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Abstract: Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations
in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse
therapeutic effects in response to a variety of pathological challenges, particularly conditions as-
sociated with chronic metabolic diseases and age-related disorders. It shows multidimensional
functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neu-
ropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders,
skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically,
its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic
homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB
pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and
alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating
the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways
for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally,
CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this
review, we systematically recapitulate CGA’s pharmacological activities, medicinal properties, and
mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting
molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate
the therapeutic effects of CGA.

Keywords: chlorogenic acid; inflammation; oxidation; metabolic homeostasis; AMPK; NF-kB;
neuromodulation; chronic metabolic diseases

1. Introduction

Chlorogenic acid (CGA) family members are abundant dietary phenolic acid com-
pounds in plants, conjugating the hydroxy group of quinic acid and the carboxyl group of
caffeic acid as the parent structure. CGA family includes (1) 1L-(−)-quinic acid, (2) caffeic
acid (CA), (3) ferulic acid, and (4) the p-coumaric acid (p-CoQA) group including p-CoQAs,
caffeoylquinic acids (CQAs), and feruloylquinic acids (FQAs) [1–4]. The CGA family has
shown multiple protective effects on mitigating many chronic inflammatory and age-related
disorders through exerting the central actions of anti-inflammation, antioxidation, and
metabolic homeostasis modulation [1–4].

CGA has limited bioavailability in plant foods due to the esterification with cell wall
components such as proteins, lignin, and cellulose [5]; thus, appropriate food processing
is needed to facilitate release [6]. CGAs are enriched in green coffee bean extract (GCE),
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which may comprise 54% of its contents [7]. Particularly, 5-CQA and 3-CQA present about
35−40% and 10−15% among CGA components, respectively [8]. The roasting process leads
to a dramatic decrease in the total amount of CGAs and changes in CGA compositions
with main contents of 3,4-di-CQA, 5-CQA, 4-CQA, and 3-CQA [9]. One-third of CGA is
metabolized quickly after direct absorption in the upper gastrointestinal tract upon oral
administration [3,10]. The esterase secreted by the intestine microbes (such as Lactobacillus
gasseri, Bifidobacterium lactis, and Escherichia coli) can hydrolyze the remaining CGAs and
release CGA and quinic acid to be absorbed in the intestines [11,12].

CGA exhibits a good safety profile, which has not shown any obvious adverse effect
and toxicity to normal cells or tissues, and is well-tolerated by humans [13,14]. In an acute
toxicity experiment, no side effects are observed in mice for two weeks upon an intake of
CGA-enriched GCE (1 g/kg) [15]. A single dose of GCE (2 g/kg) (containing 50% CGA)
in rats does not cause any type of toxicity. Rats with an intake of CGA (250, 500, and
1000 mg/kg) show no adverse effects in three months [16]. Cautiously, a high-dosage con-
sumption of CGA (2 g/day) or black tea (4 g/4 L/day) four times in 7 days can moderately
increase plasma homocysteine levels by 12% or 11% in humans, respectively [17].

In this review, the literature search was conducted between 2005 and 2024 in the
database of PubMed for articles related to the subjects using the specific keywords of
“chlorogenic acid” and (“inflammation” or “oxidation”). Inclusion criteria included full-
text publications in English. Exclusion criteria included preprints and extracts without
mention of CGA as the active ingredient in the abstract. The publications in this search
result served as core literature for this review.

2. Functional Hubs of CGA’s Pharmacological Effects
2.1. Anti-Inflammation and Anti-Oxidation (Figure 1A)

Multidimensional effects of CGA in multiorgan are exerted through or related to its
anti-inflammation and anti-oxidation properties. CGA has shown compelling immunomod-
ulatory effects for mitigating pathological developments related to inflammatory response
and/or oxidative stress [18]. The mechanisms underlying the anti-inflammation properties
of CGA are multi-dimensional. First, it attenuates pathogen-activated nuclear factor-κB (NF-
κB), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), and p38-
mitogen-activated protein kinase (MAPK) signaling pathways [19–23] (Figure 2A). Second,
it inhibits the synthesis of many pro-inflammatory factors such as tumor necrosis factor-α
(TNF-α), interleukin 1 beta (IL-1β), IL-6, interferon-γ, monocyte chemotactic protein-
1, and macrophage inflammatory protein-1α during the inflammatory response [24–26]
(Figure 2A). CGA could suppress TNF-α-induced inflammatory and oxidative stress in
the pre-adipocyte 3T3-L1 cell line [27]. In lipopolysaccharide (LPS)-treated RAW264.7
cells, CGA inhibits cyclooxygenase-2 (COX-2) upregulation and suppresses the release
of PGE2.19. Third, it reduces Toll-like receptor (TLR) activity and modulates the re-
lease of cytokine and chemokine, thus suppressing sepsis-induced pathologies [28–31].
CGA could counteract LPS-induced inflammation and oxidation by activation of the
CD36/AMPK/PGC-1alpha pathway in RAW264.7 macrophages [32]. Intraperitoneal ad-
ministration of CGA decreases neutrophilic infiltration by counteracting LPS-induced
TLR-4, TNF-α, and NF-κB signaling in mouse liver [28]. CGA inhibits the systemic ac-
cumulation of high-mobility group box 1 (HMGB-1) and prevents sepsis-induced mor-
tality [29,33]. The antioxidative activities of CGA are related to the activation of nuclear
factor erythroid 2-related factor 2 (Nrf2)-dependent or -independent pathways as well as
its anti-inflammatory properties [20,34–37] (Figure 2B). CGA effectively eliminates free rad-
icals and inhibits oxidative injuries and apoptosis in multi-tissues by suppressing caspases’
activities [20,34].



Nutrients 2024, 16, 924 3 of 36Nutrients 2024, 16, 924 3 of 35 
 

 

 
Figure 1. A summary of therapeutic effects of CGG on multiorgan. CGA shows various beneficial 
roles in many pathological conditions. It can (A) mitigate inflammatory response and oxidative 
stress; (B) modulate glucose and lipid homeostasis and alleviate DMs; (C–E) protect cardiovascular 
system, kidneys, and liver; (F) facilitate the recovery from neurological impairments such as neuro-
degenerative disorders and diabetic peripheral neuropathy; (G) inhibit tumor cell proliferation and 
migration; (H) ameliorate skin pathologies; (I) execute anti-pathogen effects, and (J) exert antiaging 
effects. ↑, increasing; ↓, decreasing. The graph was created with Biorender.com. 

 
Figure 2. The potential mechanistic actions of CGG on multi-targets. CGA can potentially (A) target 
NF-kB, MPAKs, and JAK pathways to mitigate inflammation; (B) activate Nrf2-dependent and in-
dependent pathways to execute antioxidation function; (C) regulate lipid metabolism through in-
creasing lipolysis and fatty acid oxidation and suppressing synthesis of cholesterol and fatty acids; 
(D) modulate glucose metabolism through increasing glycolysis and suppressing glucose uptake 
and glucose synthesis; and (E) exhibit neuromodulation through targeting multiple neuroreceptors 
and ion channels. The graph was created with Biorender.com. 

Figure 1. A summary of therapeutic effects of CGA on multiorgan. CGA shows various beneficial
roles in many pathological conditions. It can (A) mitigate inflammatory response and oxidative stress;
(B) modulate glucose and lipid homeostasis and alleviate DMs; (C–E) protect cardiovascular system,
kidneys, and liver; (F) facilitate the recovery from neurological impairments such as neurodegenera-
tive disorders and diabetic peripheral neuropathy; (G) inhibit tumor cell proliferation and migration;
(H) ameliorate skin pathologies; (I) execute anti-pathogen effects, and (J) exert antiaging effects.
↑, increasing; ↓, decreasing. The graph was created with Biorender.com.
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Figure 2. The potential mechanistic actions of CGA on multi-targets. CGA can potentially (A) target
NF-kB, MPAKs, and JAK pathways to mitigate inflammation; (B) activate Nrf2-dependent and
independent pathways to execute antioxidation function; (C) regulate lipid metabolism through
increasing lipolysis and fatty acid oxidation and suppressing synthesis of cholesterol and fatty acids;
(D) modulate glucose metabolism through increasing glycolysis and suppressing glucose uptake and
glucose synthesis; and (E) exhibit neuromodulation through targeting multiple neuroreceptors and
ion channels. The graph was created with Biorender.com.
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2.2. Glucose and Lipid Metabolic Homeostasis Modulation (Figure 1B)

CGAs can facilitate the maintenance of metabolic homeostasis of glucose and lipids [38].
One mechanism involves the modulation of activities of AMP-activated protein kinase
(AMPK) and ERK1/2 [4] (Figure 2C,D). AMPK is a master energy sensor that regulates
cellular glucose and lipid metabolism. These functions directly underlie the CGA effects
on the mitigation of chronic metabolic-associated syndromes such as obesity, diabetes
mellitus (DM), and their complications. CGA or CGA-containing extracts can inhibit pan-
creatic lipase activity [39]. CGA exhibits inhibitory effects on the function of many lipid
metabolic enzymes including fatty acid synthase, HMG-CoA reductase, and cholesterol
acyltransferase in mice fed on a high-fat diet (HFD) [40] (Figure 2C). CGA can upregulate
AMPK and carnitine palmitoyltransferase I (CPT-1) and inhibit acetyl-CoA carboxylase
(ACC), thus reducing hepatic and blood levels of triglyceride (TG) and free fatty acids (FFA)
in HFD rats [41] (Figure 2C). CGA can facilitate cholesterol elimination by modulating
homeostasis of bilirubin and bile acids via farnesoid X receptor (FXR) and peroxisome
proliferator-activated receptor (PPAR) gamma coactivator 1-alpha (PGC-1α) or fibroblast
growth factor (FGF) 15 pathways [42,43].

CGA can attenuate glucose absorption. CGA can decrease sodium–glucose co-transporter
1 (SGLT-1), thus reducing glucose uptake and causing reduced glucose-dependent in-
sulinotropic polypeptide (GIP) release and altered gut microbiota profile [44]. CGA ac-
tivates AMPK pathways and suppresses HFD-induced upregulation of SGLT-1, glucose
transporter type 2 (GLUT-2), and proglucagon (Plg), leading to an increase in the translo-
cation of GLUT4 to plasma membranes and inhibition of liver glucose production [45,46]
(Figure 2D). Activation of AMPK may also be prompted by caffeic acid, a metabolite of
CGA, for modulating glucose transport [47].

CGA can reduce glucose release. CGA can inhibit glucose-6-phosphatase (G6Pase),
the enzyme converting glycogen to glucose [44]. CGA inhibits the expression and activity
of hepatic α-glucosidase and G6Pase, reduces the hydrolysis of hepatic glycogen, and
activates AMPK pathways, resulting in attenuation of hepatic steatosis and improvements
of metabolic indexes including fasting serum glucose (FSG) level, glucose tolerance, glucose
uptake, insulin sensitivity, and lipid profiles [38,48,49] (Figure 2D).

CGA can modulate plasma levels of glucose and lipids. In HFD golden hamsters
or rats, CGA upregulates hepatic PPAR-α levels, increases the activity of hepatic lipase
(HL), decreases hepatic levels of TG and FFA and fasting serum levels of TG, FFA, total
cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein
cholesterol (HDL-c), FSG, and insulin (FSI), as well as attenuates the activity of lipoprotein
lipase (LPL) in skeletal muscle [50,51]. CGA-containing GCEs (100 mg/kg, 6 weeks) can
decrease blood glucose levels, body weight, and fat mass in mice fed on an HFD [52]. CGA
(oral gavage 80 mg/kg/day, 12 weeks) in db/db mice can lower FSG, adiponectin, and TG,
and increase muscle glycogen via up-regulating hepatic PPAR-α and inhibiting G6Pase
expression [53]. Post-meal CGA treatment (60 min) decreases the level of blood sugar
compared to the placebo in rats [54].

2.3. Human Subject Studies

In a randomized crossover study, healthy postmenopausal women (BMI 25–40, n = 16)
with consumption of the bioactive yogurt containing curcumin and CGA showed signifi-
cantly lower plasma levels of TNFα compared to the placebo group and the baseline [55]. In
an acute pilot study, healthy subjects (n = 31) were given a single dose of a polyphenol-rich
beverage (PRB) or placebo. The plasma levels of 8-iso-PGF2-alpha and advanced oxidation
protein products were decreased, and hydroxyl radical antioxidant capacity at one-hour
post intake of PRB was increased compared to the baseline [56].

In a cohort of 15 patients with impaired glucose tolerance (IGT), CGA (400 mg three
times per day for 3 months) decreased FSG, insulinogenic index, body weight, body mass,
waist circumference, TG, TC, LDL-c, and very low-density lipoprotein levels, with an up-
regulated Matsuda index [57]. In a randomized, double-blind controlled trial, participants
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(n = 65) were given an 8-week cooked ham enriched with a pool of antioxidants (includ-
ing 22.5 mg CGA/100 g cooked ham) or received a placebo. Subjects with intervention
showed significantly lower levels of ox-LDL, malondialdehyde (MDA), TC, high-sensitive
C-reactive protein (hs-CRP), and IL-6 [58]. In a cohort of overweight dyslipidemic sub-
jects (n = 90), a nutraceutical (containing bergamot, phytosterols, vitamin C, and CGA) or
placebo was administered for 8 weeks. The subjects with the treatment showed improved
lipid and glucose metabolism, which were associated with reduced levels of TG, LDL-c,
non-HDL-c, the ratio of leptin/adiponectin, hs-CRP, and TNFα [59]. In a randomized,
cross-over, controlled study, hypercholesterolemic subjects (n = 27) were administered solu-
ble green/roasted (35:65) coffee or placebo for 8 weeks. The subjects showed lower lipid
parameters (TC, TG, LDL-c, VLDL-c), MDA, and protein carbonyl group oxidation, systolic
and diastolic blood pressures (SBP, DBP), heart rate, and body weight compared with the
baselines [60]. Habitual coffee intake decreased serum levels of IL-18 and 8-isoprostane
but increased adiponectin and HDL-c in healthy subjects (n = 47) [61]. In a study, healthy,
overweight subjects (n = 142, BMI ≥25 to <30 kg/m2) were given a high-CGA (369 mg
CGA/serving) or control (35 mg CGA/serving) coffee for 12 weeks. subjects with an intake
of high-CGA coffee showed significant improvements in lowering the visceral fat area
(VFA), total abdominal fat area (TFA), BMI, and waist circumference compared to those in
the control group [62]. In a cohort of 21 patients with metabolic syndrome, CGA-containing
GCE (400 mg twice per day for 2 months) showed a decrease in levels of FSG, insulin
resistance, weight, and BMI in patients [8]. In a study of healthy Japanese women (n = 57),
plasma CGA showed a negative association with FSG, glycated hemoglobin, and CRP [63].

CGAs showed diverse effects on neuroprotection for neurodegenerative disorders
and diabetic peripheral neuropathy, mitigation of cardiovascular disorders, skin diseases,
diabetic mellitus, liver and kidney injuries, and anti-tumor activities (Figure 1). Mechanis-
tically, their anti-inflammation and anti-oxidation properties and metabolic modulations
underlie these pharmacological activities for protection against cell injuries, restoration of
cellular function, and maintenance of physiological and metabolic homeostasis (Figure 2),
which is discussed across various tissues and disorders in this review.

3. Cardiovascular Protective Effect

CGA can exert protective roles at multiple levels in various cardiovascular complica-
tions, including mitigating hypotension, improving endothelial cell function, alleviating
atherosclerosis, and ameliorating cardiomyopathy.

3.1. Hypotensive Effects (Figure 1C)

CGA can function as a hypotensive agent to lower blood pressure in a dose-dependent
manner in spontaneously hypertensive rats (SHRs) [64,65]. Mechanistically, CGA-mediated
vasodilation can occur through suppressing the activity of NADPH oxidase (NOX), in-
hibiting the generation of radical oxygen species (ROS), and increasing nitric oxide (NO),
thus mitigating endothelial dysfunction in SHRs [64]. Particularly, the nitric oxide syn-
thase (NOS), COX, and endothelium-derived hyperpolarizing factor (EDHF) pathways
are involved in CGA-mediated vasodilation [66]. Furthermore, HPT-related pathogenic
factors, including angiotensin-converting enzyme (ACE), arginase, and cholinesterase,
are suppressed in cyclosporine-induced HPT rats upon administration of CGA for one
week, suggesting the hypotensive and cardioprotective effects of CGAs [67]. Collectively,
CGAs can ameliorate HPT by enhancing vasodilation, mitigating endothelial dysfunction,
and reducing vascular remodeling triggered by hypoxia. The underlying mechanisms
are related to an elevation of EDRFs and associated enzymes (NO, PGI2, Ach, NOS, and
COX), suppression of oxidations (ROS and NOX) and vasoconstrictors (arginase, ANG II,
cholinesterase, and ACE), decrease in levels of hypoxia-inducible factor 1α (HIF-1α) and
phosphorylated c-Src, and an enhancement of Shc/Grb2/ERK1/2 signaling [2,64,66,67].
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3.2. Effects of Endothelial Protections and Anti-Atherosclerosis (Figure 1C)

CGA can inhibit the oxidation of LDL and the subsequent endothelial damage caused
by oxidized LDL (ox-LDL). CGAs can lower blood lipid levels [68–70]. CGA inhibits
Cu2+-induced LDL oxidation [71,72]. Paraoxonase 1 (PON1) is an esterase that inhibits the
formation of oxidized lipoproteins (ox-LDL and ox-HDL) [73]. CGA can protect PON1
from inactivation, thus suppressing the generation of ox-LDL [74]. CGA upregulates sir-
tuin 1 (SIRT1) and AMPK/PGC-1 activity, thus protecting mitochondrial function and
suppressing ox-LDL-caused endothelial injuries [75]. CGA suppresses the levels of tran-
sient receptor potential canonical channel 1 (TRPC1) and decreases ROS and Ca2+, thus
mitigating lysophosphatidylcholine (LPC)-induced endothelial injuries [76]. CGA protects
endothelial cells by reducing ROS, xanthine oxidase-1, and HOCl-induced oxidative dam-
age, enhancing superoxide dismutase (SOD), and producing NO and heme oxygenase
(HO)-1 [77,78]. CGA modulates mtROS/JNK/NF-κB signaling, thus inhibiting inflamma-
tion and regulating mitochondrial bioenergetics in hearts. Moreover, CGA can regulate
ankyrin-B levels as a cardiomyocytic defender [2].

CGAs can alleviate atherosclerosis by inhibiting endothelial damage, platelet–leukocyte
interactions, and the levels of adhesion molecules, as well as upregulating prometabolic
and antiplatelet pathways [2]. CGA inhibits adhesion molecules in early atherosclerosis,
including IL-1β and TNFα-induced vascular cell adhesion molecule-1, intercellular cell
adhesion molecule-1, and endothelial selectin; it also blocks α-glucosidase activities in hu-
man endothelial cells [79–81]. CGA suppresses hypoxia-induced HIF-1α-VEGF signaling,
thus blocking angiogenesis and mitigating atherosclerosis [82]. Furthermore, CGA can
inhibit VEGF-induced endothelial proliferation and migration by modulating VEGFR2,
ERK ½, and protein kinase B (Akt) signaling [83]. CGA prevents platelet aggregation in
the atherothrombotic process via the A2A receptor/adenylate cyclase (AC)/cAMP/protein
kinase A (PKA) pathway [84,85]. CGA (400 mg/kg/day) can decrease the lesional areas of
atherosclerosis in ApoE−/− mice by activating the PPARγ–liver X receptor α (LXRα)–ATP-
binding cassette transporter A1 (ABCA1) signaling [86,87].

3.3. Cardioprotective Effects (Figure 1C)

Myocardial injuries can be triggered by TNF-α signaling which is activated by MAPKs
such as p38 and JNK/SAPK and NF-κB pathways [88,89]. CGAs can regulate NF-κB and
PPARα pathways, lower HIF-1α expression, and suppress cardiac apoptotic signaling,
thus executing beneficial effects against cardiac hypertrophy and heart failure (HF) [2]. In
a transverse aortic constriction (TAC)-induced HF mouse model and a TNF-α-induced
pluripotent stem cell-derived cardiomyocyte injury model, CGA can inhibit NF-κB and
JNK pathways, exhibiting cardioprotection [90]. CGA inhibits cardiomyocytic hypertrophy
by upregulating IκBα and suppressing NF-κB to be translocated into the nucleus [91]. CGA-
enriched chrysanthemum extract (CME) prevents myocardial hypertrophy by targeting HIF-
1α and PPARα pathways in rats with renal hypertension and H9C2 cells with stimulation
of ANG II-hypoxia [92]. CGAs have been shown to effectively protect from peroxidation
of heart membranes and cardiac mitochondria [93–95]. Moreover, 3,5-di-CQA shows
inhibition of myocardial injuries through increasing the activity of phosphatidylinositol
3-kinase (PI3K)/Akt in tert-butyl hydroperoxide (TBHP)-treated H9C2 cells [96].

CGAs can mitigate the inflammations, oxidations, defects of mitochondrial respiration,
lysosomal dysfunction, and apoptosis, showing alleviative roles in multiple myocardial in-
farction (MI) models, including the animal models induced by ISO, left anterior descending
coronary artery (LAD), and carbon tetrachloride (CCl4), as well as LAD-induced myocar-
dial ischemia/reperfusion (I/R) senescence-accelerated prone 8 (SAMP8) mouse [97–101].
CGA-enriched extracts from Erigeron multiradiatus (Lindl.) Benth. inhibit NF-κB and JNK
activation and suppress myocardial leukocyte infiltration and inflammatory response,
thus alleviating acute MI in rats after a single administration intravenously (10, 20, and
40 mg/kg) [102].
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3.4. Human Subject Studies for Cardiovascular Protection

CGA could lower SBP and DBP in patients with mild hypertension [7,14,103,104].
For example, Kozuma et al. showed that daily oral ingestion of GCE (93 or 185 mg for 4
weeks) could lead to a reduction of 4.7 and 5.6 mmHg in levels of systolic blood pressure
(SBP) and a decrease of 3.3 and 3.9 mmHg in levels of diastolic blood pressure (DBP),
respectively, in patients with hypertension [7]. In a randomized trial in Japanese pa-
tients with mild essential hypertension (HPT), CGA (140 mg/day) for 12 weeks could
lower 10 mmHg of SBP and 6 mmHg of DBP [14]. Mild HPT patients taking CGA
(228 mg/day for 1 month) showed a reduction of 3.3 and 2.8 mmHg in levels of SBP
and DBP, respectively [104]. Ferulic acid is considered one of the active substances of
CGA for producing a strong hypotensive effect via muscarinic acetylcholine receptors after
short- and long-term ingestions [64,65]. In a clinical trial of patients with borderline or
stage 1 hypertension (n = 37), a single intake of coffee with a high content of CGAs and
low content of hydroxyhydroquinone (HHQ) significantly improved postprandial flow-
mediated vasodilation and decreased circulating 8-isoprostane levels, which was effective
for improving postprandial endothelial dysfunction [105]. A separate study showed that
healthy male adults with ingestion of CGA without HHQ for four weeks could significantly
increase postprandial fat oxidation and the ratio of postprandial biological antioxidant
potential (BAP) to the derivatives of reactive oxygen metabolites (d-ROMs) compared to
those with an intake of CGA with HHQ [106]. CGAs can incorporate specific phenolic
acids into LDL particles to lower the risk of their oxidations in human subjects [70,71,107].

In a randomized controlled trial, healthy adults with an 8-week consumption of
CGA-enriched coffee beverages showed a significant decrease in levels of twelve urine
oxylipins compared to the baseline. Oxylipins are generated during foam cell formation
in atherogenesis and thus are biomarkers for CVDs [108]. In a cohort of healthy subjects
(n = 25), the impact of consumption of coffee containing 787 mg or 407 mg CGAs on CVD
risk markers such as oxysterols and FFAs was assessed. Subjects with an intake of coffee
showed a decrease in oxysterols and FFAs and an increase in cholesteryl esters. While
subjects in the placebo group showed an elevation of oxysterols and FFAs and a reduction
in cholesteryl esters [109]. Healthy subjects with consumption of decaffeinated GCE (CGAs
accounting for about 51.2% constituents) showed an acute improvement in flow-mediated
dilation (%FMD) of the brachial artery [110]. A study from two randomized trials with
healthy male subjects (n = 15) showed that coffee intake could acutely improve human
vascular function, likely through 5-CQA and its physiological metabolites [111]. A higher
response of FMD induced by CGA-rich coffee was also reported in a study with 12 healthy
subjects [112]. Healthy adults with an intake of a coffee berry beverage (containing 440 mg
chlorogenic acid) could increase subjective energic arousal and hemodynamic responses
from cerebral blood flow compared with the baseline [113]. In a placebo-controlled double-
blind pilot study with healthy Japanese men (n = 16), subjects with the intake of GCE
showed significantly greater changes in cardio-ankle vascular index (CAVI) (e.g., increasing
FMD and decreasing sympathetic nervous activity) than those in the placebo group [114].
In a randomized, double-blind, placebo-controlled study, subjects (n = 50, BMI ≥ 25 to
<30 kg/m2) were given a nutraceutical containing CGA and luteolin extracts for 6 months.
Participants in the treatment group showed significantly decreased body weight, glycemic
and lipid parameters (TC, TG, LDL-c) as well as improved hepatic functionality, carotid-
media thickness (CIMT), and endothelial function compared to the subjects in the placebo
group [115]. In a separate study of subjects with metabolic syndrome (n = 50), a 6-month
intake of the same nutraceutical significantly improved hepatic and cardio-metabolic
parameters in the patients [116].

4. Mitigative Effects on Diabetes Mellitus (DM)

CGA has shown its functions in protecting β cells from apoptosis, improving β cell
function, facilitating glycemic control, and mitigating DM complications.
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4.1. Protective Effects on β Cells (Figure 1B)

CGA can competitively reduce α-amylase activity [81,117]. CGA shows inhibition on
porcine pancreatic α-amylase (PPA), PPA-I, and PPA-II [118]. CGA can enhance insulin
secretion in β cells and Langerhans from rat islets [119,120]. CGA can reduce obesity-related
insulin resistance in mice fed on HFD or high-fat milk, spontaneously obese mice, or rats
fed on HFD [121–123]. One mechanism underlying CGA’s effects on decreasing insulin
resistance and increasing insulin sensitivity is related to antioxidative stress. CGA reduces
levels of lipid hydrogen peroxide and increases plasma antioxidants such as glutathione
(GSH), vitamin C, vitamin E, and ceruloplasmin in DM model rats [124]. CGA scavenges
thiobarbituric acid reactive substances and hydroperoxide through upregulation of SOD,
catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione S-transferase (GST) in
the liver and kidney [125]. CGA suppresses inflammatory response by downregulation
of F4/80+ and CD68+ macrophages in the liver and white adipose tissues [121]. CGA
increases GSH and GSH-Px and reduces ROS, thus protecting β cells from exposure to
streptozotocin (STZ) [120]. In STZ-induced DM rats, CGA (5 mg/kg/day, 45 days) in com-
bination with tetrahydrocurcumin (80 mg/kg/day, 45 days) can mitigate the STZ-induced
aberrances of enzymes related to gluconeogenesis (G6Pase and fructose-1,6-bisphosphatase)
and glycolysis (glucokinase and hexokinase), thus lowering the levels of blood glucose
and glycosylated hemoglobin (HbA(1C)) and elevating the levels of insulin, C-peptide,
hemoglobin, and glycogen [126].

4.2. Mitigative Effects on DM Complications (Figure 1D)

CGA reduces glomerular hypertrophy and proliferation and mesangial cell expansions,
decreases kidney malondialdehyde (MDA) levels, increases antioxidants (such as SOD, CAT,
and GSH-Px), and reduces factors associated with oxidation and inflammation (such as IL-6,
TNF-α, COX-2, and IL-1β) in the kidney of a diabetic nephropathy rat model [127,128]. CGA-
containing extracts suppress vascular proliferation in kidneys induced by STZ and decrease
serum VEGF levels induced by HIF-1α in DM mice [129,130]. In a diabetic retinopathy rat
model, CGA shows restoration of the impaired tight junction protein occludin, mitigation
of aberrant retinal vascular permeability, and protection of the integrity of the blood–retinal
barrier [131]. In DM mice, CGA alleviates diabetic peripheral neuropathy (DPN)-induced
auditory dysfunction by functional restoration of cochlear hair cells and protection of the
external auditory canal [132]. CGA can relieve DM-induced neuropathic pain [133].

4.3. Human Subject Studies for Glycemic Control

CGA can attenuate FSG and insulin production in patients [57]. In a randomized,
double-blind, placebo-controlled crossover study to evaluate acute response, a one-time
intake of green tea catechins (GTC) together with coffee CGA significantly increased GLP-1
and decreased blood sugar levels and GIP secretion in healthy subjects compared with
the placebo group after consumption of a 75 g glucose load [134]. This data was echoed
by a related study showing that a three-week intake of GTC + CGA-enriched beverages
exhibited similar beneficial effects in postprandial glycemic control and diabetic preven-
tion [135]. In a cohort of subjects with prediabetic impaired fasting glucose (IFG), CGA-rich
Cynarascolymus (Cs) extracts (n = 27) or placebo (n = 27) were administered. The subjects in
the treatment group showed significant improvements in glycemic control, insulin sensitiv-
ity, and many metabolic parameters (TC, LDL-c, HDL-c, TG, ApoA, ApoB, and glycated
hemoglobin) [136]. In a randomized clinical trial in patients with metabolic syndrome,
participants with an intake of GCE (400 mg, twice per day, 8 weeks) significantly decreased
SBP, FBS, homoeostatic model of assessment of insulin resistance, waist circumference, and
appetite scores in comparison to those in the placebo group [8].

5. Hepatoprotection

CGA can mediate hepatoprotective roles in various pathological conditions of the
liver via antioxidant and anti-inflammatory features [4]. (1) It can inhibit TLR4-mediated
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activation of NF-κB, thus suppressing pro-inflammatory responses; (2) it can activate the
AMPK pathway to modulate metabolic homeostasis; (3) it can increase the activity of the
Nrf2 pathway, thus exerting antioxidant effects; and (4) it can inhibit caspases’ activation to
suppress hepatic apoptosis induced by chemicals or toxins.

5.1. Hepatoprotection from Metal-, Chemical-, Drug-, and Toxin-Induced Liver Injury (Figure 1E)

CGA can activate Nrf2 and inhibit the TLR4/NF-κB signaling cascade, reduce activities
of serum liver enzymes, oxidation, and inflammation, and alleviate liver injuries caused
by the following metals and chemicals: sodium arsenite [137], lead (Pb) [138], cadmium
(Cd) [139], aluminum chloride [140], polychlorinated biphenyls [141], TAA [142], carbon
tetrachloride (CCl4) [143], D-gal [144], L-carnitine [145], lipopolysaccharide (LPS) [146,147],
palmitic acid [148], and aflatoxin B1 [149].

CGA mitigates acetaminophen-induced hepatic injuries by inhibiting apoptosis and
oxidation, ameliorating liver inflammation, activating Nrf2, promoting mitophagy, and
suppressing activities of metabolic enzymes such as cytochrome P450 (CYP) [20,24,150–154].
CGA can ameliorate hepatotoxicity triggered by many other drugs including tamoxifen,
methotrexate, triptolide, and monocrotaline [155–158].

CGA can attenuate alcohol-induced pathologies such as steatosis, apoptosis, and
fibrosis by regulating CYP2E1/Nrf2 and TLR4/NF-κB [159], scavenging mitochondrial and
intracellular ROS [160], and facilitating n-butyric acid generation for homeostatic regulation
of the gut–liver axis [161].

5.2. Mitigative Effects on Metabolic-Associated Fatty Liver Disease (MAFLD) (Figure 1E)

CGA inhibits HMG-CoA reductase, thus reducing the quantity of palmitic acid, oleic
acid, or linoleic acid-induced large lipid droplets in the hepatic cell line HepG2 [162,163]. CGA
attenuates MAFLD in HFD mice by increasing the production of glucagon-like peptide-1,
reducing ER stress, suppressing mucosa barrier injury in the intestine, and inhibiting JNK
signaling, as a result of autophagic suppression and insulin-resistant mitigation [123,164,165].

CGA in combination with metformin [166] or geniposide [167–170] improves MAFLD
through multiple mechanisms. CGA combined with telmisartan improves rat MAFLD
caused by high fructose, possibly through suppressing sphingosine kinase 1 (SPHK-
1)/sphingosine-1-phosphate/TLR4 pathways [171]. Lipid metabolism is modulated by
CGA in combination with caffeine via the AMPKα-LXRα pathway in HFD-fed mice [172].
CGA alleviates liver inflammation during non-alcoholic steatohepatitis (NASH) progres-
sion by blocking the LPS-TLR4-MyD88 signaling pathway via direct binding to MyD88
and by activation of Nrf2/PPARα signaling [173].

In an α-naphthylisothiocyanate-induced mouse model with cholestatic liver injury,
CGA suppresses cell death and neutrophilic and monocytic infiltration and reverses dysreg-
ulated hepatocyte transporters and enzymes related to synthesis, uptake, metabolism, and
efflux of bile acids [43,174]. In a rat model of hepatic ischemia/reperfusion injury, CGA at-
tenuated liver damage by suppressing HMGB1/TLR-4/NF-κB signaling and mitochondria-
mediated apoptosis [175].

5.3. Mitigative Effects on Liver Fibrosis and Hepatocellular Carcinoma (HCC) (Figure 1E)

CGA attenuates Schistosoma japonicum cercaria-induced hepatic fibrosis in animals,
partially through regulating IL-13/miR-21/Smad7 [176]. CGA suppresses CCl4-induced
liver fibrosis by suppressing miR-21/TGF-β1/Smad7 signaling or inhibiting TLR4/NF-
κB signaling and stimulating the Nrf2 pathway [22,177,178]. In a methionine and choline
deficiency diet (MCDD)-caused nonalcoholic steatohepatitis (NASH) model, CGA increases
the biogenetics of mitochondria and suppresses the generation of extracellular matrix
triggered by HMGB1 in liver endothelial cells, thus attenuating liver fibrosis [179].

CGA suppresses HepG2 growth and HCC formation via inhibition of ERK1/2, matrix
metalloproteinase (MMP)-2/9, and DNA methyltransferase 1 [180,181]. CGA in com-
bination with protocatechuic acid forces HepG2 cells to enter apoptosis [182]. CGA in
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combination with caffeine and trigonelline can inhibit the tumorigenesis related to diethyl-
nitrosamine (DEN)/CCl4-caused liver fibrosis [183]. CGA can restore the disorganized gut
microbiota and aberrant metabolites in DEN/CCl4-caused HCC in animals [184].

5.4. Human Subject Studies for Hepatic Protection

In a clinical study with subjects with NDFLD in type 2 DM, neither CGA nor caffeine
showed significant effects on improving stiffness of the liver and other hepatic outcomes.
The TC was lower in the caffeine group and insulin was higher in the CGA plus caffeine
group than in the placebo group, respectively [185]. In a randomized controlled clinical
trial with HCC patients (n = 291) transcatheter arterial chemoembolization (TACE) therapy
was administered, with or without FZJDXJ, a Chinese medicine formulation, for 48 weeks.
The active ingredients of FZJDXJ included formononetin, CGA, caffeic acid, luteolin, gal-
lic acid, diosgenin, ergosterol endoperoxide, and lupeol, which might potentially target
AKT/CyclinD1/p21/p27 pathways. In addition, molecular docking showed that CGA
and gallic acid could effectively interact with the phosphorylation site Thr308 of AKT1.
FZJDXJ and TACE treatment significantly prolonged one-year overall survival (OS) and
progression-free survival (PFS) of patients compared with TACE treatment alone [186].

6. Neuroprotection

CGA has shown diverse neuroprotective effects on various neuropathological condi-
tions which may be exerted through inhibition of neuroinflammation, reduction in ROS
production, prevention of oxidation, and suppression of neuronal apoptosis [187–190].

6.1. Protective Effects against Neuronal Injury (Figure 1F)

CGA inhibits H2O2-induced apoptosis by blocking pro-apoptotic factors caspase-3
and pro-poly (ADP-ribose) polymerase (PARP) and upregulating anti-apoptotic factors
Bcl-2 and Bcl-X(L) in neuronal cells and PC12 cells [34,191]. CGA can reduce overactive
microglia-induced neuroinflammation in the cortex. CGA suppresses TNF-α secretion and
NO generation in LPS-stimulated primary microglia, increasing the survival of dopamin-
ergic neurons [192]. CGA counteracts the TNFα-activated NF-kB pathway in an immor-
talized human oligodendrocyte cell line M03-13 by suppressing intracellular superoxide
ions, mitochondrial ROS, and protein levels of NADPH oxidases (NOXs)/dual oxidase
2 (DUOX2) [193]. CGA protects cerebellar granule cells from NO-caused death in vitro [194].
CGA protects rat cortical neurons against glutamate-induced neurotoxicity and oxida-
tion [195] and prevents AMPA-induced neurotoxicity in oligodendrocytes derived from
the optic nerve through suppression of PKC and caspase-dependent signaling [196].

CGA and its metabolites are thought to be able to pass the blood–brain barrier (BBB)
and execute their impacts on the nervous system [197–200]. CGA attenuates methotrexate-
induced oxidative damage in rat cerebellum [201]. CGA inhibits cadmium-induced rat brain
damage via suppressing lipid peroxidation, increasing antioxidant activity, and attenuating
mitochondrial dysfunction and DNA breakdown [202]. It has demonstrated its protective
effects against scopolamine-induced amnesia in mice [203,204], alcohol-induced neuronal
injury in neonates [205], pilocarpine-induced oxidative stress [206], 3-nitropropionic acid-
caused neurotoxicity and genotoxicity [207], kainic acid-induced cytotoxicity and learning
and memory loss in mice [208], and L-buthionine-(S, R)-sulfoximine-caused oxidation in
mouse forebrain [209].

6.2. Mitigative Effects on Alzheimer’s Disease (AD) (Figure 1F)

CGA or extracts containing CGA can inhibit Aβ aggregation-caused cellular injury
in SH-SY5Y cells, a neuroblastoma cell line, and PC12 cells [210–213]. It suppresses the
Aβ1–42 self-induced aggregation in PC12 cells [213]. In Aβ-treated hippocampal neurons,
CGA increases survival and decreases apoptosis via decreasing activities of lactate dehy-
drogenase (LDH) and the levels of MDA and raising the levels of SOD and GSH-Px [214].
CGA facilitates Aβ clearance and cognitive improvement by enhancing the expression
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of hippocampal LDL receptor-related protein 1 and restoring perivascular deposition of
aquaporin 4 [215].

CGA prevents Aβ deposition and neuronal loss and ameliorates learning and memory
deterioration in APP/PS2 mice [216]. CGA restores spatial learning and memory in SAMP8
mice, a mouse model showing plaques with Aβ depositions and age-related cognitive
defects [217]. CGA inhibits acetylcholinesterase (AChE) activity in rat brains, suggesting
its beneficial effect against cognitive impairment [218,219]. Molecular docking simulations
suggest that CGA can bind towards AChE [220]. CGA inhibits AChE, decreases the
hippocampal and frontal cortical levels of MDA, and improves the deteriorated short-term
or working memory and defective cognition induced by scopolamine, a muscarinic receptor
antagonist [203].

6.3. Mitigative Effects on Parkinson’s Disease (PD) (Figure 1F)

CGA has demonstrated preventative effects against PD. CGA improves the decrease in
α-synuclein-induced cell viability and blocks the interplay between oxidized dopamine and
α-synuclein [221]. CGA attenuates the 6-OHDA-caused apoptosis of SH-SY5Y cells [222,223].
CGA combined with caffeic acid prevents rotenone-caused Parkinsonian pathology in
nigral dopaminergic and intestinal enteric neurons [224]. CGA enhances the expression of
tyrosine hydroxylase and anti-inflammatory cytokine IL-10 and reduces the drug-induced
neuroinflammatory factors such as IL-1β, TNF-α, and NF-κB in substantia nigra [192,225].
CGA inhibits the activation of pro-apoptotic proteins including Bax and caspase-3 and
elevates the levels of anti-apoptotic factors such as Bcl-2 [226].

6.4. Effects on Ischemia-Induced Brain Injury (Figure 1F)

CGA protects against injury caused by cerebral ischemia/reperfusion [227]. It can
decrease mortality [228], increase neurological deficit scores [228,229], mitigate sensory–
motor functional deficits [198], attenuate infarct volume [198,228–230], reduce neuronal
loss [231–233], suppress brain edema [198,229,230], decrease BBB injury [198,230], and
ameliorate ischemia-induced cognitive deficits [229,232,233]. The mechanisms underlying
CGA-mediated protection from ischemia-induced brain injury are as follows: (1) It up-
regulates the activity of SOD2 and GSH and suppresses ROS generation, LDH secretion,
and MDA elevation through the Nrf2 pathways [229,232,233]; (2) It decreases the ischemia-
induced pro-inflammatory factors such as TNF-α and IL-2 but increases anti-inflammatory
cytokines such as IL-4 and IL-13 [230,233]; (3) It inhibits apoptotic markers such as caspase-
3 and increases anti-apoptotic factors such as Bcl2 in ischemia [229,230,232]; (4) It facilitates
the expression of neurotrophins such as BDNF and NGF for neuronal repair in response
to cerebral ischemia/reperfusion [228,229]; (5) It decreases the expression of metallopro-
teinases such as MMP-2 and MMP-9 for protection of BBB integrity in the cerebral ischemia
brain [198]; and (6) It increases endothelial marker CD31 but decreases endothelin-1 to
improve from vascular damage [232].

6.5. Effects on Cognitive Function (Figure 1F)

CGA protects against anxiolytic and depressive processes in a mouse model of anxi-
ety [234]. CGA improves cognitive impairments in sleep-deprived mice via immunomodu-
latory effects and gut microbial metabolic modulation. The potential contributive mecha-
nism was Nrf2/PPAR activation [235]. CGA attenuates the polarization of macrophages
and alleviates cognitive impairments in an LPS-induced neuroinflammation mouse model
by targeting the TNFα signaling pathway [236]. CGA improves memory dysfunction and
attenuates frontal cortex inflammation in diabetic rats [237]. Dried loquat fruit extract
containing CGA improves corticosterone-induced depression-like behaviors in mice [238].

6.6. Modulation of Neuropathic Pain (Figure 1F)

Neuropathic pain is related to immunomodulation and inflammatory response [18].
CGA shows antinociceptive efficacies in pains related to tonic and inflammations and
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chronic neuropathy [133,239–241], which may be a result of CGA’s anti-inflammatory activi-
ties on suppression of peripheral release of many pro-inflammatory factors, including TNF-α,
NO, and ILs [239,242,243]. Oxidative stress involves all stages of neuropathy and its related
pain since free radicals are key mediators causing peripheral nerve injury [244,245]. Data
have demonstrated that ROS is a crucial contributor to the development of neuropathic
and inflammatory pain [246–250], which can be attenuated by various phenolic antioxi-
dants [251–253]. CGA has strong antioxidant activities for scavenging free radicals such as
ROS [254]. It is reasonable to posit that CGA can reduce neuropathic pain by scavenging
ROS.

CGA-enriched herb extracts execute antinociceptive actions in various animal mod-
els [255,256]. Acidosis-induced and trigeminal nociceptive pain can be reduced by
CGA [257,258]. CGA can suppress the inflammatory cascade and decrease mechanical and
cold hyperalgesia in the rat model of chronic constrictive nerve injury (CCI) [240,241]. The
underlying mechanism is probably realized through facilitating the activation of gamma-
aminobutyric acid A (GABAA) receptors in the spinal cord, a major inhibitory neuronal
transmission for pain modulation [259,260] (Figure 2E). However, CGA seems ineffective
in mitigating acute pain [133].

CGA may directly act on ion channels related to neuropathic pain for its mitigative
effects. For example, voltage-gated potassium channel subfamily A member 4 (Kv1.4),
which is specifically expressed in nociceptive sensory neurons in small diameters (Aδ and C
fibers), is involved in neuropathic pain when its function is suppressed [261,262]. Kv activi-
ties are upregulated by CGA in trigeminal ganglions on the basal level and PGE2-induced
inflammations [263,264], leading to an attenuation of neuronal excitability-related pain
induction [264–267] (Figure 2E). Furthermore, CGA can suppress acid-sensing ion channels
in sensory ganglions [257,268], presenting another potential peripheral antinociceptive
pathway.

6.7. Human Subject Studies for Neuroprotection

Several studies show that regularly prolonged intake of CGA has positive effects on
cognitive function in humans [269–271]. In a cohort of healthy subjects with self-description
of memory decline (n = 38, 50–69 years old), individuals were given a CGA-enriched
beverage or placebo for 4 months. The data showed that CGA improved some categories of
cognitions (such as attention shifting, function of execution, and motor and psychomotor
speed) and increased plasma levels of early cognitive impairment biomarkers such as
apolipoprotein A1 and transthyretin [270]. In another cohort of the elderly with subjective
memory complaints (n = 8), subjects were administered CGA (330 mg) for 6 months, and
similar improvements were observed including memory for composition and verb use,
cognition of flexibility, function of execution and attention, and motor speed. Furthermore,
there were reductions in the plasma levels of Aβ42 and Aβ42/Aβ40 and an increase in the
plasma level of dehydroepiandrosterone sulfate [271]. In a recent randomized controlled
trial on 34 individuals with mild cognitive impairment who were administered two periods
of CGA (554 mg of CGA or placebo, twice/day) for 3 months with a monthly interval,
data showed improvements in cognitive functions, especially attention and executive
function [269]. In a randomized, double-blind, placebo-controlled crossover study, healthy
humans with consumption of CGA-enriched coffee berry extracts increased arousal, but
limited cognitive effects were observed [272]. Ingestion of CGA (600 mg) over 5 days
in healthy subjects (n = 9) shortened sleep latency without effects on sleep architecture,
enhanced parasympathetic activity, and increased fat oxidation during sleep [273].

7. Anticancer Effect

CGA has the role of an anticancer agent in various types of cancer cells by arresting
cell proliferation, promoting apoptosis, and facilitating intracellular DNA impairment [13]
(Figure 1G).
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7.1. Breast Cancer

CGA exhibits cytotoxicity in breast cancer cell lines such as MCF-7 with an IC50
of 127 µM, resulting in DNA injury, cell cycle stall, and apoptosis [274,275]. A possible
mechanism is that CGA can bind to PKC in the cytosol and translocate it to the plasma
membrane, thus disturbing the cell cycle, arresting cells at the G1, and reducing cells in the
S phase [274]. CGA shows cytotoxicity on breast cancer cell lines such as MDA-MB-231,
MDA-MB-453, and 4T1 in dose- and time-dependent manners through downregulation
of NF-κB pathway [276]. It also modulates the epithelial–mesenchymal transition (EMT)
process of breast cancer cells by downregulation of N-cadherin and upregulation of E-
cadherin [276]. In a breast cancer cell-bearing BALB/c mouse model, CGA suppresses
tumor growth by increasing the expression of p53, Bax, and the ratio of Bax/Bcl-2 [276,277].

7.2. Colorectal Cancer

CGA can stall the cells in the S phase and cause DNA injury in human colon cancer
cell lines such as HCT116 and HT29 by increasing ROS production, upregulation of phos-
phorylated p53, HO-1, and Nrf2 [278]. CGA activates the mitochondrial apoptotic pathway
in cancer cells by showing DNA breakdown, cleavage of pro-caspase-9 and PARP-1, and
upregulation of Bax and the Bax/Bcl-2 ratio [279]. CGA and its metabolites can increase
the levels of pro-caspase-3 and activated caspase-3 in human colon cancer cell lines such as
Caco-2 [280]. CGA combined with lactoferrin arrests SW480 cells at the G0/G1 phase and
decreases cell viability [281].

7.3. Esophageal Cancer

Evidence reveals that CGA can suppress proliferation and colony formation on many
esophageal cancer cell lines such as KYSE30/70/140/150/180/510 [282]. In esophageal
cancer cell line-bearing non-obese diabetic (NOD)/severe combined immunodeficiency
disease (SCID) mouse models, CGA (50 mg/kg) inhibits the propagation and size of the
tumor and reduces esophageal hyperplasia, thus extending mouse lifespan. CGA decreases
expressions of survivin and SOX2 in esophageal squamous carcinoma [282].

7.4. Leukemia

CGA (10–25 µg/mL) causes the apoptosis of Bcr-Abl+ leukemia cell lines by an in-
crease in intracellular H2O2, O2

− and levels of caspases, as well as PARP degradation and
suppression of p-STAT-5 and p-CrkL [283]. Similar results have been reported in U937 and
HL-60 leukemia cells. CGA (50–200 µM) facilitates cancer cell death through the induction
of ROS and activation of caspase-dependent signaling, leading to reduction in membrane
potentials of mitochondria, DNA damage, and apoptosis [284,285].

7.5. Lung Cancer

CGA (2–50 µM) can suppress the progression of human lung cancer cell line A549 by
increasing the levels of annexin-V, Bax, and CASP3, activating p38 and Jun, and decreasing
Bcl-2 and tumor stem cell markers including NANOG, POU5F1, and SOX2, indicating
multiple kinase pathways and ROS signaling underlying CGA-mediated anti-lung cancer
activity [286]. This finding has been echoed by in vivo experiments using an A549-bearing
nude mouse (BALB/c) model, in which CGA (120 mg/kg) reduces their tumor mass and
size by binding with annexin A2 and inhibiting the expression of NF-κB downstream
antiapoptotic genes, thus suppressing cancer cell growth and migration [287].

7.6. Melanoma

CGA (1–1.5 mM) reduces the growth of melanoma C32 cells by increasing the expres-
sion of antioxidant molecules such as SOD and GSH-Px, thus decreasing oxidation [288].
CGA prevents B16F10 melanoma cell proliferation by facilitating the tumor-associated
macrophage (TAM) polarization from M2 to M1. CGA with an anti-PD1 antibody can
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decrease the CD4+ Foxp3+ T cell ratio and increase the CD8+ T cell ratio, leading to an
enhancement of immunotherapeutic activity in vivo [289].

7.7. Brain Glioma

CGA (0.5–5 µM) downregulates the macrophagic STAT−1 and STAT-6, leading to the
apoptosis and proliferation stall of glioma cells (U87) [290]. In G422 cancer cell-bearing
mice, CGA (20 or 40 mg/kg) decreases tumor mass by increasing M1 TAM and suppressing
M2 TAM [291]. In glioma C6 cell-bearing Kunming mice, CGA treatment reduces tumor
area and prolongs the median survival time of mice [292]. CGA (200 µM) can show
neuroprotection of the bortezomib-caused neurite injury and loss of cell volume, which is
also confirmed in neuroblastoma SH-SY5Y and rat dPC-12 cells [293].

7.8. Osteosarcoma

CGA reduces the proliferation of osteosarcoma cell lines such as U2OS, MG-63, and
Saos-2 by increasing the activity of caspase-3, caspase-7, and PARP, and inducing apoptosis
through the blockage of the STAT3/Snail pathway [294,295]. CGA in combination with
doxorubicin suppresses cellular metabolic activity, colony formation, and cell growth of
U2OS and MG-63 cells by upregulating caspase-3 and PARP and suppressing the p44/42
MAPK pathway, thus inducing apoptosis [296].

7.9. Pancreatic Cancer

CGA (100–300 µM) can stall cells at the G2/M phase and suppress cell proliferation and
colony formation of pancreatic carcinoma cells (PANC-1), which can be synergically enhanced
in combination with thermal cycling hyperthermia (TC-HT) (10 cycles) with or without a
low-intensity pulsed electric field (LIPEF) [297,298]. The underlined mechanism involves
CGA-mediated excessive ROS production, causing mitochondrial dysfunction, leading to
increases in cleaved levels of caspase-3, caspase-9, PARP, and Bax/Bcl-2 ratio [297,298]. These
data are further validated by in vivo experiments showing that CGA can reduce tumor
growth and volume in pancreatic cancer cell-bearing nude mice by modifying cancer cell
metabolism through decreasing levels of cyclin D1, c-Myc, and cyclin-dependent kinase-2
(CDK-2), interrupting mitochondrial respiration, and suppressing aerobic glycolysis [299].

7.10. Prostate Cancer

CGA arrests cells at the phase of G1 and inhibits cell viability of prostate cancer cell
DU145 by suppressing the levels of HIF-1α and SPHK-1, PCNA, cyclin-D, CDK-4, p-Akt,
p-GSK-3β, and VEGF [300].

7.11. Renal Cell Carcinoma (RCC)

CGA (IC50 40 µM) selectively suppresses cell proliferation and colony formation of
human RCC A498 cells but without effects on human embryonic kidney (HEK293) cells
through upregulation of cleaved levels of caspase-3, caspase-9, and PARP and the ratio of
Bax/Bcl-2 and inhibition of the PI3K/Akt/mTOR pathway [301].

7.12. Human Subject Studies for Cancer Management

In an open-label, dose-escalation phase I trial on patients with recurrent high-grade
glioma after standard-of-care treatments (n = 26), CGA was intramuscularly injected into
patients once daily for 28 days. The median OS after CGA treatment was 11.3 months,
which showed a prolonged trend as compared with the median OS (5.7 to 7.5 months) for
patients in similar stages under standard-of-care therapeutics [302].

8. Skin Protection

CGA has shown diverse dermal protective roles in various skin conditions such
as anti-UV-induced photoaging, promoting skin slap survival, improving skin barrier
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function, mitigating systemic lupus erythematosus (SLE)-like symptoms, and suppressing
melanogenesis.

8.1. Dermal Protection against Skin Pathologies (Figure 1H)

(1) CGA shows anti-inflammatory and antiaging effects by inhibiting UVA-activated
TGF/Smad2/3 signaling, decreasing ROS, pro-inflammatory factors IL-1β and TNF-a,
reducing apoptosis and necrosis, attenuating DNA damage, promoting cell repair, and in-
creasing synthesis of collagens in dermal fibroblasts [303,304]; CGA ameliorates
deoxynivalenol-induced dermal injury by activating Nrf2 and inhibiting MAPK/NF-
kb/NLRP3 pathways [305]; (2) CGA promotes skin flap survival in rats by downregulating
MDA and NO, upregulating GSH and SOD, and elevating VEGF expression and capillary
density, leading to blood perfusion [306]; (3) CGA restores the epidermal skin barrier by
upregulation of filaggrin, involucrin, and envoplakin and induction of diverse responses of
cytokines in epidermal keratinocytes [307]; (4) CGA has anti-acne vulgaris effects. CGA
rescues P. acnes-induced skin lesions in ears including redness, swelling, and erythema,
downregulates the levels of pro-inflammatory factors by suppressing NF-κB signaling,
and inhibits lipogenesis by attenuating AKT/mTOR/SREBP signaling [308]; and (5) CGA
relieves SLE-like skin lesions. CGA down-regulates IL-17 levels, mitigates SLE-caused
injuries in the skin and mucous membranes, and improves arthritis-like syndromes in
MRL/lpr mice [309]; (6) CGA-containing hydrogel promotes the formation of microvessels
from HUVEC cells and proliferation of HaCAT cells. In a skin-wound rat model, CGA
hydrogel facilitates the wound-healing process by modulating macrophage polarization,
alleviating the production of pro-inflammatory cytokines, enhancing collagen deposition,
and increasing the expression of CD31 and VEGF [310].

8.2. Anti-Melanogenesis Effects (Figure 1H)

In melanoma B16 cells, CGA likely acts on melanin as a substrate, but its metabolites
may inhibit melanogenesis by suppressing tyrosinase activity [311]. CGA and caffeic acid
derivatives inhibit melanocyte-stimulating hormone (α-MSH)-induced melanogenesis [312–
314]. CGA binds to tyrosinase. The molecular docking simulation of CGA on tyrosinase
shows the binding energy of −4.59 kcal/mol through interactions with ARG 321 and ARG
374 residues of tyrosinase. Therefore, CGA has the potential as an anti-hyperpigmentation
agent through the inhibition of tyrosinase [315].

8.3. Human Subject Studies for Skin Protection

In a randomized, double-blind, controlled clinical study, subjects (n = 46) were administered
jujube syrup containing gallic acid (1140 ± 17.65 µg/mL) and CGA (1520 ± 25.77 µg/mL) or
placebo (23 in each group) twice a day for 8 weeks. The number of facial pigment spots
and pigmented areas and percentages were significantly lower in the participants taking
jujube syrup than in those in the placebo group [316]. In a double-blind, placebo-controlled
study, female subjects with mildly xerotic skin (n = 49) were given a beverage containing
coffee polyphenols (CPPs) (270 mg/100 mL/day) or placebo for 8 weeks. The intake of
CPPs improved skin barrier and microcirculatory functions by lowering skin dryness,
transepidermal water loss, and skin surface pH, increasing free fatty acids and lactic acid
in the stratum corneum, and promoting skin blood flow [317].

9. Antiviral and Antimicrobial Effects

CGA exerts diverse functions against pathogen infection and its related inflammation.
The viruses in which CGA has shown inhibitory roles include HBV, sowbane mosaic virus,
potato virus X, alfalfa mosaic virus, HSV, adenovirus, avian influenza virus, etc. CGA also
has shown its anti-bacterial and anti-fungal effects.
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9.1. Anti-HBV Effects (Figure 1I)

CGA and its metabolites (caffeic acid and quinic acid) exhibit anti-HBV effects. People in
northern European countries with greater coffee consumption exhibit a lower rate of HBV
infection than the Chinese population, among which the prevalence of HBV infection is
approximately 7% [318,319]. Hepatitis B chronic carriers with moderate coffee intake reduce
the susceptibility of HCC [320]. The IC50 of CGA on HBV DNA is about 1.2 ± 0.4 µM.
The IC50s of caffeic acid on secretion of HBsAg and HBeAg are about 12.7 ± 9.9 µM and
109.3 ± 56 µM, respectively [319,321,322]. CGA mitigates hepatic inflammatory response
and fibrotic formation via suppressing TLR-4 signaling [323]. CGA and its hydrolysates can
suppress pathogenetic progression toward liver cancer via inhibition of MMP-9, a crucial
factor involving the development of human HCC induced by HBV [324,325].

9.2. Inhibitory Effects against Other Viruses (Figure 1I)

CGA and its metabolites have anti-viral effects on sowbane mosaic virus, potato
virus X, and alfalfa mosaic virus [326]. CGA and caffeic acid show strong inhibitory
effects against herpes virus HSV-1 (EC50 = 15.3 µg/mL, SI = 671), HSV-2
(EC50 = 87.3 µg/mL, SI = 118), adenovirus-3 (ADV-3) (EC50 = 14.2 µg/mL, SI = 727),
and ADV-11 (EC50 = 13.3 µg/mL, SI = 301) [327]. CGA and its derivatives have effects
against avian influenza virus (H5N1) [328]. The cytopathogenic effect (CPE) inhibitory
concentration of CGA for HSV-1 in MDBK cells and RNA virus parainfluenza (type-3)
(PI-3) in Vero cells is about 3.2 ug/mL [329].

9.3. Inhibitory Effects against Bacteria and Fungi (Figure 1I)

The minimal inhibitory concentration (MIC) of CGA ranged from 4 to 16 ug/mL for
ATCC stains and from 64 to 128 ug/mL for their corresponding isolated ESµL+ strains
(E. coli, P. aeruginosa, P. mirabilis, K. pneumoniae, A. baumannii, S. aureus, E. faecalis, and
B. subtilis) [329]. The MICs of CGA for fungi C. albicans and C. parapsilosis were 8 and
16 ug/mL, respectively [329].

9.4. Anti-Allergic Effect

CGA reduces the allergic response induced by shrimp food in mice, likely by suppress-
ing Acetyl-CoA carboxylase (ACC) and increasing carnitine palmitoyltransferase-1 (CPT-1)
and AMPK and ACC phosphorylation [330].

10. Extending Lifespan in Worms

CGA reduces the generation of ROS in worms and increases their lifespan through the
DAF-16/FOXO and Nrf2/SKN-1 signaling axis under normal conditions or in challenge to
oxidation [331]. CGA can prolong about 20.1% of C. elegans’ lifespan by attenuating the age-
associated decrease in body mobility and enhancing stress challenge via DAF-16-regulated
insulin/IGF-1 signaling [332]. CGA prolongs about 24% and 9% of the lifespans of DAF-
16a- and DAF-16f-rescued worms, respectively, through the activation of Nrf2/SKN-1 [333]
(Figure 1J).

11. Other Protective Roles of CGA
11.1. Lung Protective Effects

CGA counteracts paraquat-induced oxidative, fibrotic, and inflammatory injuries
to the lungs in rats [334]. KAT2A is the crucial regulatory gene for the expression of
pro-inflammatory factors. CGA acts as a KAT2A inhibitor, attenuating the acute lung
inflammation and improving the impaired respiratory function in a mouse model of
LPS-induced acute lung injury [335]. In LPS and polyinosinic:polycytidylic acid (POLY
I:C)-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) models,
CGA counteracts the inflammatory and oxidative stress in human airway epithelial cells
and in BALB/c mice through targeting the TLR4/TLR3/NLRP3 inflammasome axis [336].
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11.2. Intestinal Protective Effects

CGA alleviates intestinal inflammation and injury in broilers induced by necrotic
enteritis challenge through suppressing the mtDNA-cGAS-STING signaling pathway [337].
In a rat model of post-infectious irritable bowel syndrome (PI-IBS), rectal application of
CGA ameliorated PI-IBS-related pathologies, probably by increasing glycine levels and
modulating gut microbial-released extracellular vesicles [338].

11.3. Ovarian Protective Effects

CGA significantly counteracts oxidative stress, pro-inflammatory, and pro-apoptotic
markers in cisplatin (CDDP)-induced ovarian damage in rats [339]. CGA mitigates symp-
toms in patients with polycystic ovarian syndrome (PCOS) and improves follicular devel-
opment, hormone status, and oxidative stress in PCOS rats, likely through modulating
HIF-1alpha signaling [340].

11.4. Human Subject Studies for Menopausal Symptom Management

In a randomized, placebo-controlled, double-blind, parallel-group trial with healthy
women (n = 82), the effects of CGAs on menopausal symptoms were examined. The subjects
were administered CGAs (270 mg) or the placebo for 4 weeks. CGAs significantly decreased
the modified Kupperman index of menopausal symptoms and reduced the number of
hot flushes, the severity of hot flushes during sleep, and the severity of daytime sweats
compared to the placebo group. No adverse effects were observed in the CGAs group [341].

12. Summary

CGA shows diverse pharmacological effects and acts through multidimensional scien-
tific domains. The mechanistic hubs underlie its integrative functions of anti-inflammation,
antioxidation, and modulation of metabolic homeostasis (Figure 1, Table 1). First, CGA
can curtail NF-κB, JAK, and MAPK pathways, stalling the production of predominant
pro-inflammatory factors including TNF-α, NO, COX-2, PGE2, and ILs. It can contain and
thwart inflammatory pathway constituents at multiple levels by counteracting primordial
inflammatory factors, attenuating inflammatory propagation, and impeding inflammation-
related tissue injury. Second, CGA concurrently elevates multiple pivotal antioxidant
factors such as HO-1 and NOQ-1 via Nrf2-dependent or independent pathways, leading
to scavenging excessive cellular free radicals. Third, it can regulate and help maintain the
metabolic homeostasis of lipids and glucose through the activation of the AMPK pathway,
modulating glucose release and absorption and lipid synthesis. Fourth, CGA exhibits
neuromodulation by targeting multiple neuroreceptors and channels such as GABA recep-
tors, potassium channels, and acid-sensing ion channels, achieving antinociceptive effects
(Figure 2, Table 1).

Table 1. A summary of the potential mechanisms underlying CGA’s pharmacological activities and
related experimental models.

Pathological
Conditions/Organs Pharmacological Effects Experimental Models Potential Signaling

Pathways/Targets
Compound/Natural

Sources

Aging
Mitochondria protection
and increasing lifespan
(Section 10)

C. elegans [332,333]

DAF-16-regulated
insulin/IGF-1 signaling
[332]; activation of
Nrf2/SKN-1 [333]

CGA

Cardiovascular system Hypotensive effect
(Section 3.1)

SMCs, SHRs, and
cyclosporine-induced
hypertensive rats [64–67]

Elevation of EDRFs,
suppression of oxidations
and vasoconstrictors,
decrease HIF-1α and an
enhancement of
Shc/Grb2/ERK1/2
signaling [2,64,66,67]

CGA, GCE
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Table 1. Cont.

Pathological
Conditions/Organs Pharmacological Effects Experimental Models Potential Signaling

Pathways/Targets
Compound/Natural

Sources

Cardiovascular system

Patients with mild
hypertension
[7,14,103,104]; patients
with borderline or stage 1
hypertension [105];
healthy male adults [106]

Targeting muscarinic
acetylcholine receptors
[64,65]

CGA; CGA plus HHQ

Endothelial protection and
anti-atherosclerosis
(Section 3.2)

EC injuries [75,76,79–81];
atherosclerosis and HFD
rat [68–70]; macrophages
and ApoE−/− mice
[73,86,87]

Upregulating SIRT1 and
AMPK/PGC-1 activity
[75] suppressing
mtROS/JNK/NF-κB and
HIF-1α-VEGF signaling
[2,82] regulating A2A re-
ceptor/AC/cAMP/PKA
pathway [84,85];
activating
PPARγ–LXRα–ABCA1
signaling [86,87]

CGA; extract of Crataegus
pinnatifida Bge. var. major
N.E.Br. fruit

Cardioprotection
(Sections 3.3 and 3.4)

H9C2 cells; [96] MI animal
models induced by ISO,
LAD, and CCl4, and
LAD-induced myocardial
I/R SAMP8 mouse
[97–101]

Suppressing NF-κB and
JNK pathways, regulating
PPARα and PI3K/Akt
pathways, lower HIF-1α
expression, and
suppressing cardiac
apoptotic signaling
[2,90–92,96]

CGA; CGAs-enriched
chrysanthemum extracts;
CGA-enriched extracts
from Lindl. Benth.

healthy adults [108–114];
subjects with metabolic
syndrome [115,116]

n.a.

CGA-enriched coffee
beverages; nutraceutical
containing CGA and
luteolin extracts; GCE

Inflammation and
oxidation

Anti-inflammatory and
oxidative effects
(Sections 2.1 and 2.3)

Macrophage [32]; 3T3-L1
cells [27]; carbon
tetrachloride or
acetaminophen-induced
liver injury in mice
[20,23,24] Weaned Pigs,
LPS-induced mice, I/R rat
liver injury, endotoxic
shock-induced acute liver
injury [28,30,31,33]

Suppressing TLR4, TNF-α,
NF-κB, and MAPK
pathways [28–31];
activation of
CD36/AMPK/PGC-1α
[32] and Nrf2 signaling
[20,34–37]

CGA; Taraxacum
officinale root

Healthy postmenopausal
women [55]; healthy
subjects [56]

n.a.

Bioactive yogurt
containing curcumin and
CGA; polyphenol-rich
beverage

Liver
Protection of the liver
from injuries (5.1)

Metals, chemicals, and
toxins: sodium arsenite
[137], Pb [138], Cd [139],
aluminum chloride [140],
polychlorinated biphenyls
[141], TAA [142], CCl4
[143], D-gal [144],
L-carnitine [145], LPS
[146,147], palmitic acid
[148], and aflatoxin B1
[149]

Activating the Nrf2
pathway, promoting
mitophagy, and
suppressing the
TLR4/NF-κB pathway
[20,24,150–159]

CGA
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Table 1. Cont.

Pathological
Conditions/Organs Pharmacological Effects Experimental Models Potential Signaling

Pathways/Targets
Compound/Natural

Sources

Decreasing NAFLD injury
(Sections 5.2 and 5.4)

Hepatic cell line HepG2
[162,163]; HFD mice
[123,164,165];
α-naphthylisothiocyanate-
induced mouse model
with cholestatic liver
injury [43,174]; rat model
of hepatic
ischemia/reperfusion
injury [175]

Inhibiting JNK signaling
[123,164,165]; blocking the
LPS-TLR4-MyD88
signaling pathway and
Nrf2/PPARα signaling
[173]; suppressing
sphingosine kinase
1/sphingosine-1-
phosphate/TLR4
pathways [171];
suppressing
HMGB1/TLR-4/NF-κB
and
mitochondria-mediated
apoptosis [175]

CGA, CGA in combination
with metformin or
geniposide or telmisartan

Human subjects with
NDFLD in type 2 DM
[185]

n.a. CGA, CGA plus coffeine

Mitigation of liver fibrosis
and HCC (Sections 5.3
and 5.4)

Schistosoma japonicum
cercaria-induced hepatic
fibrosis [176];
CCl4-induced liver
fibrosis [22,177,178];
DEN/CCl4-caused HCC
[184]; diethylnitrosamine
(DEN)/CCl4-caused liver
fibrosis [183]

Regulating
IL-13/miR-21/Smad7
[176]; suppressing
miR-21/TGF-β1/Smad7
signaling or inhibiting the
TLR4/NF-κB signaling
and stimulating the Nrf2
pathway [22,177,178]

CGA; CGA with
protocatechuic acid; CGA
plus caffeine and
trigonelline

HCC patients [186]
Targeting
AKT/CyclinD1/p21/p27
pathways [186]

FZJDXJ (formononetin,
CGA, caffeic acid, luteolin,
gallic acid, diosgenin,
ergosterol endoperoxide,
and lupeol)

Glucose and lipid
metabolism

Metabolic homeostasis
modulation (Sections 2.2
and 2.3)

HFD mice [52]; HFD
golden hamsters or rats
[50,51]

Activation of AMPK
pathways [4] CGA; GCE

Patients with IGT [57];
healthy subjects [58,61];
overweight dyslipidemic
subjects [59];
hypercholesterolemic
subjects [60]; overweight
subjects [62]; patients with
metabolic syndrome [8]

n.a.

CGA; cooked ham
(22.5 mg CGA/100 g
cooked ham);
nutraceutical (containing
bergamot, phytosterols,
vitamin C, and CGA);
green/roasted (35:65)
coffee; coffee; GCE

Nervous system

Protection of neuronal
injury (Section 6.1)

Neuronal cells and PC12
cells [34,191];
oligodendrocyte [196] and
OL cell line M03-13 [193].
granule cells [194]; rat
cortical neurons [195]

Suppression of
TNFα/NF-kB [193] and
PKC and
caspase-dependent
signaling [196]

CGA

Neuronal protection in
AD and PD (Sections 6.2
and 6.3)

SH-SY5Y cells and PC12
cells [210–213]; APP/PS2
mice [216]; SAMP8 mice
[217]; molecular docking
[220]

Inhibition and binding to
AChE [218–220]; blockage
of the interplay between
oxidized dopamine and
α-synuclein [221];
anti-apoptotic pathways
[226]

CGA; CGA combined
with caffeic acid



Nutrients 2024, 16, 924 20 of 36

Table 1. Cont.

Pathological
Conditions/Organs Pharmacological Effects Experimental Models Potential Signaling

Pathways/Targets
Compound/Natural

Sources

Nervous system

Decreasing
ischemia-induced brain
injury (Section 6.4)

Cerebral I/R rat models
[229,232,233]

Activation of Nrf2
pathways [229,232,233];
Inhibition of the TNF-α
pathway [230,233] and the
apoptotic pathway
[229,230,232]; decrease in
the expression of
metalloproteinases such as
MMP-2 and MMP-9 [198]

CGA

Cognitive improvement
(Sections 6.5 and 6.7)

Mouse model of anxiety
[234]; sleep-deprived mice
activation [235];
LPS-induced
neuroinflammation mouse
model [236]; diabetic rats
[237];
corticosterone-induced
depression-like mice [238]

Activation of Nrf2/PPAR
[235]; inhibition of the
TNFα signaling pathway
[236]

CGA

Healthy subjects with
mild cognitive impairment
[269–271]; healthy subjects
observed [272,273]

n.a. CGA; CGA-enriched
coffee berry extracts

Neuropathic pain
(Section 6.6)

A chronic inflammatory
pain model of mice and
carrageenan-induced rat
hind paw edema [255,256];
rat model of CCI [240,241];
trigeminal ganglion
inflammations [263,264]
sensory ganglions
[257,268]

Suppression of peripheral
release of
pro-inflammatory factors,
including TNF-α, NO, and
ILs [239,242,243];
activation of GABAA
receptors [259,260];
suppression of Kv
channels [263,264] and
acid-sensing channels
[257,268]

Mansoa alliacea extracts;
Cheilanthes farinose
extracts; CGA

Pancreas and DM

Protecting β-cells and
improving β-cell function
(Section 4.1)

β cells and Langerhans
from rat islets [119,120];
mice fed on HFD or
high-fat milk,
spontaneously obese mice,
or rats fed on HFD
[121–123]; STZ-induced
DM rats [126]

Anti-oxidative stress [125]
and anti-inflammatory
response [126]

CGA; CGA with
tetrahydrocurcumin

Mitigation of DM
complications (Section 4.2)

A diabetic nephropathy
rat model [127,128]; DM
mice [129,130]; diabetic
DPN DM mice [132]

Anti-oxidative and
anti-inflammatory
response [127–130,132]

CGA; CGA-enriched
extracts

Glycemic control in
human subjects
(Section 4.3)

Healthy human subjects
[134]; subjects with IFG
[136]; patients with
metabolic syndrome [8]

n.a.
GTC together with coffee
CGA; CGA-rich Cs
extracts; GCE

Pathogen infections

Anti-viral effects (9.1)

Sowbane mosaic virus,
potato virus X, and alfalfa
mosaic virus [326]; RSV,
HSV-2, ADV-3, ADV-11
[327]; H5N1 [328]; HSV-1
in MDBK cells and in Vero
cells [329]

n.a. CGA

Anti-bacterial effects
(Section 9.2)

A. baumannii, B. subtilis, E.
coli, E. faecalis, K.
pneumoniae, P. mirabilis, P.
aeruginosa, and S. aureus
[329]

n.a. CGA
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Table 1. Cont.

Pathological
Conditions/Organs Pharmacological Effects Experimental Models Potential Signaling

Pathways/Targets
Compound/Natural

Sources

Pathogen infections

Anti-Fungal effects
(Section 9.3)

C. albicans and C.
parapsilosis [329] n.a. CGA

Anti-allergic effects
(Section 9.4)

Shrimp food-fed mice
[330]

Increase in CPT-1 and
AMPK and ACC
phosphorylation [330]

CGA

Skin

Dermal protection
(Section 8.1)

Dermal fibroblasts
[303,304]; skin flap
survival in rats [306];
epidermal keratinocytes
[307]; MRL/lpr mice [309]

Inhibition of
MAPK/NF-kb/NLRP3
pathways [305] and
KT/mTOR/SREBP
signaling [308]

CGA

Anti-melanogenic effects
(Section 8.2)

Molecular docking
simulation and in vitro
kinetic assay [312–315]

Inhibition of α-MSH
[312–314]; inhibition of
tyrosinase [315]

CGA

Protection of skin barrier
and improvement in
microcirculation
(Section 8.3)

Human female subjects
with mildly xerotic skin
[317];

n.a. Beverage containing coffee
polyphenols

Tumor

Inhibiting tumor cell
proliferation/increasing
chemo-sensitivity
(Sections 7.1–7.11)

Breast cancer cell line
MCF-7 [274,275]; colon
cancer cell lines HCT116,
HT29 [278], Caco-2 [280];
esophageal cancer cell
lines
KYSE30/70/140/150/180/
510 [282]; leukemia cell
lines U937, and HL60
[284,285]; lung cancer cell
line A549 [287]; melanoma
C32 and B16F10 [288,289];
glioma cells U87 [290];
osteosarcoma cell lines
U2OS, MG-63, and Saos-2
[294,295]; pancreatic
carcinoma PANC-1
[297,298]; prostate cancer
cell DU145 [300]; and RCC
A498 cells [301];
tumor-bearing SCID
mouse models [282,287]

Increase in p53, Bax, and
the ratio of Bax/Bcl-2
[276,277]; blockages of (1)
p-STAT-5 and p-CrkL
[283,287], (2) the NF-kb
pathway [276], (3) the
STAT3/Snail pathway
[294,295], (4) the
PI3K/Akt/mTOR
pathway [301], and EMT
[276]

CGA

Cancer management in
patients (Section 7.12)

Patients with recurrent
high-grade glioma [302] n.a. CGA

Others

Lung injury protection
(Section 11.1)

LPS-induced acute lung
injury mouse model [335];
LPS/POLY I:C-induced
ALI/ARDS in human
epithelial cells [336]

KAT2A inhibitor [335];
targeting of the
TLR4/TLR3/NLRP3
inflammasome axis [336]

CGA

Intestinal protection
(Section 11.2)

Broilers induced by
necrotic enteritis challenge
[337]; a rat model of PI-IBS
[338]

Suppression of the
mtDNA-cGAS-STING
signaling pathway [337];
modulation of gut
microbial-released
extracellular vesicles [338]

CGA

Ovarian protection
(Section 11.3)

CDDP-induced ovarian
damage in rats [339];
PCOS rats [340]

HIF-1alpha signaling [340] CGA

Menopausal symptom
management (Section 11.4)

Human, healthy women
[341] n.a. CGA

n.a., no data available.

Though our current understanding of CGA has been substantially expanded in con-
temporary years, there are many important scientific gaps yet to be addressed in future
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studies. (1) The specific molecular targets of CGA on NF-κB, MAPK, and Nrf2 pathways
remain elusive. Molecular docking modeling can provide an insightful lead to the direct
interaction of CGA and targeting molecules, followed by functional characterizations.
Furthermore, an in-depth analysis including next-generation sequencing and multiome
approaches at tissue and single-cell levels should be applied to reveal a systemic and com-
prehensive picture of CGA’s biological effects at transcriptional, translational, epigenetic,
and intermolecular levels. (2) The pharmacokinetic data of CGA is inadequate due to its
limited bioavailability. Upon oral ingestion, a significant portion of CGA remains in the
colon and becomes metabolized and absorbed into circulation. Therefore, the observed
pharmacological effects are likely to result from CGA and its bioactive metabolites, which
further impedes the mechanistic interpretation of the data. Furthermore, efforts to modify
the structure of CGA or develop novel and effective drug delivery systems such as lipo-
somes, micelles, and nanoparticles for CGA are ongoing and need further validation for
bioavailability, tissue distribution, and efficacy. (3) Clinical studies are required to translate
CGA efficacy from bench to bedside for patients. Most current studies are performed on
in vitro or in vivo models, which may not truthfully recapitulate the pathological condi-
tions in real patients. Moreover, supraphysiological concentrations of CGA are used in
many studies, which may lead to a misinterpretation of the value of CGA effects. (4) There
has been a rising popularity of green coffee bean powder recently. The consumption of
CGA-enriched natural products such as GCE, fruits, and vegetables at a dose equivalent
to daily intake may empower a versatile way to extend its health benefits to the general
population without any safety concerns. The development of novel approaches for raw
material processing to preserve the CGA and other bioactive substances and improve their
release and absorption upon ingestion is a task for the dietary supplementary industry.

In summary, recent advances in our understanding of CGAs have supported its
therapeutic potential in many disorders. It is necessary to propel properly designed clinical
trials and prospective studies to further elucidate and validate its efficacy in clinics.
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