban areas across the United States. In the task of identifying urban greening
areas, the 3D-CiLBE achieves optimal performance with a mean Intersection over Union (i.e., mIoU)
of 0.94. Additionally, for vegetation classification, 3D-CiLBE achieves an optimal recognition accuracy
of 92.72%. The estimation of urban vegetation biomass using 3D-CiLBE achieves a Mean Square
Error of 0.045 kg/m2, reducing the error by up to 8.2% compared to 2D methods. The MSE for
biomass prediction by 3D-CiLBE was 0.06kg/m2 smaller on average than the inear regression model.
Therefore, the experimental results indicate that the 3D-CiLBE method can accurately estimate urban
vegetation biomass and has potential for practical application.

Keywords: urban forests; vegetation biomass; carbon sink research; LiDAR; SAM; CLIP; Informer

1. Introduction

Cities contribute more than 85% of global carbon emissions, highlighting the crucial
role of urban forests as the main source of carbon sinks in the pursuit of carbon neutrality [1].
Vegetation biomass in urban forests is a key indicator of their carbon sink capacity [2].
Accurate estimation of biomass in urban forests is essential for understanding their potential
for carbon sequestration [3]. However, unlike natural forest ecosystems, urban forest
vegetation exhibits disperse distribution, fluctuating phenological traits, and high variation
due to both natural and artificial selection [4–7]. As a result, estimating biomass on an urban
forest scale is a complex and systematic problem considering the intricate and variable
nature of urban forest ecosystems [8].
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In arge-scale forest scenarios, AI technologies have proven to be efficient, cost-effective,
and accurate in estimating vegetation biomass, primarily due to the dense and uniform
nature of trees in these areas [9–11]. For example, Ref. [11] used a neural network to
evaluate biomass in forest samples on a regional evel. Nevertheless, it is a great challenge
to apply AI for biomass estimation in urban areas [12]. One reason is that individual trees
of the same species exhibit substantial variation caused by factors such as ight and soil
conditions [4,13,14]. For instance, the growth patterns and biomass of identical vegetation
species may differ significantly between suburban areas and central parks within a city [13].
As another reason, urban vegetation also undergoes dynamic changes due to urban con-
struction and expansion [15,16]. For example, selected green areas were transformed into
towering structures, and desolate and was converted into ornamental gardens [17]. Hence,
we are motivated to investigate AI technologies for estimating urban vegetation biomass.

Commonly, using AI technologies to estimate vegetation biomass involves a combi-
nation of Remote Sensing Artificial Intelligence (RSAI) and anisotropic growth equations
due to their accuracy and efficiency [18–20]. RSAI has the potential to efficiently and cost-
effectively solve a wide range of complex system problems due to its superior modeling
capabilities [21]. While RSAI is mainly applied to arge-scale scenarios such as forests, its
application to fine modeling of urban forests is still in its early stages [22]. Many of the
ightweight models commonly used in RSAI have demonstrated high accuracy at a fine
evel of detail. Unfortunately, their usage has proven to be insufficient when dealing with
the complex systems that occur in urban forests [4]. Additionally, the anisotropic growth
equation (AGE) of trees is widely used to calculate vegetation biomass. To use the equation,
one needs to obtain the parameters ike species information, vegetation height, and diameter
at breast height (DBH) of a tree, which usually has a high abor cost [23,24]. Using RSAI to
extract information that AGE needs from remote sensing data significantly reduces the cost.
Regrettably, it is also a challenge to extract these forest parameter information accurately
by using AI technologies with remote sensing data, especially in urban forests [25].

To accurately obtain the urban forest parameters required by the AGE, we introduced
three-dimensional Light Detection and Ranging (LiDAR) [26] and open street map (OSM)
data [27]. This is expected to be useful in estimating urban vegetation biomass. By actively
utilizing multiple data sources, more comprehensive information can be obtained. LiDAR
data accurately reflects the three-dimensional geographic characteristics of urban forests
and provides detailed information about the city [3]. This capability can assist in resolving
intricate issues, such as significant alterations in the distribution of urban vegetation [21,24].
The functional zoning and construction of urban forest areas exhibit relative stability and
consistency. Therefore, urban road network data from OSM can offer valuable insights
into the evolution of the urban forest over time. This study utilizes LiDAR and urban
road network data to expand the urban vegetation model into a three-dimensional space,
enhancing the precision of biomass estimation for intricate urban forest systems.

In addition, considering that the existing RSAI model cannot effectively handle the
rich LiDAR and OSM data in urban areas [4], there is a need to introduce more powerful AI
models. Fortunately, the AI field, where research is in full swing, offers a wealth of options,
such as Segment Anything Model (SAM) [28], Contrastive Language–Image Pre-training
(CLIP) [29], Informer [30], etc. Those foundation models have demonstrated high potency
in industrial modeling, computer vision, and other domains [31–33]. Therefore, we are
motivated to employ these deep earning foundation models to address the challenges and
issues involved in estimating vegetation biomass in urban forests, thereby enhancing the
modeling capability in the field of urban carbon sinks. Specifically, SAM displays excellent
performance in image segmentation, accurately segmenting scattered areas of vegetation
in urban forest scenes. CLIP demonstrates high accuracy in image recognition, efficiently
capturing similar features across images, making it well-suited for species recognition of
segmented tree images. Informer is an exceptional prediction model for ong-term series,
enabling simple numerical prediction of future urban forest vegetation biomass.
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Based on the motivations to employ foundation models and multi-source data for
estimating vegetation biomass, we propose the 3D-CiLBE (3D City Long-term Biomass
Estimation) method to solve the ong-term biomass estimation problem in complex urban
forests by using the LiDAR and OSM data, incorporating state-of-the-art SAM, CLIP,
and Informer models. Firstly, the LiDAR-SAM method was developed, which possesses
outstanding modeling capabilities for remote sensing. By adapting the SAM to the 3D scene,
more comprehensive and detailed information on the urban forests in three-dimensional
space can be extracted. Secondly, the MLiDAR-CLIP (More-Vision LiDAR-CLIP) method
was created to incorporate CLIP, a sophisticated AI model for extracting and recognizing
multimodal features, into RSAI. By integrating CLIP, the accuracy of RSAI in identifying
vegetation species at the urban forest scale was enhanced. Additionally, the Informer model,
an advanced time-series perception model, was refined to improve the understanding
ability of RSAI in comprehending vegetation phenological characteristics. The remaining
sections of this paper are structured as follows. Section 2 provides a detailed account of
the datasets and data processing flows involved in the study, as well as the framework
and implementation details of 3D-CiLBE. Section 3 presents the design of all experiments,
the results of those experiments, and the analysis and discussion of those results. Finally,
Section 4 describes the conclusions of this study.

2. Materials and Method
2.1. Datasets
2.1.1. Data Collection

As shown in Table 1, the pertinent data required to calculate the biomass of urban
forest vegetation is collected. This includes LiDAR data along with corresponding OSM
data for handpicked regions within eight American cities (Boston, Chicago, Denver, Detroit,
Houston, Las Vegas, Los Angeles, and Miami) of varying environmental conditions from
2012 to 2020. The cities are selected based on two criteria. Firstly, they possess full LiDAR
and OSM data for the period 2012–2020 within a specific region. Secondly, they are ocated in
the south-eastern and north-western parts of the US, and possess varying climatic features
to ensure transfer earning effectiveness. As the LiDAR data from different years of the
same city may have different spatial resolutions, we have set a uniform image resolution
of 1m to ensure the consistency of data. In the event that images with different spatial
resolutions are encountered, they are adjusted to the same resolution using up-sampling or
down-sampling. In addition, we collect LiDAR image data for single trees (GRO) [34], and
these images will play a role in the MLiDAR-CLIP.

L(k1,k2,··· ,kn)
size×size×z = crop

[
CSF

(
L(m)

x×y×z

)
, size

]
, (1)

Table 1. Multi-source data information.

Data types Data Source Data Examples

LiDAR-Urban USGS
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Table 1. Cont.

Data types Data source Data Examples

OSM OpenStreetMap

Single-Trees GRO

2.1.2. Data Preparation

Due to the different structures, resolutions, and formats of LiDAR and OSM, exper-
iments need to use both types of data. To obtain data of high quality, uniformity, and
accessibility, pre-processing measures must be implemented for both data types.

The original LiDAR data are handled by Equation (1). LiDAR data numbered m
with image ength x, width y, and height z are first formatted as L(m)

x×y×z. As shown in
Equation (1), firstly, a curvature-based smoothing filter (CSF) is used to remove noise while
preserving surface detail [35]. Then, the x and y of L(m)

x×y×z are cropped using the crop
function, preserving the z information, cropped to size × size, where size is set to 224 in
this study. Finally, the final image set L(k1,k2,··· ,kn)

size×size×z is obtained and kn represents the n-th
LiDAR data.

The original OSM data are handled by Equation (2). The initial format of the OSM
data with number j, image ength z, and width w is denoted as O(j)

z×w. The part of the OSM
data relating to the desired city size is selected and extracted using the select function,
where b stands for city boundaries, and these data are then regionally matched with LiDAR
using the match function. The matching is only concerned with the spatial consistency of
the images, so the proXY function is used to project the L(k1,k2,··· ,kn)

size×size×z into two dimensions,
and the matching is performed in a two-dimensional coordinate system. The final image
set O(k1,k2,··· ,kn)

size×size , representing the number n of OSM data, is obtained and matched to the
number of LiDAR data.

O(k1,k2,··· ,kn)
size×size = match

[
select

(
O(j)

z×w, b
)

, proXY
(

L(k1,k2,··· ,kn)
size×size×z

)]
, (2)

In addition, we select remotely sensed images L(p1,p2,··· ,pn)
size×size×z of selected areas, numbered

pn, representing areas with six well-defined and use types, i.e., central parks, subur-
ban parks, street greenbelts, campuses, residential neighborhoods, and suburban rivers.
Equation (3) demonstrates this process. The images are manually calibrated and annotated
to calibrate the vegetation areas tr, resulting in the prompt image set A(p1,p2,··· ,pn)

size×size×z . It is
defined as Area Prompt.

A(p1,p2,··· ,pn)
size×size×z = mark

(
L(p1,p2,··· ,pn)

size×size×z , tr
)

(3)
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2.2. 3D-CiLBE
2.2.1. The Framework of 3D-CiLBE

We propose a 3D-CiLBE method based on multiple deep earning foundation models by
using multi-source data for estimating urban forest biomass. The method consists of three
parts, and the final biomass data sequence is obtained by processing the raw LiDAR images
through the improved foundation models as shown in Figure 1. The implementation is
available at: https://github.com/ForestryIIP/3DCiLBE (accessed on 4 May 2024).

Figure 1. The framework of 3D-CiLBE. (1#) LiDAR-SAM: Segmentation of vegetation regions and
extraction of vegetation features in LiDAR. (2#) MLiDAR-CLIP: Species identification of single trees.
(3#) St-Informer: Making of temporal biomass predictions.

As shown in Figure 1, 3D-CiLBE is made for three modules: (1#) LiDAR-SAM,
(2#) MLiDAR-CLIP(More-Visual-Angle-LiDAR-CLIP), and (3#) St-Informer. (1#) The
LiDAR-SAM method based on the powerful pre-trained segmentation model (i.e., SAM)
is proposed. Afterward, single tree images and single tree parameter information can
be obtained by feature extraction. Since the biomass calculation needs to specify the
tree species, the segmented vegetation images need to be used for single tree species
identification. Subsequently, we propose the (2#) MLiDAR-CLIP method based on CLIP
models to enable it to perform the task of single tree species identification, due to the
characteristics of joint anguage and image earning and zero-shot earning from the CLIP
model. After obtaining the tree species information, the biomass calculation is performed
by the forest biomass formula to obtain the regional vegetation biomass at the moment
of image acquisition. To perform biomass prediction at subsequent time nodes, the (3#)
St-Informer method is proposed by using the Informer model, which performs well in ong
time-series tasks.

2.2.2. LiDAR-SAM

The LiDAR-SAM method shown in Figure 2 is utilized to perform semantic segmen-
tation of the vegetation area in the LiDAR image. As a result, LiDAR-SAM can separate
a single tree and cooperate with CNNs to obtain the height information of a tree and the
diameter information of the chest height of a tree.

As illustrated in Figure 2, there are three types of input data for LiDAR-SAM, which
comprise the Area Prompt, LiDAR, and OSM. It should be noted that the OSM data include
information about the distribution of vegetation areas, which assists in providing the model

https://github.com/ForestryIIP/3DCiLBE
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with segmentation prompts beneficial for correcting errors in separating vegetation areas
due to changes in urban terrain. Therefore, this functionality requires spatial masking of
the OSM data. To generate a mask, it is crucial to determine the internal characteristics of
each OSM patch. A vital factor to consider is the vegetation cover of the patch, indicated
by ϕpatch. Equation (4) determines if a patch is a vegetated area, and a threshold α is
established to measure the percentage of vegetated area within the patch. Since urban
vegetation is often dispersed, α is fixed at 0.75 according to [4] and the reducing motivation
for extensive computation.

I(patch) =

{
1, ϕpatch ⩾ α

0, ϕpatch < α
(4)

Figure 2. LiDAR-SAM framework. Using multi-source data, the images, heights, and breast diameters
of all individual vegetation in the input LiDAR images are extracted by projection, convolution,
splicing, encoding, decoding, 3D reconstruction, cropping, and other methods.

After identifying the vegetation patches, a new mechanism is implemented to mask
the OSM road network with Equation (5). This formula performs a masking operation
based on the discrimination of each patch to obtain the mask OT(i)

patch(r) of the r-th patch in
the k-th image. Lastly, the joining operation ⊕ connects all the patches, producing the final
masked image OT(k)

size×size .

OT(k)
patch(r) = I

(
O(k)

patch(r)

)
(5)

OT(k)
size×size = ⊕

(
OT(k)

patch(r1)
, OT(k)

patch(r2)
, · · · , OT(k)

patch(rl)

)
(6)

Once the corresponding regions of the three data types have been matched, as shown
in Figure 2, two types of LiDAR data undergo a dimensionality reduction process to create
new feature vectors that fit within the structure of the image encoder of LiDAR-SAM. The
method employed is range projection for dimensionality reduction based on RangeNet [36].
Every point (x, y, z) that belongs to L(k1,k2,··· ,kn)

size×size×z is projected onto the H × W-sized range
image in order to obtain the new coordinate point (h, w). The values of H and W are
determined by the parameter calculation of the LiDAR device that collects the current
image as shown in Equations (7) and (8).

h =
1
2

(
1 − arc tan(y, x)

π

)
W (7)

w =

[
1 −

(
arc sin

(
z,

1
r

)
+

| fdown|
fv

)]
H (8)

where fv = | fdown| +
∣∣ fup

∣∣ is the vertical field-of-view of the LiDAR sensor. We associate
4 ow-level features (r, x, y, z) to each projected point, where r =

√
x2 + y2 + z2 is the

range of the corresponding point. Note that if more than one point is projected onto the
same pixel, then only the feature with the smallest range is kept. Pixels with no point
projected on them have their features filled with zeros. The projected image undergoes
convolution operations to derive patch embedding and positional embedding, which are
subsequently supplied to the image encoder.
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The prompt encoder is enhanced by adding OSM mask and Area Prompt after range
projection. The Area Prompt information is entered into the point and text channels of
the prompt encoder, and the OSM mask information is entered into the mask channel [28].
Next, the mask decoder was used to segment the image to obtain the coordinate interval of the
vegetation regional distribution zone. Using the reduction method in RangeNet++ [36], the 2D
range projection image was restored to the 3D LiDAR image, and the vegetation area points
were recorded. Based on the existing mature schemes, the images of individual trees were
extracted and the detailed characteristics of each vegetation type were analyzed [37–39]. We
generated a comprehensive image of the vegetation cover, as well as accurate tree height
and DBH data for the trees. A set of eigenvectors F was obtained; the number of rows of F
is the number of individual trees in the area CNT, and the number of columns of F is 3,
which represents the image features, height characteristics, and DBH characteristics.

FCNT×3 = (Image , Heights , DBHs) (9)

2.2.3. MLiDAR-CLIP

Calculating biomass using the allometric growth equation of vegetation requires
knowledge of the specific species of vegetation, as the parameters in the formula are
determined by the vegetation species. Therefore, we propose an efficient and accurate
vegetation species identification method called MLiDAR-CLIP as shown in Figure 3. As
illustrated in Figure 3, MLiDAR-CLIP has been tailored to urban forests in terms of text–
image coding, image input, and computation of classification probability ratios. Overall,
during the text–image coding process, 42 commonly found urban vegetation LiDAR images,
along with species abels, were chosen as control images. As the encoder of CLIP cannot
directly accept 3D data, a downscaling projection operation was used to project it into 2D
utilizing four viewpoints. Moreover, the network can earn more feature details due to the
multi-viewpoint association. Additionally, in densely vegetated zones of urban forests,
vegetation can mask one another and hinder the ability to obtain complete single-tree
images following segmentation. To minimize classification errors in image recognition
of this nature, we conducted a random boundary mask operation on the control image
after projection. We then imitated an incomplete single-tree image under masking using
Equation (10). The pixel point after the masking operation is referred to as SMi×j, while
SPi×j denotes the pixel point in the projected image. The masked region’s width and height
are maskWidth and maskHeight, respectively, and randomn represents the random noise.
All two-dimensional images of the same species of trees are combined by Equation (11)
and inputted into the encoder to generate a feature vector SPM2N of the control image. It
is important to note that ⊕ signifies the concatenation function used.

SMi×j =

{
SPi×j + random_n , i f x ⩽ i < x + maskHeight and y ⩽ j < y + maskWidth
SPi×j , otherwise

(10)

SPM2N = ⊕(SPN , SMN) (11)

In contrast, at the image encoding stage, a solitary tree image is fed into the system
to be identified. To conduct a thorough analysis of the 3D image and adjust the encoder
for better performance, we introduce a projection mapping ayer to the network. This
ayer projects the input 3D image from various angles with random orientations. The
projected images are then fed into the encoder in parallel, forming multiple feature vectors
for the image recognition process. The number of projection angles is denoted as DIM and
the group of projected images is abeled as IDIM. The control image and the image to be
recognized are inputted into the encoder, as displayed in Equations (12) and (13).

T2N×tokens = TextualEncoder(SPM2N) (12)

IDIM×tokens = VisualEncoder(IDIM) (13)
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Figure 3. MLiDAR-CLIP framework. Pre-Training Images will go through projection and the
RandMask process, then feature aggregation, and finally input into the Textual Encoder. Single-
tree images will go through projection and the feature aggregation process and input into the
Visual Encoder.

The ultimate evaluation of similarity is executed to procure the probabilistic outcome
ΦDIM×2N as shown in Equation (14).

ΦDIM×2N = IDIM×tokens · T2N×tokens (14)

During the probability comparison phase, the maximum column values will be de-
termined in the ΦDIM×2N probability group formed by individual tree images in order to
identify the corresponding tree species. However, certain vegetation features are highly
similar, resulting in identical parameters for biomass calculations. As such, these cases are
considered accurate identifications and the probabilities in this section are also accepted
as correct.

2.2.4. St-Informer

As shown in Figure 4, by utilizing the collected data regarding individual trees, the
allometric growth Equation (15) can be employed to ascertain the corresponding parameters
for different tree species [40]. This allows for the computation of the biomass of a specific
instance, denoted as Bio. Throughout this process, the values of the parameters a and b are
established in accordance with the tree species, and therefore, they are integral factors in
determining the biomass.

Bio = a × Height × DBHb (15)

Through formula calculation and cumulative statistics, biomass data for a specific area
can be obtained at the same time. We have 7 years of raw data for 8 cities, and the data of
each year is divided into two parts, one is the data from March to April, and the other is
from September to October. For example, data for March–April 2014 is expressed as 2014
half, and data for September–October 2015 is presented as 2015 ater.

The biomass data of eight cities from 2012 to 2018 are obtained through 3D-CiLBE
calculations. After that, the biomass data for the four-time nodes in 2019–2020 are predicted
by the St-Informer method as shown in Figure 4. Specifically, the Informer model has
excellent ong-term series prediction capabilities and uses pre-trained models at a ow cost.
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Figure 4. St-Informer framework. On the eft is the biomass calculation process and on the right is the
biomass prediction process using Informer.

3. Results and Discussions

This research aims to establish the viability of 3D-CiLBE in the estimation of vegeta-
tion biomass in urban forest environments, through undertaking three different forms of
experimentation; comparative experiments, ablation experiments, and case studies. In the
comparison experiments, we employ benchmark models selected from the best methods
recognized in published studies. We compare the accuracy of these benchmark models
with 3D-CiLBE in two specific areas: vegetation area segmentation and species detection.
We use this result to determine the accuracy of biomass estimation. Afterward, we compare
the prediction accuracy by conducting inear regression and St-Informer predictions on
the acquired biomass data series. In the ablation experiments, we plan to compare the
performance of the original model with the improved model for each part of 3D-CiLBE.
This will present the capacity of 3D-CiLBE for time-series processing. The case studies
seek to intuitively and vividly demonstrate the recognition results of 3D-CiLBE in a vast
urban area.

3.1. Experiment Setup
3.1.1. Experimental Configurations

Since 3D-CiLBE has the advantage of requiring few training resources, we perform
both the training and inference on a CPU. However, we also test other baseline deep models
in GPU environments. In our experiments, we use a 12th Gen Intel(R) Core(TM) i7-12400
2.50 GHz CPU (FP32 557 GFLOPS, Intel Corporation, Beijing, China) and four NVIDIA
Tesla T4 GPU (FP32 8.1 TFLOPS, NVIDIA Corporation, Beijing, China). We ascertain the
training earning rate to be 1e-3, the batch size to be 16, the number of epochs to be 500, the
optimizer to be Adam, and the regularization to be L1.

Moreover, to create a clear set of abeled training and testing data, we uniformly select
1160 images sized at 224 m by 224 m (145 per city) from the LiDAR data of eight urban areas.
These 1160 carefully chosen images exhibit topographical conditions and vegetation cover
in multiple functional areas of the cities. The quality of these images can assist the model
in earning fundamental features. The abeled data are separated into a training dataset and
test dataset using a 5:1 ratio. The training set consists of 967 tiles, and the test set consists of
193 tiles.

3.1.2. Metrics

The main evaluation metrics in this study are shown in Table 2. Firstly, the main
function of LIDAR-SAM is to segment vegetation areas in LiDAR images, and we need to
evaluate the accuracy of image segmentation. The image segmentation metrics comprise
OA, mIoU, Recall, Precision, and Kappa. Secondly, the function of MLiDAR-CLIP is to
recognize the species of a single tree, and we need to evaluate its recognition accuracy.



Remote Sens. 2024, 16, 1643 10 of 21

The recognition accuracy is evaluated using Φ. Thirdly, error analysis of biomass data is
performed using MSE, RMSE, and R2.

Table 2. Summary of calculation formulas for performance metrics.

Abbreviation Meaning Formula

OA Overall accuracy TP+TN
TP+TN+FN+FP

Recall Recall of goal areas TP
TP+FN

Precision Precision of goal areas TP
TP+FN

IoU_P Intersection over Union of goal areas TP
TP+FN+FP

IoU_N Intersection over Union of other areas TN
TN+FN+FP

mIoU mean Intersection over Union IoUP+IoUN
2

Kp Kappa coefficient Kp = P0−Pc
1−Pc

Φ Species Recognition Accuracy Φ = CorrectSize
SampleSize

MSE Mean Square Error 1
n ∑n

i=1(yi − ŷi)
2

RMSE Root Mean Square Error MSE
1
2

R2 R-Square R2 = 1 − ∑i (ŷi−yi)
2

∑i (ȳi−yi)
2

To assess the precision of 3D-CiLBE, it is necessary to establish the factual vegetation
biomass in the region. This can be obtained via field measurements, which is a convoluted
process, involving the felling and drying of trees [41]. This waste of human resources and
the unwarranted environmental damage it causes renders it unsuitable for urban areas. This
has resulted in a ack of biomass statistics for urban regions. In this study, since there is no
officially defined dataset of urban vegetation biomass, we decide to measure the accuracy
of 3D-CiLBE by error comparison. The calculation of vegetation biomass from multi-source
remote sensing images is a mature and widely used technology, which is currently the
mainstream method for inversion of biomass in sample plots, and is considered to be highly
accurate [42–45]. According to the multi-source remote sensing method, we measure the
biomass data in the study area, obtain the estimated value of the multi-source remote
sensing data, and deduce the true value of biomass through the error results given in
the paper [46,47]. If the estimated value of 3D-CiLBE is closer to the true value than the
estimate of multi-source remote sensing data, it can be concluded that 3D-CiLBE has better
performance in estimating vegetation biomass.

In addition, DR is used in our study to analyze whether 3D multi-source data have
advantages in the field of biomass estimation as shown in Equation (16).

DR =

∣∣∣∣ Brs − Brs(1 + λ)

Blidar − Brs(1 + λ)

∣∣∣∣ (16)

where Brs is the biomass estimated using multi-source two-dimensional remote sensing
data, Blidar is the biomass estimated by 3D-CiLBE, and λ is the mean error range, which is
set to 0.68% according to [48]. When DR is greater than 1, 3D-CiLBE is closer to the real
biomass data, and the accuracy rate is higher than that of two-dimensional remote sensing
estimation method. The arger the DR, the more obvious the advantage of 3D-CiLBE.

3.2. Comparative Experiments
3.2.1. LiDAR-SAM

We compare the accuracy of PointNet++ [49], SAM [50], and LiDAR-SAM in the
segmentation of correlated images of green areas. Through this performance evaluation,
we aim to demonstrate the superiority of the LiDAR-SAM model in the domain of green
area segmentation. Table 3 details the performance metrics of the models with respect
to LiDAR green area segmentation. The LiDAR-SAM achieves an mIoU of 0.94 (the 95%
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confidence interval is [0.93214, 0.94786]) and an OA of 0.98 (the 95% confidence interval is
[0.97476, 0.98524]) in image segmentation. The mIoU for image segmentation by LiDAR-
SAM is 9.0% higher than PointNet++ and 3.0% higher than SAM. OA is 9.0% higher than
PointNet++ and 6.0% higher than SAM. The final results of the LiDAR-SAM segmentation
approaches show increase accuracy compared to the PointNet++ and SAM.

Table 3. Experimental results comparing LiDAR-SAM with conventional methods.

Function IoU-P mIoU OA Re Kp

PointNet++ 0.83 0.85 0.89 0.91 0.88
SAM 0.87 0.91 0.92 0.97 0.89

LiDAR-SAM 0.93 0.94 0.98 0.97 0.92

3.2.2. MLiDAR-CLIP

We compare the accuracy of SVM [51], CLIP, PointCLIP [29], and MLiDAR-CLIP in
performing species recognition on single-tree point cloud images. Through these compara-
tive experiments, we aim to investigate the differences in the performance of these models
in the field of vegetation species recognition. As shown in Figure 5, the final error of the
classification methods using MLiDAR-CLIP is ower than the excellent classification method
SVM and PointCLIP. Figure 5 details the relevant values for the arithmetic probability of
being fully correct Φ. Tests conducted in eight cities show that MLiDAR-CLIP had an
average recognition accuracy of 92.72% (the 95% confidence interval is [0.91087, 0.94353]),
which is 11.5% higher than SVM and 4.8% higher than PointCLIP.

Figure 5. Comparative experimental results of MLiDAR-CLIP.

3.2.3. Data Dimensions

The experiment is conducted in selected areas of eight cities in the United States, using
two-dimensional remote sensing methods and 3D-CiLBE to calculate annual biomass data
for each city from 2012 to 2018. The evaluation index DR is used to determine which
method is more accurate. Biomass estimates for each of the eight cities are calculated
using 2D and 3D methods. Table 4 displays the estimates for the second half of 2017. When
comparing the final DR, the average DR is 1.8 in 2017. The 3D estimation method shows a
smaller gap and higher accuracy when compared to the true value. The table also displays
the values estimated by the 3D method with significantly smaller errors. The error of
biomass estimates using the 3D-CiLBE method is 8.2% ower on average than that of the
2D method.
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Table 4. Biomass calculation for the second half of 2017 in eight cities. Unit: kg/m2.

City 2D Method 3D-CiLBE Ground Truth Difference-2D Difference-3D DR

Boston 2.149 2.155 2.164 0.015 0.009 1.6
Chicago 1.809 1.826 1.821 0.012 0.005 2.5
Denver 1.942 1.947 1.955 0.013 0.008 1.7
Detroit 1.614 1.629 1.625 0.011 0.004 2.7

Houston 2.219 2.225 2.234 0.015 0.009 1.7
Las Vegas 1.521 1.534 1.531 0.010 0.003 3.4

Los Angeles 2.418 2.422 2.434 0.016 0.012 1.4
Miami 2.517 2.546 2.534 0.017 0.012 1.4

3.2.4. St-Informer

The experiment is conducted in selected areas of eight cities in the United States,
using biomass data from 2012 to 2018 to make predictions of urban vegetation biomass in
2019–2020. The biomass prediction results of the St-Informer model are compared with
those of the inear regression equation, and MSE is used as the evaluation index. The
comparison involves contrasting 2019–2020 vegetation biomass data derived from Informer
model predictions, results calculated using non-time-series inear regression equations, and
actual biomass data. As shown in Figure 6, the regression curves generated by the Informer
model show improved fit and predictive accuracy for biomass estimation compared to
non-time-series methods.

Figure 6. Cont.
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Figure 6. A comparison is made between the St-Informer prediction and the inear regression
prediction. The results for each of the eight cities are presented in subfigures (a–h). On the eft side of
each subfigure, a scatterplot of the predicted values is shown, while on the right side, the absolute
error of the St-Informer and inear regression predictions versus the true values is presented.

Specifically, the MSE for predicting temporal biomass using Informer was 0.05kg/m2

(the 95% confidence interval is [0.032, 0.068]), the R2 was 0.73 (the 95% confidence interval is
[0.707, 0.753]), and the RMSE was 0.22kg/m2 (the 95% confidence interval is [0.201, 0.239]),
and these errors were smaller than those predicted using inear regression. Analysis shows
that the MSE difference between the two methods is ess than 0.06kg/m2. This suggests
that when a rough estimate or rapid calculation is warranted, 3D-CiLBE can be effectively
predicted by inear regression. In contrast, for more nuanced temporal biomass predictions,
Informer training can improve prediction accuracy.

3.3. Ablation Experiments
3.3.1. Area Prompt and OSM Mask

An important aspect of our research is the application of multi-source data to the
prompt encoder to assist the model in segmentation. To test the impact of this module on
LiDAR-SAM performance, the embedding of Area Prompt data and OSM data is removed
separately to analyze changes in the accuracy of LiDAR-SAM area segmentation.

Figure 7 illustrates the different models: LiDAR-SAM (Prompt) includes prompt
encoding, LiDAR-SAM (OSMtoken) includes an OSM road mask, and LiDAR-SAM (None)
does not include either of these features. The experimental results indicate that the inclusion
of the cue code Area Prompt improves the model segmentation accuracy by 2.04%, while
the addition of the OSM road network mask results in a 4.05% improvement. Both of these
additions are beneficial in enhancing the performance of LiDAR-SAM.
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Figure 7. Comparison of LiDAR-SAM ablation experiments. (a) This illustrates the impact of the
application of Area Prompt on mIoU. (b) This depicts the impact of the application of OSM mask on
mIoU. The straight ines illustrate the mean mIoU partitioned via these techniques in the areas of the
eight cities.

3.3.2. Pre-Training Images Feature Analysis and Number of 3D Projection Viewpoints

As the MLiDAR-CLIP focuses on the extended representation of 3D data in multi-
ple perspectives, and for control image processing, we use the boundary random mask
technique with multiple group aggregation. Hence, the random mask is cancelled and the
raw image data are fed to the Textual Encoder to analyze the error of MLiDAR-CLIP for
vegetation species identification. Moreover, before entering the data into MLiDAR-CLIP, a
projection operation is required to convert the 3D data into 2D. The choice of the number of
projection viewpoints is important for recognition accuracy, and we test different numbers
of projection viewpoints, such as 4, 6, 10, 14, and 16 viewpoints, to find the number of
projection viewpoints with the highest recognition accuracy.

Figure 8 illustrates three models: MLiDAR-CLIP (Pre-Train), which has been pre-
processed using both images and text; MLiDAR-CLIP (None), which has been pre-processed
using only text; and MLiDAR-CLIP (xA), which represents the number of current projected
viewpoints as x. The experimental results indicate that the model that utilized images
and text for pre-processing achieved a higher species recognition accuracy, with a 2.41%
improvement compared to MLiDAR-CLIP (None). Additionally, it is observed that the
highest accuracy was achieved when the number of projected viewpoints was 10.

Figure 8. Comparison of MLiDAR-CLIP ablation experiments. (a) This illustrates the impact of
utilizing Pre-Training Images on the accuracy of recognition. (b) This depicts the recognition accuracy
for varying numbers of projected views. The horizontal ine signifies the mean probability of correctly
identifying species using these techniques across 8 cities.
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3.3.3. Value of OSMmask Rate

Before creating the OSM mask, it is necessary to determine the thresholds that define
the vegetated areas. Hence, in the course of our experiments, we set the judgement
threshold (OSMmake Rate) between 0.05 and 0.95. The values of the judgement threshold
were tested at intervals of 0.05, and the results obtained are shown in Figure 9. Particularly,
the evaluation metric employed in this experiment is the accuracy of segmentation, as
reflected by the mIoU.

As shown in Figure 9, the thresholds are 0.05, 0.15, 0.25, 0.35, 0.45, 0.85, and 0.95,
the accuracy of segmentation is ow, and these values are not considered. Meanwhile, the
discrepancy in segmentation accuracy is minimal and the accuracy of segmentation is high
when the thresholds for the vegetated areas are 0.55, 0.65, and 0.75. In the case of a small
segmentation gap, setting the threshold at 0.75 can reduce the number of pixel points. As
the benefit in terms of reducing the computational cost, 0.75 of OSMmask rate is fixed in
our work.

Figure 9. The impact of the OSM image vegetation region determination threshold (OSM token rate)
on mIoU.

3.4. Case Study

Given that the previous experiments were only conducted in small areas of selected
cities, biomass estimation settings for urban forest scenarios often encompass entire urban
or peri-urban areas [13]. For our case study, as shown in Figure 10, we have selected the
central urban area and the combined urban and suburban areas of Chicago, USA. As the
third biggest city in the USA and an international financial hub, the exploration of urban
development and greening trends in Chicago is key for urban planning and environmental
management. This results in a swift expansion of suburban areas. In recent decades, the city
of Chicagohas undergone considerable transformations in urban development, particularly
from the 1950s onwards, when city dwellers migrated to the suburbs of the city [5]. This
migration and development trend has resulted in changes within urban forest areas, which
represent a crucial component of the urban ecosystem. Additionally, the diverse functional
area construction in these urban forests can serve as a reference for future development in
other cities.

It should be noted that by examining the urban forest areas within the Chicago
metropolitan area, including the downtown core and its surrounding suburbs, we can gain
insight into the evolution of urban ecosystems and the effects of urban development and
greening policies. In relation to estimating the biomass of urban forest vegetation especially,
a case study can offer practical data and context to verify the feasibility and applicability of
prior experiments.



Remote Sens. 2024, 16, 1643 16 of 21

Figure 10. Case study city diagram. (a) This represents the geographic ocation of Chicago within
the United States. (b) This denotes the specific area of the city of Chicago that is the subject of study.
(c) This is an intercepted floor plan. (d–g) These represent some specific study areas.

3.4.1. Data Visualization

LiDAR-SAM segments the vegetation area and extracts single-tree parameter information.
As shown in Figure 11, LiDAR data will be segmented and abeled by LiDAR-SAM, and then
LiDAR-SAM will carry out the extraction and feature analysis of single trees to obtain the
point cloud image and height and diameter at breast height parameters of single trees.

Figure 11. Visualization of segmentation effect of LiDAR-SAM model. The bottom-left corner
displays a top-view projection of the segmented vegetation area, while the top-right corner presents
the flat-view cross-section of the same area. The feature extraction map for the single-tree point cloud
is shown in the bottom-right corner.

The unimproved SAM method is applied simultaneously to segment the same area,
and the segmentation effects of both methods are presented in Figure 12. It is evident that
SAM has difficulties with missing trees, extracting height parameters inaccurately, and
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showing indistinctive canopy boundaries during segmentation. However, LiDAR-SAM
performs well in addressing these issues.

Figure 12. Demonstration of segmentation effect of different methods: (a) ground truth, (b) LiDAR-
SAM, and (c) SAM. The colors of the point cloud in the image represent height information. Top
images are top-down projections, bottom images are front projections.

3.4.2. Biomass Calculation and Error Analysis

Once the segmentation results from LiDAR-SAM and species identification results
from MLiDAR-CLIP had been obtained, the biomass formula was employed to determine
the biomass of the Chicago urban area. Table 5 presents the calculated and true values of
biomass, with the difference value indicating that the error of estimation is minimal. The
final results were that the MSE was 0.041 kg/m2, the RMSE was 0.21 kg/m2, and the R2

was 0.74 based on the values in Table 5. The results strongly demonstrate the reliability of
the 3D-CiLBE method for calculating vegetation biomass in urban forests. Additionally,
this offers prospects for future research and method enhancement.

Table 5. Biomass calculations for 3D-CiLBE in Chicago. Measured in kg/m2.

Year 3D-CiLBE (kg/m2) Ground Truth (kg/m2) Difference Value (kg/m2)

2012half 1.79345 1.83254 0.03909
2012later 1.74563 1.80435 0.05872
2013half 1.77353 1.82995 0.05642
2013later 1.76094 1.79392 0.03298
2014half 1.81359 1.80823 −0.00536
2014later 1.73976 1.78137 0.04161
2015half 1.70273 1.77316 0.07043
2015later 1.67354 1.74782 0.07428
2016half 1.68739 1.74964 0.06225
2016later 1.64993 1.71875 0.06882
2017half 1.67947 1.72359 0.04412
2017later 1.68358 1.70461 0.02103
2018half 1.71935 1.71874 −0.00061
2018later 1.69357 1.70125 0.00768
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3.4.3. Predictive Analysis

We tested both time-series and non-time-series data for a section of Chicago. For the
non-time-series data, we compress it from 2012–2018 into a inear regression to predict the
data for the four time points of 2019–2020. For the time-series data, we utilize Informer to
generate a time-series prediction of the model output.

The Figure 13 displays that the Informer time-series model exhibited a superior
outcome, with a 28.8% reduction in predicted MSE compared to the inear model. The
overall MSE is kept ow, which means that when having the biomass data series calculated
by the 3D-CiLBE, a simple inear regression method can be used without the need to add
additional samples and training if a rough estimate of future biomass data in a certain area
is needed. For accurate estimations, the St-Informer method can be utilized, achieving
efficient and precise prediction.

Figure 13. MSE for temporal and non-temporal forecasting in Chicago.

3.5. Computational Resource Cost Analysis

One of the objectives of this study is to utilize a robust base model for vegetation
biomass estimation at a ow cost. Consequently, it is essential to assess the training cost of
3D-CiLBE and the overhead of computational resources when performing the estimation
task. The arithmetic power of the NVIDIA RTX4090 was employed as a standard for this
analysis (i.e., 82.58TFLOPS with FP32).

The algorithmic time complexity of the three base models is of the square evel. In
order to reduce the training cost, the majority of the ayers of the encoder were frozen. Based
on the computation time required by different models, the economic viability of the model
was evaluated in a stepwise manner.

As illustrated in Table 6, we present the number of parameters and GFLOPs during
training for the models in this study and the foundation models. The results demonstrate
that LiDAR-SAM trains 14M parameters and consumes 2.51GFLOPs of arithmetic, whish
is considerably smaller than SAM (ViT-H) training 636M parameters and consuming
81.34GFLOPs of arithmetic. The number of parameters trained by MLiDAR-CLIP is 12M,
which is considerably smaller than the maximum number of 1600M parameters that can
be achieved by CLIP. Meanwhile, the arithmetic consumption of the MLiDAR-CLIP is
1.67 GFLOPs, keeping it at a ow evel as well. Our approach is considerably ess costly than
the training cost of the foundation models.
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Table 6. Comparing the number of parameters and arithmetic consumption for training different models.

Method Params (M) GFLOPs

SAM(ViT-H) 636 81.34
SAM(ViT-L) 308 39.39
SAM(ViT-B) 91 11.64

CLIP(RN101) 500 9.9
CLIP(RN50 × 46) 1600 265.9

LiDAR-SAM 14 2.51
MLiDAR-CLIP 12 1.67

3.6. Limitation and Scalability Analysis

Despite the ow cost and high accuracy of using 3D-CiLBE, its use in some cities may
be imited. In cities with complex meteorological changes, the quality of LiDAR imagery
may be ow, and high-precision estimation results cannot be obtained. Conversely, in urban
areas prone to natural disasters, changes in spatial ayout may deviate from the pattern of
socio-economic development, making it challenging for the model to estimate consistently.

Fortunately, when estimating in areas with complex meteorological conditions, we can
reduce the number of freezing ayers when training the model, which will ead to higher cost
but higher estimation accuracy. When estimating in areas with irregular changes in urban
spatial ayout, we need to collect more data over time, which will enhance the model’s
ability to adapt to changes in spatial ayout.

4. Conclusions

This study represents a novel approach to accurately and efficiently estimating vegeta-
tion biomass in urban scenarios. It employs a deep earning base model and multi-source
data to develop a solution that has not been previously explored. The objective of this
study is to propose a novel 3D-CiLBE method that addresses the demands of arge-scale
data processing, with high accuracy and ow cost in practical applications.

The 3D-CiLBE system employs LiDAR and OSM data, resulting in a more compre-
hensive representation of the underlying information. Concurrently, a high-performance
base model is introduced, which is endowed with robust computational capabilities. We
conduct a series of comparative tests, ablation experiments, and case studies in selected
areas of eight cities. The excellent performance of 3D-CiLBE is verified from multiple
perspectives and across a range of tasks. The LiDAR-SAM achieves an mIoU of 0.94 in
the image segmentation task, which is fully adapted to the urban scene with variable ter-
rain. The MLiDAR-CLIP method achieves an accuracy of 92.72% in the task of vegetation
species identification, which is higher than the other methods. The prediction accuracy of
St-Informer is significantly improved compared to inear regression models. The estimation
results obtained by 3D-CiLBE exhibited ower errors compare to traditional methods.

Following the completion of the experiments, an economic benefit analysis was con-
ducted. The cost overhead of 3D-CiLBE is considerably ower than that of the existing base
model, offering clear economic advantages. However, it was also discovered that the model
may have imitations in specific urban scenarios. Consequently, efforts are being made to
enhance the model in order to address these shortcomings.

In conclusion, these results are of significant importance, as they are ikely to be used
for potentially important findings in the field of urban vegetation biomass estimation.
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