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Abstract: The pro-hormone vitamin D3 is an important modulator of both innate and adaptive
immunity since its biologically active metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates
via the transcription factor VDR (vitamin D receptor) the epigenome and transcriptome of human
immune cells and controls in this way the expression of hundreds of vitamin D target genes. Since the
myeloid linage of hematopoiesis is epigenetically programmed by VDR in concert with the pioneer
factors PU.1 (purine-rich box 1) and CEBPα (CCAAT/enhancer binding protein α), monocytes,
macrophages, and dendritic cells are the most vitamin D-sensitive immune cell types. The central
role of the immune system in various aging-related diseases suggests that immunocompetence
describes not only the ability of an individual to resist pathogens and parasites but also to contest
non-communicative diseases and the process of aging itself. In this review, we argue that the
individual-specific responsiveness to vitamin D relates to a person’s immunocompetence via the
epigenetic programming function of VDR and its ligand 1,25(OH)2D3 during hematopoiesis as well
as in the periphery. This may provide a mechanism explaining how vitamin D protects against major
common diseases and, in parallel, promotes healthy aging.

Keywords: vitamin D; aging; innate immunity; immunocompetence; hematopoiesis; epigenome;
transcriptome; vitamin D target genes

1. Introduction

Vitamin D has important endocrine functions that are often defined by its deficiency,
which most prominently causes a bone phenotype that is manifested as rickets in children
and osteomalacia in adults [1]. The physiological basis of this observation is that vitamin D
has, via its role as a controller of calcium homeostasis, a key function in bone formation [2].
In contrast, in other physiological processes, such as the modulation of immunity, the role
of vitamin D is not as unique as concerning the regulation of serum calcium levels, and
therefore a lack of vitamin D can be compensated, at least in part, by other regulatory
molecules [3]. This also partly explains why large trials like VITAL (VITamin D and
OmegA-3 TriaL) and ViDA (Vitamin D Assessment) had a null result as the primary
outcome concerning the non-skeletal effects of vitamin D3 supplementation [4,5].

Vitamin D deficiency is primarily related to a modern lifestyle that is characterized
by insufficient exposure of bare skin to the UV-B component of sunlight. The latter is
essential for the endogenous production of vitamin D3 from 7-dehydrocholesterol in the
skin [6,7]. Vitamin D3 itself has no biological function in the human body, but when it is
converted in the liver through the enzymes CYP (cytochrome P450) 2R1 and CYP27A1 to
25-hydroxyvitamin D3 (25(OH)D3) and further in the kidneys by the enzyme CYP27B1
to 1,25(OH)2D3, it acts as a hormone [8] (Figure 1, top). Interestingly, cells of the innate
immune system, such as monocytes, macrophages, and dendritic cells, as well as skin and
bone cells, express the CYP27B1 gene and are able to produce 1,25(OH)2D3 for auto- and
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paracrine purposes [9]. In an evolutionary adaptation process, 1,25(OH)2D3 became, some
550 million years ago, a high-affinity ligand for the nuclear receptor VDR [10]. Like other
members of the nuclear receptor superfamily, such as estrogen receptors (ESRs) and gluco-
corticoid receptors (GR), VDR functions as a transcription factor and controls the expression
of hundreds of vitamin D target genes (more details in Section 2). Thus, 1,25(OH)2D3 is
an endocrine compound that has an impact on human physiology comparable to that of
estrogen and cortisol. This concept of a pleiotropic action of vitamin D is supported by the
observation that the VDR gene is significantly expressed in most human tissues and cell
types, i.e., the function of VDR seems not to be restricted to the intestine for controlling the
resorption of calcium.
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both used for the protection and treatment of tuberculosis, i.e., against an infectious dis-
ease caused by intracellular bacteria [13,14]. Furthermore, the risk of autoimmune dis-
eases, such as multiple sclerosis, was found to be reduced by a sufficient vitamin D status 
[15]. Thus, vitamin D has obvious immune regulatory functions, which in fact are evolu-
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Figure 1. Principles of vitamin D signaling. The biologically most active vitamin D3 metabolite
1,25(OH)2D3 activates at sub-nanomolecular concentrations the transcription factor VDR, which,
together with its coreceptor RXR, preferentially contacts DR3-type sequences. The opening of
chromatin at DR3-type binding sites carrying enhancer regions is supported by the pioneer factors
PU.1 and CEBPα. The looping of enhancers to TSS regions facilitates protein–protein contacts
in activated VDR via the Mediator complex and the basal transcriptional machinery with RNA
polymerase II. This modulates target gene transcription.

The first hints of the immunomodulatory effect of vitamin D arose at about the same
time, when vitamin D3 supplementation was found to prevent experimentally created
rickets [11,12]. Cod liver oil, which is high in vitamin D3, as well as UV-B exposure, were
both used for the protection and treatment of tuberculosis, i.e., against an infectious disease
caused by intracellular bacteria [13,14]. Furthermore, the risk of autoimmune diseases,
such as multiple sclerosis, was found to be reduced by a sufficient vitamin D status [15].
Thus, vitamin D has obvious immune regulatory functions, which in fact are evolutionary
older than the control of calcium homeostasis [2].

The vitamin D status is defined by the serum 25(OH)D3 level, which should be in a
range of 75–150 nM (30–60 ng/mL) [16]. Individuals can be segregated by their vitamin D
status into deficient (below a serum 25(OH)D3 level of 30 nM), insufficient (30–74.9 nM), and
sufficient (75–150 nM). This parameter reflects the endogenous production of vitamin D3
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and/or its supplementation via diet or pills and majorly depends on the lifestyle decisions
of the individual. In addition, people were found to be high, mid, or low responders to
vitamin D, i.e., they differ in the efficiency of their molecular response to vitamin D [17].
This vitamin D response index is based on variations of both the genome and the epigenome,
i.e., in contrast to the vitamin D status, the index does not change depending on season,
diet, and/or supplementation [18]. It is assumed that low vitamin D responders, who
represent about 25% of the population, have a higher susceptibility to diseases, in particular
those that are related to a compromised immune system, like multiple sclerosis [19].

In this review, we will discuss how VDR and its ligand 1,25(OH)2D3 modulate the
immunocompetence of individuals and how the latter declines during aging. This concept
can not only explain how vitamin D affects the rate of aging but also how it reduces the
risk of many age-related diseases.

2. Principles of Vitamin D Signaling

The more than 1600 transcription factors encoded by the human genome bind sequence-
specifically to genomic DNA [20]. The specific DNA binding motif of VDR is the sequence
RGKTSA (R = A or G, K = G or T, and S = C or G). In a heterodimeric complex with the
nuclear receptor RXR (retinoid X receptor), VDR binds preferentially to a direct repeat of
this sequence motif with a spacing of 3 base pairs (bp) (DR3) [21–23] (Figure 1, bottom left).
A pre-condition for efficient recognition of such DR3-type response elements by VDR-RXR
heterodimers is their location within accessible open chromatin (euchromatin). Since more
than 90% of genomic DNA is located within closed heterochromatin, VDR often uses the
help of pioneer factors to open chromatin. Pioneer factors are transcription factors that
have very short DNA recognition sequences, which they bind even in the presence of
a nucleosome [24]. The latter are every 200 bp repeating subunits of chromatin that are
composed of pairs of the histone proteins H2A, H2B, H3, and H4, around which 147 bp
of genomic DNA are wrapped nearly twice. While in immune cells VDR is supported by
the transcription factors PU.1 and CEBPα [25], in osteoblasts these are RUNX2 (RUNX
family transcription factor 2) and CEBPα [26], and in T cells BACH2 (BTB domain and
CNC homolog 2) [27].

Next-generation sequencing technologies, such as FAIRE-seq (formaldehyde-assisted
isolation of regulatory elements sequencing that is nowadays mostly replaced by ATAC-seq
(assay for transposase-accessible chromatin using sequencing)) and ChIP-seq (chromatin
immunoprecipitation sequencing), are able to monitor in a genome-wide fashion the acces-
sibility of chromatin or the binding of VDR to genomic DNA, respectively [28]. PBMCs
(peripheral blood mononuclear cells) are a natural mixture of T cells, B cells, NK (nat-
ural killer) cells, ILCs (innate lymphoid cells), and monocytes [29]. They are primary
cell types that can be isolated with minimal harm to the donor, and their use in human
vitamin D3 supplementation studies allows the assessment of vitamin D signaling under
in vivo conditions.

In the example of the genomic regions of the vitamin D target genes CD14
(CD14 molecule) and NFKBIA (NFκB inhibitor alpha), changes in chromatin accessibility
and VDR binding in response to vitamin D3 bolus supplementation are demonstrated
(Figure 2). The VDR binding enhancer of the CD14 gene is located 26 kb (kilo bp) down-
stream of the gene’s TSS (transcription start site), while for the NFKBIA gene, the enhancer
region lies even 470 kb downstream. As long as the enhancer and the TSS region are located
within the same TAD (topologically associating domain), they can efficiently interact by
DNA looping. TADs are subunits of chromatin with an average size of approximately
1000 kb that are functionally insulated from each other by loop formation directed by the
chromatin organizer CTCF (CCCTC-binding factor) [30]. This implies that 1000 kb is the
maximal distance between a VDR-binding enhancer and the TSS of a gene affected by
this regulatory element. Interestingly, in the in vivo experiment shown in Figure 2, VDR
binding to both enhancer regions decreased after vitamin D3 supplementation [31]. This
fits with the downregulation of the expression of both genes in response to vitamin D [32].
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This example demonstrates that VDR-binding enhancers and TSS regions of target 
genes can be at a greater linear distance from each other since DNA looping brings them 
into close vicinity so that VDR can influence, via protein–protein interactions with the 
Mediator complex and the basal transcriptional machinery, the activity of RNA polymer-
ase II (Figure 1, bottom right). These genomic actions of vitamin D take hours since new 
mRNA needs to be synthesized and translated into protein. In contrast, the rapid non-
genomic actions of vitamin D have also been described [33], which may be mediated by 
membrane-associated proteins such as PDIA3 (protein disulfide isomerase family A 

Figure 2. Example of vitamin D signaling in vivo. Chromatin opening and VDR binding at the loci of
the genes CD14 (top) and NFKBIA (bottom) measured by FAIRE-seq and ChIP-seq, respectively, in
PBMCs obtained from an individual who was challenged with a vitamin D3 bolus (2000 µg). PBMCs
were isolated directly before (day 0) and 24 h after (day 1) vitamin D3 supplementation without
any further in vitro culture. The peak tracks represent the merger of each of the three biological
repeats [31]. Enhancer regions with VDR binding sites are shaded in gray, and vitamin D target genes
are highlighted in red. Please note that the FAIRE-seq data indicate far more vitamin D-triggered
accessible chromatin regions than VDR-binding enhancers.

This example demonstrates that VDR-binding enhancers and TSS regions of target
genes can be at a greater linear distance from each other since DNA looping brings them
into close vicinity so that VDR can influence, via protein–protein interactions with the
Mediator complex and the basal transcriptional machinery, the activity of RNA polymerase
II (Figure 1, bottom right). These genomic actions of vitamin D take hours since new mRNA
needs to be synthesized and translated into protein. In contrast, the rapid non-genomic
actions of vitamin D have also been described [33], which may be mediated by membrane-
associated proteins such as PDIA3 (protein disulfide isomerase family A member 3) [34,35].
However, epigenetic effects of vitamin D require the involvement of VDR, i.e., for the
processes discussed here, such as hematopoiesis and immunocompetence, non-genomic
effects are most likely not relevant.
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Genome-wide patterns of DNA methylation, post-translational modification of histone
proteins, and three-dimensional chromatin organization determine the epigenome, i.e., the
so-called epigenetic landscape, of a cell [36]. In contrast to the genome, which should not
change significantly during a lifetime, the epigenome dynamically responds to intra- and
extracellular signals, including vitamin D and other nuclear hormones. Vitamin D does
not only affect genome-wide the binding of some 20,000 VDR binding sites, the so-called
VDR cistrome [28], and accessible chromatin [31], but also that of pioneer factors, CTCF,
and histone markers of active chromatin [25,37]. For example, in the monocytic leukemia
cell line THP-1, vitamin D affects the local epigenetic pattern in more than 500 TSS- and
2500 enhancer regions. Thus, vitamin D has in vitro as well as in vivo a modulatory role
on human immune cells, such as THP-1 cells and PBMCs from healthy donors [18]. The
epigenome-wide effects of vitamin D translate then, at least in part, into changes of the
transcriptome as measured by RNA-seq (RNA sequencing) [38].

3. Vitamin D and Epigenetic Programming of Innate Immune Cells

Throughout embryogenesis as well as during cellular differentiation in the tissues of
adults, stem and progenitor cells undergo major changes in their epigenome that determine
the function and properties of the outcome, i.e., of terminally differentiated cells [39]. The
epigenetic landscape of these cells is reshaped so that lineage-specific genes are prominently
expressed while genes of other cell lineages are repressed [40]. This epigenetic program-
ming process is driven by specific sets of transcription factors and chromatin-modifying
enzymes that determine, at bifurcation points, in which direction the cells are differenti-
ating [41]. In the process of hematopoiesis, HSCs (hematopoietic stem cells), which are
located in the bone marrow, differentiate into more than 100 cell types of the blood, such as
erythrocytes and platelets, and the immune system, such as B and T cells, monocytes, NK
cells, ILCs, neutrophils, and many more [42] (Figure 3).
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Figure 3. Vitamin D and hematopoiesis. Together with the pioneer factors PU.1 and CEBPα, VDR
directs the differentiation of myeloid progenitor cells into monocytes and granulocytes. This may
explain why monocytes and their derived cells, dendritic cells and macrophages, are the most vitamin
D-responsive cell types of the immune system.

Interestingly, 1,25(OH)2D3 has been shown to regulate the number of embryonic
HSCs [43]. Moreover, VDR, PU.1, and CEBPα are the key transcription factors for the
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differentiation of myeloid progenitor cells into monocytes and granulocytes, i.e., into
major cells of innate immunity [44]. This implies that vitamin D has a direct effect on
the epigenetic programming of monocytes (Figure 3). This may explain why these innate
immune cells are most responsive to vitamin D [45]. Moreover, vitamin D also affects
the differentiation of monocytes into dendritic cells and macrophages. For example, the
vitamin D target gene TNFSF11 (TNF superfamily member 11, encoding for the cytokine
RANKL) controls the differentiation of monocytes into bone-resorbing osteoclasts [46].

Epigenetic programming of differentiating cells is, in most cases, an irreversible
process that, however, is modulated by many intrinsic and extrinsic factors [47]. This allows
cells with a rapid turnover, in particular those of the innate immune system, to adapt to
changes in environmental conditions, such as microbe infection, inflammation, and the
onset of non-communicative diseases like cancer, diabetes, and neurodegeneration [48]. For
example, it was shown that in vitamin D-sufficient mice, vitamin D-deficient fetal HSCs can
induce diabetes [49]. In this mouse model, vitamin D deficiency epigenetically reprograms
HSCs. Importantly, similar processes were found in vitamin D-deficient human monocytes.
A further indication of the impact of VDR and 1,25(OH)2D3 on the differentiation of
the myeloid line of hematopoiesis is the observation that high VDR gene expression is
associated with a good prognosis of AML (acute myeloid leukemia) and that synthetic
VDR ligands are promising disease-modifying drugs [50].

Monocytes not only control the inflammatory response of the body but also coordinate,
via their derived cells, dendritic cells and macrophages, the response to many different
types of stress. This specification of monocyte differentiation is part of the process of
trained immunity [51,52], which is a form of epigenetic memory of immune challenges in
the form of chromatin changes. This prepares the innate immune cells better for a possible
next encounter with the same microbes. The cluster of HLA (human leukocyte antigen)
genes also contains a larger number of other immunologically important genes [53], many
of which are vitamin D targets [32]. Accordingly, the HLA gene cluster represents not only
the most variant region of the human genome but is also a “hotspot” for the actions of
vitamin D on the immune system.

Since individuals show differences both in their vitamin D status as well as in their
vitamin D response index, they also differ in the epigenetic programming of monocytes
and their derived cells during hematopoiesis [54]. Accordingly, optimized vitamin D3
supplementation may support both proper epigenetic programming of immune cells
throughout hematopoiesis in the bone marrow as well as differentiation in tissues in
response to antigen encounters [19]. Thus, we suggest that the main effect of vitamin D on
the immune system is the epigenetic programming in central immune organs as well as in
the periphery. This concept needs further experimental confirmation, but it provides an
attractive model for explaining individuals’ differences in the responsiveness of their innate
immune systems. Finally, this contributes to the immunocompetence of the individual.

4. Decline in Immunocompetence during Aging

Aging is a natural and unavoidable process of the accumulation of molecular and
cellular damage, which leads to defective functions of cells, tissues, and whole organs
that weaken the whole human body [55]. The process of aging is driven by 12 different
hallmarks that relate either to (i) age-associated manifestation, (ii) the acceleration of aging,
or (iii) deceleration or reversing aging [56]. Some of these hallmarks of aging, such as
disabled macroautophagy, stem cell exhaustion, chronic inflammation, and dysbiosis,
indicate profound alterations of the immune system during aging that contribute to a
decline in immunocompetence [57].

Immunocompetence is primarily defined as the ability of the human body to respond
appropriately to antigen exposure [58]. In this way, invading microbes are efficiently
cleared. In addition, in a “competent” immune system, there are no overreactions of im-
mune cells that may lead to health- and life-threatening reactions, such as septic shock,
anaphylactic responses, or autoimmune diseases. Accordingly, immunocompetence op-
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poses immunodeficiency, which occurs in newborns but also as the result of diseases
such as AIDS (acquired immunodeficiency syndrome) or immunosuppressive medication,
e.g., after organ transplantation. The competence of the immune system drastically in-
creases after birth and reaches its peak at the age of 10 [59] (Figure 4).
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The thymus is a primary lymphoid organ in which immunocompetent T cells are
produced. However, already at a young age, the cell mass, structure, and architecture of
the thymus regress, and the number of naïve T cells produced declines [60]. In addition to
thymus atrophy, the immune system deteriorates with age in many other ways, of which
the decline of the HSC division rate [61] and increased rates of chronic inflammation,
referred to as inflammaging, are most important [57,62]. This immunosenescence leads to
increased susceptibility and higher incidences of a large variety of infectious diseases as
well as non-communicative disorders like cancer, diabetes, and autoimmune diseases in
older adults [63] (Figure 4).

On the molecular and cellular level, immunocompetence is reflected in the different
functionality of immune cells as well as their well-orchestrated interactions. For example,
macrophages with a single intact nucleus and a large number of granules are more func-
tional, e.g., in performing phagocytosis, than others with a polymorphic nucleus and a
low number of granules (Figure 5). With declining overall immunocompetence during
aging, the relative number of competent immune cells decreases [64]. However, there are
interindividual differences, i.e., with increasing chronological age, there are people with
a higher percentage of immunocompetent cells than the average and others with a lower
number [65]. Thus, within the same age cohort, there are individuals with higher immune
resilience and others with lower immunocompetence [66]. Accordingly, it can be assumed
that in the first group, the rate of aging is slower and the incidence of diseases is lower,
while in the latter group, accelerated aging and a higher disease rate should be observed.
This concept fits with the observation of epigenetic clocks in various tissues of humans and
other species [67]. Traditionally, these clocks are measured via the methylation levels of a
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few hundred genomic regions, which are chosen as representatives for epigenetic changes
in the whole epigenome [68].
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Figure 5. Individual decline of immunocompetence with aging. In the example of macrophages
of different functionality (depicted via the integrity of the nucleus and the number of gran-
ules), interindividual differences in the immunocompetence of members of the same age cohort
are expressed.

The decline in immunocompetence results in reduced immunosurveillance, such as
the detection and destruction of neoplastic cells by cytotoxic T cells [69]. As a consequence,
the cancer risk of persons with low immunocompetence is significantly higher than that
of individuals with high immunocompetence [66]. Therefore, we suggest that the cancer-
protective effect of a sufficient vitamin D status may relate primarily to the ability to keep
the immunocompetence of a person at a high level. Following the same argument, response
index-adapted vitamin D sufficiency should (i) stabilize immune resilience, (ii) protect
against numerous other diseases, and (iii) keep the rate of aging low. The latter is related to
the low impact of the various hallmarks of aging, such as low levels of inflammation and
other forms of cellular stress. Thus, vitamin D sufficiency is an important component of
healthy aging, not only for keeping bone and skeletal muscle in good shape but also for the
homeostasis of the immune system [70].

5. Conclusions

The biologically most active form of vitamin D, 1,25(OH)2D3, is an endocrine molecule
that modulates in vitro and in vivo the epigenome of immune cells. We presented here
a mechanism for how vitamin D affects the epigenetic programming of immune cells, in
particular monocytes and their derived cell types. According to this concept, individuals
with vitamin D sufficiency should have a higher level of immunocompetence than insuf-
ficiently supplemented people. A large number of observational studies have reported
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associations between vitamin D deficiency and increased risk for numerous diseases, as
well as accelerated aging [71,72]. From our point of view, the unifying aspect of all these
reports is the reduced immunocompetence of the investigated persons. Thus, elevating the
immunocompetence of the concerned individuals, e.g., by shifting their vitamin D status to
sufficiency, is of key importance.

When evaluating the vitamin D sufficiency of individuals with reduced immuno-
competence, their vitamin D response index should also be taken into account since low
vitamin D responders need more prominent vitamin D3 supplementation than high re-
sponders [17,19]. Because determining the vitamin D index of a person is more complex
and expensive than measuring his/her vitamin D status, we suggest as a precaution that
everyone should be supplemented as a low vitamin D responder, i.e., with a daily vitamin
D3 dose of 1 µg (40 IU)/kg body mass. This dose is higher than the recommended dose
for the average population in most countries [73], but still far below an amount that may
cause side effects like hypercalcemia [74]. Please note that this supplementation guideline
is based on our own experience and does not reflect any official recommendation.
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