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Abstract: The complex and multi-stage processes of carcinogenesis are accompanied by a number of
phenomena related to the potential involvement of various chemopreventive factors, which include,
among others, compounds of natural origin such as flavonols. The use of flavonols is not only
promising but also a recognized strategy for cancer treatment. The chemopreventive impact of
flavonols on cancer arises from their ability to act as antioxidants, impede proliferation, promote
cell death, inhibit angiogenesis, and regulate the immune system through involvement in diverse
forms of cellular death. So far, the molecular mechanisms underlying the regulation of apoptosis,
autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis occurring with the participation of
flavonols have remained incompletely elucidated, and the results of the studies carried out so far are
ambiguous. For this reason, one of the therapeutic goals is to initiate the death of altered cells through
the use of quercetin, kaempferol, myricetin, isorhamnetin, galangin, fisetin, and morin. This article
offers an extensive overview of recent research on these compounds, focusing particularly on their
role in combating cancer and elucidating the molecular mechanisms governing apoptosis, autophagy,
necroptosis, pyroptosis, ferroptosis, and cuproptosis. Assessment of the mechanisms underlying
the anticancer effects of compounds in therapy targeting various types of cell death pathways may
prove useful in developing new therapeutic regimens and counteracting resistance to previously
used treatments.
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1. Introduction

Based on the GLOBOCAN 2022 data on cancer incidence and mortality released by the
International Agency for Research on Cancer, an estimated 19.98 million new cases world-
wide and nearly 9.7 million deaths were reported in 2022. The main cancers include breast,
lung, colon, prostate, and stomach cancer. According to estimates, by 2040, the incidence of
cancer will increase to 47% and amount to 28.4 million [1]. Currently available treatments
include a comprehensive, interdisciplinary, and holistic approach to cancer therapy. The
latest ones focus on both the use of groundbreaking therapies and the development of new
anticancer treatments and chemopreventive strategies. Chemoprevention can be devel-
oped at various levels, taking into account the mechanisms of influence that take place at
individual stages of carcinogenesis, including both the initiation and progression stages.
Complex and multi-stage processes are accompanied by a number of phenomena related
to the potential involvement of various chemopreventive factors including compounds

Nutrients 2024, 16, 1201. https://doi.org/10.3390/nu16081201 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu16081201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-5462-2647
https://orcid.org/0000-0002-6382-4133
https://orcid.org/0000-0001-8528-1494
https://doi.org/10.3390/nu16081201
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu16081201?type=check_update&version=1


Nutrients 2024, 16, 1201 2 of 33

of natural origin such as flavonols. Their use is not only promising but also a recognized
strategy for cancer treatment.

Flavonols represent the most prevalent flavonoids distributed throughout the entire
plant kingdom. They have an unsaturated C ring at the C2-C3 position, which is usually
connected to a hydroxyl group at the C3 position and an oxygen group at the C4 position.
The positions of the hydroxyl group are responsible for the biological activity of the com-
pounds. The main flavonols include quercetin (QUE), kaempferol (KEM), myricetin (MYR),
isorhamnetin (ISO), galangin (GAL), fisetin (FIS), and morin (MOR) (Table 1) [2,3]. In refer-
ence to the multi-stage model of carcinogenesis, there are many chemopreventive strategies
involving these compounds, which may be related to the regulation of mechanisms of
various types of cell death.

Cell death plays a key role in maintaining homeostasis by removing damaged cells;
moreover, it may also constitute a pathological response to harmful stimuli. The Cell Death
Nomenclature Committee has developed a set of guidelines for dividing the modes of cell
death into accidental cell death (ACD) and regulated cell death (RCD) [4]. RCD includes
apoptosis, autophagy, necroptosis, ferroptosis, pyroptosis, NETosis parthanatos, entosis,
lysosome-dependent cell death, alkaliptosis, and oxeiptosis [5].

Several studies suggest that within cancer cells, the basic functions of apoptosis are
disturbed, probably due to numerous genetic defects. The possibility of the occurrence of
phenotypes resistant to the induction of apoptosis and other types of cell death is empha-
sized. Thus, cells resistant to apoptosis are also insensitive to the effects of some therapies
dedicated to a given type of cancer. Accordingly, over the last decades, cancer therapy re-
search has focused on the development of improved pharmacotherapy and radiotherapies
aimed at improving the sensitivity of cells to death and the resulting reduction in tumor
volume [6]. The latest research also indicates the important role of newly discovered types
of RCD, which include cuproptosis, pyroptosis, necroptosis, and ferroptosis. Mammalian
cells, when subjected to irreversible disruptions in their intracellular or extracellular mi-
croenvironment, may trigger various signal transduction cascades, ultimately resulting in
cell demise. Each of these RCD patterns is initiated and transmitted by molecular mecha-
nisms that exhibit a significant degree of interconnection [3]. The basic differences in the
mechanisms of the types of cell death described in this paper are presented in Figure 1.

Table 1. List of flavonols involved in the regulation of different types of cell death [7–14].

Flavonoid Chemical Formula Structure Cell Death

Quercetin C15H10O7
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Table 1. Cont.

Flavonoid Chemical Formula Structure Cell Death
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2. Apoptosis

Apoptosis or Programmed Cell Death is tightly regulated and is necessary to maintain
homeostasis of the body. It plays a key role in maintaining a number of physiological
processes, such as embryonic development and adult tissue homeostasis, but is also a
mechanism for limiting the growth of cancer cells [15]. The process of controlled cell death
consists of three stages: activation of caspases, breakdown of DNA and proteins, and
changes in the cell membrane and their recognition by phagocytic cells [16]. The molecular
mechanism of apoptosis is a well-understood process and requires activation of caspase
proteases through an intrinsic pathway or an extrinsic pathway by activation of death
receptors such as Fas and DR4/5 through their death-inducing ligands, for example, FasL
and TRAIL, respectively [17,18].

The extrinsic pathway associated with the activation of death receptors begins with
the formation of the ligand–receptor complex. The most well-known death receptors are
TNF receptor type 1 (TNFR1) and a related protein called Fas (CD95), along with their
ligands TNF and Fas ligand (FasL). These receptors with an intracellular death domain
recruit the adapter proteins TNF receptor-related death domain (TRADD), Fas-related death
domain (FADD), and cysteine proteases. The binding of a death ligand to the death receptor
causes the creation of a binding site for the adapter protein, and the entire ligand–receptor–
adapter protein complex is known as the death-inducing signaling complex (DISC). DISC
then initiates the assembly and activation of procaspase 8. The activated form of the
enzyme, caspase 8, is an initiator caspase that initiates apoptosis by cleaving subsequent
caspases [16,19].

In the case of the intrinsic mitochondrial pathway, activation occurs with the partic-
ipation of internal stimuli, such as genetic defects, hypoxia, an increased cytosolic Ca2+

concentration, and oxidative stress. Activation of the mitochondrial pathway leads to
the release of pro-apoptotic molecules such as cytochrome-c from the mitochondria into
the cytoplasm. This pathway is strictly regulated by the so-called Bcl-2 family proteins,
which include pro-apoptotic proteins such as Bax, Bak, Bad, Bcl-Xs, Bid, and anti-apoptotic
proteins such as Bcl-2 and Bcl-X. Other apoptotic factors released from the mitochon-
drial intermembrane space into the cytoplasm are apoptosis-inducing factor (AIF), second
mitochondria-derived caspase activator (Smac)/direct IAP-binding protein low pI (DIA-
BLO), and Omi/high-temperature demand protein A (HtrA2). The consequence of the
release of cytochrome c is the activation of caspase-3 through a complex known as the apop-
tosome. Smac/DIABLO or Omi/HtrA2 promote the activation of caspases by connection
to the inhibitor of apoptosis proteins (IAP), which consequently leads to the disruption of
its interaction with caspase-9 or -3 [16,19].

The third pathway of apoptosis activation is the one related to endoplasmic reticulum
stress. The endoplasmic reticulum (ER) is the site of protein folding, lipid and sterol
synthesis, and free calcium storage. Under stress in the ER, the level of mutant proteins
increases, leading to a disruption in the equilibrium between the endoplasmic reticulum’s
protein folding capacity and the demand for properly folded proteins. This phenomenon
triggers ER stress, which is detected and managed by the unfolded protein response
(UPR). Protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1 (IRE1a),
and activating transcription factor 6 (ATF6) become activated once the concentration of
misfolded proteins reaches a critical threshold. Apoptosis is induced here by the activation
of Bax and Bak, two major pro-apoptotic proteins [19].

The unrestricted growth of cancer cells is caused, among others factors, by the abil-
ity to avoid apoptosis mechanisms, which include an imbalance of pro-apoptotic and
anti-apoptotic processes, impaired caspase functions, and death receptor signaling [16].
Therefore, the factors involved in the regulation of apoptosis have a great diagnostic
and interventional value in the treatment of diseases [15]. Numerous studies indicate
the importance of flavonols as potential modulators of the apoptosis process in cancer
cells (Table 2).
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Table 2. Summary of the most important apoptosis induction pathways involving flavonols and their
impact on individual types of cancer (↑-increase, ↓ decrease).

Flavonoid Mechanism Cancer Type Cell Line Ref.

Quercetin

↓ Bcl2
↑ Bax

Breast cancer MCF-7 [20]
Leukemia HL-60 [21]

↑ caspases activation
Breast cancer MCF-7 [20]

Leukemia HL-60 [21]
Gastric cancer AGS [22]

↑ JNK Gastric cancer AGS [22]

Kaempferol

↓ Bcl2
↑ Bax

Cervical cancer HeLa [23]
Submandibular gland cancer A253 [24]

Ovarian cancer OVACAR-3 [25,26]
Liver cancer HepG2 [27]

Pancreatic cancer PaCa-2, PANC-1 [28]
Bladder cancer 5637, T24 [29]

↑ caspases activation

Cervical cancer HeLa [23]
Submandibular gland cancer A253 [24]

Ovarian cancer OVACAR-3, A2780/CP70 [25,26]
Colorectal cancer HT-29 [30]
Pancreatic cancer PaCa-2, PANC-1 [28]

Breast cancer MDA-MB-231 [31]

↓ PI3K, AKT Cervical cancer HeLa [23]

↑ p53
Cervical cancer HeLa [23]

Colorectal cancer HCT15, HCT116 [32]
Bladder cancer 5637, T24 [29]

↑ p21 Cervical cancer HeLa [23]
Bladder cancer 5637, T24 [29]

↑ Cytochrome c
Oral cancer SCC-9 [24]

Submandibular gland cancer A-253 [24]
Ovarian cancer OVACAR-3 [25]

↓ STAT3 Ovarian cancer OVACAR-3 [25]

↓ MEK, ERK Ovarian cancer OVACAR-3 [25]

↑ FAS Colorectal cancer HT-29 [30]
Ovarian cancer A2780/CP70 [26]

↑ ROS
Pancreatic cancer PaCa-2, PANC-1 [28]
Colorectal cancer HCT15, HCT116 [32]

Non-small-cell lung cancer NSCLC [33]

Galangin

↓ Bcl2
↑ Bax

Breast cancer MCF-7, T47D [34,35]
Kidney cancer A498 [36]

Nasopharyngeal cancer NPC-TW039, NPC-TW076 [37]
Gastric cancer MGC 803 [38]

↑ caspases activation Breast cancer MCF-7, T47D [34,35]
Retinoblastoma Y-79, HXO-Rb44 [39]
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Flavonoid Mechanism Cancer Type Cell Line Ref.

Galangin

↑ TRAIL Breast cancer MCF-7, T47D [34,35]

↓ PI3K, Akt

Retinoblastoma Y-79, HXO-Rb44 [39]
Kidney cancer A498 [36]

Nasopharyngeal cancer NPC-TW039, NPC-TW076 [37]
Breast cancer MCF-7 [35]

↑ Cytochrome c Kidney cancer A498 [36]

↓ STAT3 Gastric cancer MGC 803 [38]

↑ ROS Gastric cancer MGC 803 [38]
Kidney cancer Caki1, 7860 [40]

Myricetin

↓ Bcl2
↑ Bax

Breast cancer SKBR3,T47-D [41]
Gastric cancer AGS [42]
Thyroid cancer SNU-790 H, SNU-80 HATC [43,44]
Ovarian cancer A2780/CP70 OVCAR-3 [45]

↑ caspases activation
Thyroid cancer SNU-790 H, SNU-80 HATC [43,44]
Breast cancer T47-D [46]

Ovarian cancer A2780/CP70 OVCAR-3 [45]

↓ PI3K, Akt Gastric cancer AGS [42]
Colorectal cancer HCT116, SW620 [47]

↑ ROS Lung cance A549 [48]

Isorhamnetin

↓ Bcl2
↑ Bax

Melanoma B16F10 [49]
Liver cancer Hep3B [50]

Gastric cancer AGS-1, HGC-27 [51]
Breast cancer MDA-MB-231, MCF-7 [52]

↑ caspases activation

Melanoma B16F10 [49]
Bladder cancer T24, 5637 [53]

Liver cancer Hep3B [50]
Gastric cancer AGS-1, HGC-27, MKN-45 [51,54]
Breast cancer MDA-MB-231, MCF-7 [52]

Non-small lung cancer A549 [55]

↓ PI3K, Akt
Melanoma B16F10 [49]

Prostate cancer DU145, PC3 [56]
Gastric cancer MKN-45 [54]

↑ Cytochrome c
Bladder cancer T24, 5637 [53]
Breast cancer MDA-MB-231, MCF-7 [52]
Gastric cancer MKN-45 [54]

Fisetin

↓ Bcl2
↑ Bax

Oral cancer HSC3 [57]
Melanoma M17, SP6.5 [58]

Non-small lung cancer NCI-H460 [59]

Breast cancer 4T1 [60]
Gastric cancer AGS, SNU-1, SGC790 [61,62]

↑ caspases activation

Oral cancer HSC3 [57]
Melanoma M17, SP6.5 [58]

Non-small lung cancer NCI-H460 [59]
Pancreatic cancer PANC-1 [63]

Gastric cancer AGS, SNU-1, SGC790 [61,62]
Liver cancer HepG2, Hep3B [64]
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Table 2. Cont.

Flavonoid Mechanism Cancer Type Cell Line Ref.

Fisetin

↑ Cytochrome c Oral cancer HSC3 [57]
Melanoma M17, SP6.5 [58]

↑ ROS
Colorectal cancer SW-480 [65]

Non-small lung cancer NCI-H460 [59]
Gastric cancer AGS, SNU-1 [61]

↓ PI3K, Akt Pancreatic cancer PANC-1 [63]
Breast cancer 4T1, MDA-MB-453 [60,66]

Morin

↓ Bcl2
↑ Bax

Myeloid leukemia K562, KCL22 [67]
Colorectal cancer HCT-116. SW480 [68,69]

Melanoma G361, SK-MEL-2 [70]

↑ caspases activation
Myeloid leukemia K562, KCL22 [67]
Colorectal cancer HCT-116, SW480 [68,69]

Melanoma G361, SK-MEL-2 [70]

↓ PI3K, Akt Myeloid leukemia K562, KCL22 [67]

↑ Cytochrome c Colorectal cancer HCT-116 [68]

↑ ROS Melanoma G361, SK-MEL-2 [70]
Colorectal cancer SW480 [69]

↑ FAS Colorectal cancer HCT-116 [68]

2.1. Quercetin

Studies conducted using rat models indicate the effect of QUE on colorectal cancer.
The authors indicate an increase in the expression of genes for pro-apoptotic proteins,
including caspase-3, and a decrease in the expression of anti-apoptotic genes, including
Bcl-2, after the use of QUE, thus indicating its influence through the regulation of the
internal mitochondrial pathway [71]. Later studies conducted on the SW48 colorectal
cancer line also showed induction of apoptosis in cells after the use of QUE [72]. These
reports are confirmed by studies using breast cancer cells (MCF-7) in the presence of the
apoptosis inhibitor ZVAD. After adding QUE, an increase in the expression of Bax and
caspase-3 and a decrease in the expression of the Bcl-2 gene were observed [20]. The effect
on the expression of Bax and Bcl-2 was also demonstrated in HL-60 leukemia cells, and
the authors of the study suggest that QUE induces apoptosis in the caspase-3-dependent
pathway by inhibiting the expression of Cox-2 [21]. Apoptosis has also been found to
be stimulated in gastric adenocarcinoma cells, as well as in non-small-cell lung cancer,
and this apoptosis is inhibited by a p38 kinase inhibitor, a JNK inhibitor, and an ERK
inhibitor [22,73]. The study performed on nine different cell lines confirmed previous
reports, indicating the induction of apoptosis in the cancer cell lines CT-26 (colon cancer),
PC-12 (pheochromocytoma), LNCaP (androgen-sensitive cancer line), and PC-3 (androgen-
insensitive cancer line) [74]. Therefore, previous studies indicate the promotion of QUE-
induced apoptosis via mitochondria [75]. QUE can also support conventional treatment
methods. Studies performed using breast cancer cells showed that the addition of QUE to
doxorubicin enhanced the induction of apoptosis in T47D cells [76]. In Figure 2, the impact
of flavonols on the regulation of apoptosis pathways is depicted.
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2.2. Kaempferol

Studies conducted on human cervical cancer cells suggest stimulation of apoptosis
using KEM by reducing the expression of the anti-apoptotic genes PI3K, AKT, and Bcl-2, and
a simultaneous increase in the expression of pro-apoptotic genes such as p53, p21, caspase3,
caspase9, and Bax. As a result of these changes, the Bax/Bcl-2 ratio increases, which
suggests stimulation of the intrinsic apoptosis pathway with an accompanying change in
mitochondrial function [23]. Exposing head and neck cancer cells to KEM significantly
led to the induction of apoptosis, accompanied by a decrease in Bcl-2, an increase in the
concentration of caspase-3, and an increased release of cytochrome c [24]. These reports
are confirmed by studies conducted on OVACAR-3 ovarian cancer cells. KEM increases
the expression of not only caspase-3 and -9 but also -8. Moreover, the authors suggest
the possible mediation of MEK/EK and STAT3 signaling in the induction of the process.
KEM administration causes a concentration-dependent decrease in the phosphorylation
of p-MEK and p-ERK and, therefore, a decrease in the expression of total MEK and ERK
along with a decrease in phosphorylated pSTAT3 [25]. Studies on hepatocellular carcinoma
cells enriched with molecular docking will confirm previous reports. The activity of KEM
underlying its apoptosis-promoting effects may be related to its ability to regulate the
expression levels of BAX, CDK1, and JUN proteins [27]. In colorectal cancer cells, KEM
has additionally been found to increase the level of the cell membrane-bound FAS ligand,
which increases sensitivity to the pro-apoptotic effect of anti-TRAIL antibodies in the
human chronic myeloid leukemia cell line, thus sensitizing them to TRAIL, which may
indicate the induction of apoptosis through the activation of death receptors on the cell
surface [30,77]. Gao et al. [26] suggest that the induction of apoptosis with the participation
of KEM occurs both through the extrinsic (via receptors) and intrinsic (via mitochondria)
apoptotic pathways. According to the results of tests conducted on A2780/CP70 ovarian
cancer cells, KEM significantly increased the cleavage of PARP-1 and the activity of caspase-
3/7, as well as the activity of caspase-8 and -9 common to both pathways. Further analysis
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showed that KEM increases the expression of two death receptors, DR5 and Fas, and the
adapter protein FADD [26].

Studies conducted on pancreatic cancer cells indicate another way of activating apop-
tosis after the use of KEM. It promoted apoptosis in cells by increasing the production of
reactive oxygen species (ROS), which is involved in Akt/mTOR signaling [28]. In turn,
after culturing colon cancer cells in the KEM environment, an increase in the level of ROS
and, consequently, the induction of apoptosis was noticed. However, after the use of
N-acetylcysteine as a ROS blocker, a weakening of caspase-3 and PARP cleavage and p38
phosphorylation was observed. The authors suggest that KEM induces apoptosis through
ROS and p53-dependent p38 activation [32]. After the application of KEM to non-small-cell
lung cancer cells associated with Nrf2 (a factor contributing to the development of treat-
ment resistance), intracellular ROS accumulation was demonstrated, which resulted in the
initiation of caspase-dependent apoptosis [33]. These studies indicate the importance of
reactive oxygen species in the mechanisms of apoptosis activation with the participation
of KEM.

The pro-apoptotic effect of KEM has also been demonstrated in prostate cancer, bladder
cancer, and breast cancer cells [29,31,78,79].

2.3. Galangin

Galangin (GAL) is a flavonol that has pro-apoptotic properties. Studies performed on
breast cancer cells have shown that GAL can effectively stimulate cells to induce TRAIL via
the TRAIL/caspase-3/AMPK signaling pathway. The use of GAL significantly increases
AMPK phosphorylation, cleavage of DR4, caspase-3, and -9, as well as the level of Bax
protein, while decreasing the level of the anti-apoptotic protein Bcl-2 [34]. Moreover,
according to research conducted on glioblastoma cells, the level of caspase-7 increases after
the use of GAL [80]. The results obtained from an experiment performed on retinoblastoma
cells indicate that GAL can increase the expression of PTEN and caspase-3 while reducing
Akt phosphorylation, which results in the inhibition of proliferation and induction of
apoptosis [39]. Similarly, in renal cancer cells, GAL increases the expression of Bax and Cyt-
c and decreases the expression of Bcl-2 [36]. GAL can also suppress the expression of some
important proteins of the PI3K/AKT signaling pathway [35–37]. Another possible pathway
for the initiation of apoptosis by the compound is the JAK2/STAT3 pathway. Studies
performed on gastric cancer cells indicate the effect of reversing the abnormal expression
of proteins such as p-JAK2, p-STAT3, Bcl-2, cleaved caspase-3, cleaved PARP, and Ki67 by
GAL. Moreover, GAL increases the accumulation of ROS and decreases Nrf2 and NQO-1,
but increases HO-1, and this accumulation can be inhibited by STAT3 overexpression [38].
The accumulation of ROS accompanying apoptosis was also noticed after the application
of GAL on kidney cancer cells in a dose-dependent manner [40]. The apoptosis process
may also be mediated by the p53 protein. Studies performed on hepatocellular carcinoma
cells after the use of GAL indicate reduced expression of miR675 and H19, leading to the
initiation of apoptosis by stimulating the expression of the p53 protein [81]. Application
of GAL to ovarian cancer cells also showed stimulation of the p53-dependent extrinsic
apoptosis pathway through upregulation of the DR5 protein. This confirms the significant
role of p53 in the induction of compound-induced apoptosis [82].

It is possible to use GAL in the treatment of cisplatin-resistant lung cancer. The
simultaneous use of GAL and cisplatin leads to the cleavage of caspase-8, caspase-9,
caspase-3, and cytochrome c, resulting in the induction of apoptosis. Further analysis
showed an increase in the number of p-STAT3-, p-NF-κB, and Bcl-2-positive cells after
GAL treatment. The authors suggest that the use of GAL may enhance cisplatin-based
therapies in treatment-resistant lung cancer cells by inactivating the p-STAT3/p65 and
Bcl-2 pathways [83]. The simultaneous use of GAL and TRAIL in the treatment of kidney
cancer also gives promising results. Studies show that the simultaneous use of these two
compounds leads to significantly increased induction of apoptosis in cancer cells showing
signs of resistance to treatment [84].
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2.4. Myricetin

Myricetin (MYR) is another flavonol with pro-apoptotic effects. After applying the
compound to breast, thyroid, and gastric cancer cells, an increased level of split PARP
and Bax proteins and a decreased level of Bcl-2 protein were observed [41–43]. Fur-
thermore, MYR triggers caspase-3/-8/-9 activation and the release of AIF from cells,
implying its role in inducing cancer cell death, partly via the activation of a caspase-
dependent pathway [43,44,46]. Additionally, the expression levels of phosphorylated c-Jun
N-terminal kinase (p-JNK) and phosphorylated mitogen-activated protein kinases (p-p38)
were found to be increased, accompanied by a decrease in p-ERK [41]. Additionally, dose-
dependent reductions in p-PI3K, p-Akt, and p-mTOR were found, which may indicate the
involvement of the compound in the inhibition of the PI3K/Akt/mTOR pathway during
apoptosis [42,47,85].

After culturing lung cancer cells in the presence of MYR, increased ROS production
was noticed. This study revealed increased expression of P53 with an accompanying
decrease in EGFR in cells treated with MYR [48]. Similar results were obtained after the use
of MYR on ovarian cancer cells (OVCAR-3), in which the expression of p53 and p21 proteins
was increased, which may indicate its involvement in the induction of apoptosis [45].

2.5. Isorhamnetin

Studies conducted on many types of cancer prove the role of ISO in the regulatory
processes of apoptosis. The basic parameters that change after the use of ISO are elevated
expression of Bax and caspase-3, along with reduced expression of Bcl-2 [49,50,53].There is
also an increase in the activity of caspase-8 and -9, as well as an increase in the release of
cytochrome c from the mitochondrion to the cytosol [51–53,86]. Similarly to the previous
flavonols, ISO can also regulate apoptosis through the PI3K/Akt pathway. Studies indicate
a reduction in the expression of Akt and the phosphorylated proteins PI3K (p-P13K) and
Akt (p-Akt) [49,54–56,87]. Moreover, among the reports, there is information about the
connection between isorhamnetin-induced apoptosis and increased expression of the Fas
ligand [74,75].

2.6. Fisetin

The results of studies on ovarian cancer and uveal melanoma cells treated with FIS
indicate changes in the levels of anti-apoptotic proteins, such as BCL2 and BCL-x, and
pro-apoptotic proteins, such as BID, BAD, BAK, and BAX [57,58].Under the influence of Gal,
the level of cleaved forms of caspase-8, -9,and -3, cytochrome c, and apoptosis-inducing
factor (AIF) is also increased [57–59,65,88,89]. Studies performed on pancreatic cancer
cells indicate the PI3K/AKT signaling cascade as a possible candidate in the initiation of
apoptosis [60,63,66]. Additionally, Sabarwal et al. found that FIS caused an increase in
total p53 in gastric cancer cells and is activated by phosphorylation at the S15 position,
indicating the likelihood of its involvement in DNA damage [61].Subsequent studies
involving gastric cancer cells with FIS showed a reduction in ERK activation 1/2 in a
concentration-dependent manner, suggesting the involvement of another pathway in the
initiation of apoptosis [62].

Further studies showed an increase in the amount of ROS and stimulation of intracel-
lular Ca2+ secretion after culturing cells in a FIS environment, indicating that ROS could
represent an alternative pathway for initiating apoptosis in cancer cells [57,64,88].

2.7. Morin

Studies conducted on chronic myeloid leukemia (CML) K562 and KCL22 cell lines
demonstrated significant anticancer effects of MOR by suppressing the PI3K/AKT signaling
pathway. The results indicate a reduction in phosphorylated AKT levels due to elevated
PTEN expression, consequently resulting in the suppression of AKT signaling [67]. In
addition, after the use of the compound, there was an increase in the level of Bax protein
and a decrease in Bcl2. These results are confirmed by studies using colorectal cancer and
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melanoma cells in which, after MOR treatment, the expression of the Fas receptor and the
activation of caspase-8, -9, and -3 were increased [68–70]. MOR induced apoptosis, which
was correlated with the increased level of creation of reactive oxygen species and loss of
cell mitochondrial membrane potential. These results indicate the action of MOR through
both the internal and external apoptosis pathways [69].

3. Autophagy

Autophagy is a kind of cell death, during which cellular contents are surrounded by
autophagic vesicles which, after combining with lysosomes, participate in the degradation
of the contents. Its main role is to maintain homeostasis by eliminating dysfunctional
organelles and protein aggregates; under certain conditions, it can mediate cell death. Three
types of autophagy have been identified, including macroautophagy, microautophagy, and
chaperone-mediated autophagy (CMA) [90].

The two main modes of autophagy-related cell death are:

(1) ADCD (autophagy-dependent cell death), which is independent of other forms of
programmed death.

(2) AMCD (autophagy-mediated cell death), where autophagic molecules interact di-
rectly with cell death molecules or where the autophagy is related to other cell death
mechanisms such as apoptosis, necrosis, or ferroptosis through its dynamic processes.

Cell deaths associated with autophagy can be induced simultaneously and inter-
penetrate each other under certain conditions, together with apoptosis, necroptosis, and
ferroptosis [91].

Microautophagy
Microautophagy is the least known type of autophagy, in which lytic organelles

independently take up components to be degraded from the cytoplasm. This type of
autophagy is involved in the regulation of biosynthesis, transport, metabolic adaptation,
organelle remodeling, and control over the quality of cellular components [92].

Macroautophagy
Macroautophagy is the best-known type of autophagy, in which autophagosomes

deliver cytoplasmic components to be degraded to endosomes or lysosomes. In the first
stage of autophagy, a portion of the cytoplasm is enclosed by an isolating membrane called
the phagophore. The Atg9 protein plays a crucial role in its formation by supplying the
necessary lipid components. This process is regulated by the Atg1 and Atg9 proteins, and
a complex containing phosphatidylinositol 3-kinase. In the subsequent stage, two conjuga-
tion processes occur. In the first one, Atg12 is activated with the involvement of the Atg7
protein. Then, the Atg12 protein is transferred to the Atg10 protein, leading to the covalent
binding of Atg12 to Atg5. The Atg12–Atg5 complexes then associate with Atg16L protein.
The resulting complex, ATG12–ATG5–ATG16L1, plays a crucial role in the formation of
the autophagosome. On the other hand, the second conjugation process involves the Atg3,
Atg4, and Atg7 proteins, as well as the LC3 protein. The proLC3 form is proteolytically
cleaved by the Atg4 protease, resulting in the formation of the LC3-I form. Then, the Atg7,
Atg3, and Atg12–Atg5–Atg16L proteins are attached. In the next step, the LC3-I protein can
bind with the highly lipophilic phosphatidylethanolamine (PE) and form the LC3-II form.
These processes lead to the formation of the autophagosome, enclosing a portion of the
cytoplasm along with proteins inside it. In the subsequent stage, the outer membrane of the
autophagosome fuses with the lysosome, resulting in the formation of an autophagolyso-
some. Here, enzymatic digestion of the inner membrane of the autophagolysosome and its
contents occurs under the influence of lysosomal enzymes [90,93].

Chaperone-mediated autophagy (CMA)
CMA enables the removal of specific damaged proteins when subjected to conditions

of long-term starvation or oxidative stress. The CMA mechanism involves the formation
of a bond between the chaperone complex and the target motif in the protein, which is
then transferred to the lysosomes. After the complex reaches the lysosome, it interacts
with the cytoplasmic tail of lysosome-associated membrane protein type 2A (LAMP-2A).
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After binding, the complex is moved to the lysosomal matrix, where it is completely
degraded [93].

It is also worth remembering that there is a network of connections between autophagy
and apoptosis. Beclin is a protein that links apoptosis and autophagy by its ability to bind to
anti-apoptotic and pro-apoptotic proteins. Anti-apoptotic proteins such as Bcl-2 and Bcl-XL
act as autophagy inhibitors, while pro-apoptotic proteins inhibit the interaction between
beclin 1 and Bcl-2, thereby inducing autophagy. It has been shown that caspases 3, 7, and
8, which play the main role in the apoptosis process, have the ability to proteolyze beclin
1, which prevents the induction of autophagy. It was also found that calpain cleavage
of the Atg5 protein involved in the formation of autophagosomes activates apoptosis.
Moreover, autophagy can inhibit apoptosis partly by degrading active caspase 8 and
inhibiting the activation of the Bid protein by beclin 1. Interconnections between the
processes of apoptosis and autophagy also occur through the p53 protein. This protein
is an inhibitor of cancer transformation. It stimulates the apoptosis process, but can also
influence the autophagy process by stimulating or inhibiting it depending on its location in
the cell. The fraction located in the cytoplasm inhibits the autophagy process by inducing
mTOR1, while the nuclear fraction participates in stimulating the process [90,94].

Previous findings have suggested a dual role for autophagy in cancer; we now know
that autophagy inhibits tumor initiation, but evidence suggests that its processes in some
cancers depend on the stage of the disease and oncogenic mutations. Sometimes, it sup-
ports uncontrolled cell growth and the resulting increased metabolic activity. Moreover,
autophagy affects the regulation occurring in cancer cells (Table 3), contributing to their
growth and creating drug resistance [95,96].

Table 3. Summary of the most important autophagy induction pathways involving flavonols and
their impact on individual types of cancer. (↑-increase,↓ decrease).

Flavonoid Mechanism Cancer Type Cell Line Ref.

Quercetin

↓ Akt-mTOR
Breast cancer MCF-7, MDA-MB-231 [97]
Liver cancer SMMC7721, HepG2 [98]

Acute myeloid leukemia HL-60 [99]

↑ LC3

Liver cancer SMMC7721, HepG2 [98]
Neuroglioma U87 [100]

Acute myeloid leukemia HL-60 [99]
Lung cancer A549, H1299 [101]

↑ Beclin 1 Neuroglioma U87 [100]
Lung cancer A549, H1299 [101]

↑ Atg5, Atg7, Atg12 Lung cancer A549, H1299 [101]

Kaempferol

↓ Akt-mTOR Lung cancer A549, H1299 [102]
Liver cancer SK-HEP-1 [103]

↑ LC3

Lung cancer A549, H1299 [102]
Liver cancer SK-HEP-1 [103]
Oral cancer MC-3 [104]

Gastric cancer SNU-638 [105]
Ovarian cancer A2780 [106]
Prostate cancer PC-3 [107]

↑ Beclin 1

Lung cancer A549, H1299 [102]
Liver cancer SK-HEP-1 [103]
Oral cancer MC-3 [104]

Gastric cancer SNU-638 [105]
Ovarian cancer A2780 [106]
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Table 3. Cont.

Flavonoid Mechanism Cancer Type Cell Line Ref.

Kaempferol ↑ Atg5, Atg7, Atg12
Liver cancer SK-HEP-1 [103]

Gastric cancer SNU-638 [105]
Ovarian cancer A2780 [106]

Galangin

↓ Akt-mTOR Laryngeal cancer TU212, HEP-2 [108]

↑ LC3 Laryngeal cancer TU212, HEP-2 [108]
Liver cancer HepG2 [109,110]

↑ Beclin 1 Laryngeal cancer TU212, HEP-2 [108]
Liver cancer HepG2 [109,110]

Myricetin

↓ Akt-mTOR
Gastric cancer AGS [42]

Colorectal cancer HCT116, SW620 [47]
Liver cancer HepG2 [111]

↑ LC3
Gastric cancer AGS [42]

Colorectal cancer HCT116, SW620 [47]
Liver cancer HepG2, Hep3B [111–113]

↑ Beclin 1 Gastric cancer AGS [42]

Isorhamnetin ↓ Akt-mTOR Gastric cancer MKN-45 [54]

Fisetin

↓ Akt-mTOR Prostate cancer PC3 [114]

↑ LC3
Prostate cancer PC3 [114]

Oral cancer Ca9-22 [115]
Pancreatic cancer PANC-1, BxPC-3 [116]

↑ Beclin 1 Oral cancer Ca9-22 [115]

↑ Atg5 Oral cancer Ca9-22 [115]

3.1. Quercetin

Research has shown that QUE triggers autophagy by deactivating the Akt-mTOR path-
way. The simultaneous use of the autophagy inhibitor 3-Methyladenine and the Akt-mTOR
pathway inducer IGF-1 has shown that QUE inhibits cell motility and glycolysis by trigger-
ing autophagy through the Akt-mTOR pathway [97,98]. The analysis of cellular autophagy
regulatory proteins and neuroglioma cell suppressors after the use of QUE nanoparticles
showed not only a decrease in the expression of activated PI3K/AKT mTOR and Bcl-2 but
also an increase in LC3, ERK, and cytoplasmic p53. This supports the theory regarding the
underlying molecular mechanisms of autophagy induction via suppression of AKT/mTOR
signaling and activation of the LC3/ERK/caspase-3 pathway [100]. Studies performed
on primary lymphoma cells showed, in addition to suppression of the PI3K/AKT/mTOR
pathway, also suppression via STAT3, and consequently a reduction in the expression of
cellular proteins promoting survival, such as c-FLIP, cMyc, and cyclin D1 [117]. More-
over, after QUE treatment, p-AMPK expression increases with a concomitant decrease in
p-mTOR expression in a dose-dependent manner. The mechanism of this phenomenon is
the phosphorylation of AMPK, which in turn is an inhibitor of mTOR phosphorylation [99].

In the autophagy process, the LC3II/I ratio serves as an indicator of autophagy
levels, while the level of p62 protein exhibits an inverse correlation with it. Studies on
the effect of QUE on hepatocellular carcinoma cells showed that LC3II/I increases with
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the concentration of the compound used, while p62 decreases. The authors suggest that
the activation of the NF-κB pathway, through its impact on p62 levels, could stimulate
autophagy, as indicated by the decreased levels of IκBα and phosphorylated p65 [118].
These results are confirmed by studies carried out on lung cancer cells, where the use of
QUE reduces the expression of the p62 protein and increases GFP-LC3B in a dose-dependent
manner [119]. Additionally, it increases the mRNA levels of the autophagy-related protein
5, 7, and 12, LC3-II, and beclin 1 proteins [101]. Figure 3 details the principal autophagy
pathways and shows the modulation exerted by flavonols on their regulation.
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3.2. Kaempferol

The use of KEM on non-small-cell lung cancer cells showed an inhibitory effect of
the compound on PI3K, AKT, and mTOR in a dose- and time-dependent manner. This
proves the involvement of KEM in the suppression of the PI3K/AKT/mTOR pathway,
thus leading to the induction of autophagy [102]. This is confirmed by studies using liver
cancer cells. After the use of KEM, increased levels of autophagy-related protein 5, 7, and
12, p-AMPK, LC3-II, and beclin 1 proteins were observed, as well as decreased levels of
cyclin B, cyclin-dependent kinase 1, p-AKT, and p-mTOR proteins [103,104]. KEM increases
the conversion of LC3-I to LC3-II and leads to a decrease in p62 expression in cancer cells,
suggesting the activation of autophagy [103,105–107,120].

KEM may also lead to stimulation of the autophagy process by activating IRE1-JNK-
CHOP signaling, thus indicating that it may be a response to ER stress (endoplasmic
reticulum stress). In turn, blocking ER stress inhibits KEM-induced autophagy, thus
promoting prolonged cell survival [105]. Moreover, studies conducted on ovarian cancer
cells indicate an association of ER stress with increased intracellular Ca2+ levels without
changes in ROS levels, suggesting that Ca2+ disruption is one of the mechanisms by which
ECM leads to the induction of autophagy and apoptosis mediated by the ER [106].



Nutrients 2024, 16, 1201 15 of 33

3.3. Galangin

The results of studies on the mechanism of action of GAL on glioblastoma cells indicate
the involvement of the AMPK/mTOR pathway in GAL-induced autophagy through de-
phosphorylation of mTOR [80]. These reports are confirmed by studies involving laryngeal
cancer cells. Additionally, a significant increase in the expression of LC3I, LC3II, and Beclin
1 induced by GAL exposure has been demonstrated [108–110]. After treatment of liver
cancer cells with GAL, it was shown that the induction of autophagy enhanced SIRT1-LC3
binding and reduced the acetylation of endogenous LC3. The results indicate that GAL
promotes the appearance of autophagic vacuoles, increases the expression of LC3 II, Beclin1,
and the ratio of LC3 II to LC3 I, and decreases the expression of p62 in a time-dependent
manner. Together, these findings point to a novel mechanism by which GAL induces
autophagy through deacetylation of endogenous LC3 via SIRT1 [109].Increased p53 protein
expression was detected in the same cells. It should be noted that the mutated p53 protein
can inhibit autophagy in some cancer cells. This study revealed that GAL-induced au-
tophagy was inhibited by p53 inactivation and enhanced by its overexpression, suggesting
that GAL promotes autophagy through a p53-related pathway [110].

3.4. Myricetin

Studies conducted on four types of colon and gastric cancer cell lines showed that MYR
modulates cell apoptosis and autophagy by suppressing the PI3K/Akt/mTOR signaling
pathway and increasing the LC3-II/β-actin ratio and Beclin-1/β-actin expression [42,47,111].

The dependence of ER stress and autophagy caused by the action of MYR in liver
cancer cells was demonstrated. They showed a significantly increased LC3-II/LC3-I ratio
and decreased p62 protein levels in a dose-dependent manner. Furthermore, it was shown
that MYR-induced autophagic flux and IRE1α expression were significantly increased, as
were Ca2+ levels. The authors therefore suggest two possible pathways for autophagy
induction with the participation of MYR, the IRE1α-JNK and Ca2+-AMPK pathways [112].
Another possible pathway of MYR action involves inhibition of the p38 MAPK and Stat3
signaling pathways regulated by MARCH1. MYR reduces MARCH1 protein levels in
Hep3B and HepG2 cells, and also reduces the level of MAPK and Stat3 [113].

3.5. Isorhamnetin

The results of studies on the mechanism of action of ISO on gastric cancer cells showed
the effect of the compound on PI3K and the blockade of the PI3K-AKT-mTOR signaling
pathway. The use of ISO increased the level of p62 in cells and significantly reduced the
expression of p-PI3K, p-AKT, and p-mTOR [87].

3.6. Fisetin

Application of FIS to prostate cancer cells inhibits mTOR activity and reduces the
levels of Raptor, Rictor, PRAS40, and GbL, resulting in the loss of formation of mTOR
complexes (mTORC)1/2. FIS also activates the mTOR repressor TSC2 by inhibiting Akt
and activating AMPK [114]. In turn, FIS treatment of oral squamous cell carcinoma cells
with Ca9-22 showed an increase in markers such as Beclin-1 and ATG5, and a decrease in
the p62 conversion of LC3-I into LC3-II in a dose-dependent manner [115].

Studies conducted on the effect of FIS on pancreatic cancer using mouse models
showed an enhancement of the AMPK/mTOR pathway, with no effect on autophagy,
after the addition of an AMPK inhibitor compound. The authors suggest the existence of
another autophagy regulation pathway. Research demonstrated that the stress-induced
transcription factor p8 was upregulated in FIS-treated PANC-1 cells, and silencing of p8
hindered FIS-induced autophagy. It was established that p8-dependent autophagy is
independent of AMPK, and that p8 regulates ATF6, ATF4, and PERK in response to ER
stress through p53/PKC-α-mediated signaling. Furthermore, blocking the AMPK/mTOR
pathway using the compound might augment p8-dependent autophagy. A new model for



Nutrients 2024, 16, 1201 16 of 33

the action of FIS is proposed that is mediated by p8 via the p53/PKC-α pathway, which in
turn affects the levels of PERK, ATF4, and ATF6 [116].

3.7. Morin

Studies on the effect of MOR hydrate in combination with cisplatin on hepatocellular
carcinoma cells showed a reduced level of LC3I/II expression and an increase in p62
expression. Additionally, the levels of associated autophagy markers, including PI3KIII,
Atg5, Atg7, and BECN-1, exhibited a notable increase in HepG2 cells, followed by a decrease
subsequent to treatment with the combination of MOR and cisplatin. Further evaluation of
the expression levels of the main autophagy-inducing markers (BECN-1 and LC3) at the
transcriptional level revealed reduced BECN-1 and LC3 mRNA expression in CP-treated
HepG2 cells, which was significantly reduced in CP-MOR-treated cells. These results
suggest that the combination of CP-MOR acts as a substantial regulator of autophagy and
a potent inducer of apoptosis, thereby helping to maintain homeostatic balance in HepG
cells [121].

4. Pyroptosis

Pyroptosis is a type of cell death described as caspase-1 dependent. It is associated
with infection with Salmonella and Shigella bacteria. Initially, it was considered part of
the apoptosis pathway, but so far, a number of differences between the morphological
features of pyroptosis and apoptosis have been demonstrated (Figure 1). Apoptosis is a
programmed cell death without an ongoing inflammatory process, while pyroptosis may
cause inflammation activated by extracellular or intracellular stimulation, which includes
drugs, bacterial and viral infections, toxins, or chemotherapy. In cells undergoing pyropto-
sis, chromatin condenses and DNA fragments, but their nuclei remain intact. DNA damage
relies on the activation of caspase-activated DNase (CAD) and the inhibition of inhibitor of
CAD (ICAD) in apoptotic cells. However, CAD is dispensable during pyroptosis, despite
the potential cleavage by caspase-1. Additionally, inflammation-induced pore formation
leads to swelling and osmotic lysis in pyroptotic cells. The development of pores in the
plasma membrane is contingent upon caspase-1 activation, leading to increased cell mem-
brane permeability. The inflow of water from the pores causes cell swelling and osmotic
lysis [122,123].

Pyroptosis is associated with the innate and adaptive immune systems and contains a
variety of molecules. Members of the gasdemin family constitute the core of pyroptosis,
and can be cleaved and activated by inflammatory caspases (caspase-1, -4, -5, -11), as
well as those associated with apoptosis (caspase-3, -6, -8) and granzymes (granzyme A,
granzyme B). Next, cytokines and alarmins are released from the formed pores, influencing
the downstream pathway. Another important factor is the inflammasome. In addition to
the above main components, there are also many other regulators operating in each part of
the pathway [124].

Recent research indicates that pyroptosis may serve as a new cancer elimination strat-
egy by inducing pyroptotic cell death and activating intense anti-tumor immunity [125].

4.1. Kaempferol

Studies conducted on glioblastoma multiforme cells showed an increased level of
GSDME cleavage and an increase in the mRNA expression of the pro-inflammatory factors
IL-1β and ASC 24h after the use of KEM. To elucidate the interplay between autophagy and
pyroptosis, ROS generation and the autophagy pathway were blocked using the antioxidant
reagent N-acetyl-L-cysteine (NAC) and the PI3K inhibitor 3-methyladenine (3-MA). NAC
reduced the ROS level induced by KEM in cells. Furthermore, it was found that NAC
reversed both autophagy by reducing LC3 cleavage levels and pyroptosis by reducing
GSDME cleavage levels, indicating that KEM-induced ROS production contributes to
autophagy and pyroptosis in cancer cells [126]. In Figure 4, an illustration depicting the
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primary pyroptosis pathways and showcasing the impact of flavonols on their regulation
is presented.
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4.2. Galangin

Studies conducted on glioblastoma cells showed an increased level of GSDME after the
use of GAL. Furthermore, morphological features are consistent with pyroptosis, including
the characteristic bubbles in the cell membrane and the swelling typical of this process.
LDH release is also significantly increased in cells, indicating that GAL treatment disrupts
cell membrane integrity. The authors suggest that inhibition of pyroptosis increases nuclear
DNA damage in glioma cells, indicating a possible impact of pyroptosis on the degree of
apoptosis during treatment [80].

4.3. Myricetin

The use of MYR demonstrates an inhibitory impact on lung cancer cells by activating
pyroptosis. The analysis of the expression of proteins from the Gasdermin family showed
that this phenomenon is attributed to the cleavage of GSDME by activation of caspase-
3. Further analysis of mitochondria and the endoplasmic reticulum showed that MYR
could cause ER stress and increase ROS levels. Subsequent to the inhibition of caspase-12,
there was a notable decrease in the expression levels of cleaved caspase-3 and cleaved GS-
DME. These results demonstrate that MYR induces lung cancer cell death mainly through
pyroptosis induced by the ER stress pathway [127].

4.4. Fisetin

There is a suggestion that FIS serves a protective function and impacts the advance-
ment of hepatocellular carcinoma. FIS-treated cells were assessed for caspase 1 activity and
IL-1b expression. From the obtained results, it can be concluded that caspase 1 activity
and IL-1b secretion were significantly decreased in a dose-dependent manner in cells after
its application, suggesting that FIS inhibits the activation of the NLRP3 inflammasome.
During observation, it was shown that under the influence of LPS, the cells swelled and
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were enlarged with many vesicular projections, and that FIS could alleviate the occurrence
of pyroptosis to some extent [128].

5. Ferroptosis

Ferroptosis is characterized by two primary biochemical traits, the buildup of iron
and lipid peroxidation, both reliant on reactive oxygen species for cell demise. Ferroptosis
differs biochemically, morphologically, and genetically from other cell deaths, but most
publications describe it as closest to necrosis. The characteristic features of the process
are loss of cell membrane integrity, moderate chromatin condensation, and cytoplasmic
organelle swelling. In certain instances, ferroptosis can occur simultaneously with cell
rounding and an elevated presence of autophagosomes [129,130].

Classic activators of ferroptosis include erastin and RSL3, which inhibit the antioxidant
system by increasing intracellular iron accumulation. In particular, transferrin promotes
ferroptosis by mediating iron uptake via the transferrin receptor. Degradation of intra-
cellular iron storage proteins or the solute carrier of the iron export transporter family
member 1 (SLC40A1) increases iron accumulation through autophagy, initiating or en-
hancing ferroptosis [131,132]. In turn, iron leads to the generation of excessive amounts
of reactive oxygen species (ROS) via the Fenton reaction, thereby increasing oxidative
damage. Additionally, iron can enhance the activity of lipoxygenase (ALOX) or EGLN
prolyl hydroxylase enzymes, which play crucial roles in lipid peroxidation and oxygen
homeostasis. The interaction between systemic and local cellular iron regulation influences
ferroptosis sensitivity. Targeting genes associated with iron overload or using iron-chelating
agents is effective in inhibiting ferroptotic cell death. The reason why only iron, rather than
metals that also generate reactive oxygen species (ROS) in the Fenton reaction, can induce
ferroptosis remains unclear. One hypothesis suggests that iron overload activates particular
downstream effectors that facilitate the induction of ferroptosis upon the production of
lipid ROS [129].

Functionally, ferroptosis may be a necessary process for maintaining homeostasis or
may be the cause of diseases and pathological conditions. It can be caused by various
physiological and pathological conditions related to the generation of stress. Ferroptosis
is an adaptive feature used to eliminate cancer cells. It plays a key role in inhibiting
carcinogenesis by removing cells that are deficient in key nutrients in the environment or
that are damaged by infection or stress [133,134].

5.1. Quercetin

Studies conducted on gastric cancer cells showed a QUE-induced decrease in cell
activity, which was reinstated by the addition of the ferroptosis inhibitor Fer-1. This
suggests that this compound inhibits cell activity by facilitating ferroptosis. Moreover, an
increase in iron content in cancer cells was found after the addition of QUE, which was also
reversed by Fer-1. Assessment of the expression of ferroptosis-related proteins showed
that QUE suppressed the expression of xCT and GPX4. These findings indicate that QUE
induces ferroptosis in gastric cancer cells by downregulating the expression of xCT-system
molecules and elevating iron levels. QUE has also been observed to reduce the expression
of xCT and GPX4 [135,136]. This implies the engagement of the NRF2/xCT pathway in
promoting ferroptosis through QUE-SLC1A5 [135]. These reports are confirmed by the
results of studies conducted on HEC-1-A endometrial cancer cells, in which QUE increased
the intracellular level of reactive oxygen species in cells and also decreased the expression
of glutathione peroxidase 4 (GPX4) [137].

Time-dependent reductions in FTL (ferritin light chain) and FTH (ferritin heavy chain)
protein levels were also found following QUE treatment in various cancer types. This effect
can be blocked by Baf-A1, a lysosomal inhibitor that enhances the essential role of the
lysosome. According to these results, free iron content increased after QUE treatment, which
was also prevented by lysosome inhibitors (Baf-A1) and peroxidation inhibitors (ferrostatin-
1). At the same time, TFEB knockdown could effectively abolish QUE-induced intracellular
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lipid peroxidation, suggesting that QUE-induced lipid peroxidation was dependent on
TFEB-mediated ferritin degradation by lysosomes and iron accumulation [136]. Quercetin
promotes TFEB expression and nuclear transcription, induces the onset of iron death, and
thus exerts a pharmacological effect on the killing of breast cancer cells [138].

5.2. Kaempferol

Studies conducted on hepatocellular carcinoma cells showed mutual regulation of
KEM-induced ferroptosis and autophagy. The authors demonstrated that inhibitors of
ferroptosis notably triggered AMPK phosphorylation in HepG2 cells. Moreover, ACC,
which constitutes the downstream pathway of AMPK and LKB1, is phosphorylated by
ferroptosis inhibitors. Furthermore, ferroptosis inhibitors enhance Beclin-1 expression and
induce the conversion of LC3BI to LC3BII [139].

5.3. Galangin

After applying GAL to fibrosarcoma cells, it was found that it can be used as a
ferroptosis inhibitor, which increases the viability of HT1080 cells with an RSL3 inhibitor,
reduces the level of ROS and MDA lipids, and increases the expression of PTGS2 and
glutathione peroxidase 4 (GPX4) mRNA. GAL treatment influenced the phosphorylations
of the AKT, PI3K, and CREB proteins, and the ferroptosis-inhibiting effect of GAL was
counteracted by the PI3K inhibitor LY294002. These findings indicate that GAL may exert
antiferroptosis effects through activation of the PI3K/AKT/CREB signaling pathway [140].

6. Necroptosis

Necroptosis is a form of programmed cell death considered to be very similar to apop-
tosis and is associated with the involvement of death domain receptors (DR), including FAS
and tumor necrosis factor receptor 1 (TNFR1), or PRRs (pathogen recognition receptors),
which recognize adverse signals from the intracellular and extracellular microenviron-
ments. Extracellular factors include chemical and mechanical trauma, inflammation, or
infections. In contrast to apoptotic cell death, where dead cells are efficiently eliminated
without compromising the integrity of the cell membrane, necroptotic cell death results in
membrane rupture, leading to the release of intracellular contents [131,141].

The current best-understood pathway for the initiation of necroptosis is related to the
TNF-α receptor. Further cell death signaling can occur in two ways. TNF-α can trigger
the formation of complex I (a survival complex that signals through NF-kB). Nevertheless,
when RIPK1 undergoes deubiquitination, the complex transitions into apoptotic complex
IIa. In the absence of caspase-8 and with elevated RIPK3 levels, the complex transforms into
IIb (also known as the necrosome). This necrosome contains death domain-related proteins
RIPK1, RIPK3, and Fas, which enable the cell to undergo necroptosis by direct phospho-
rylation of the kinase domain-like protein (MLKL). Phosphorylation of MLKL causes a
pore to form an oligomer that punctures the plasma membrane and causes subsequent
cell death. Other downstream effectors of RIPK3 include mitochondrial serine/threonine
protein phosphatase11 and Calmodulin-dependent protein kinase [142,143].

Studies indicate that necroptosis, in addition to its key role in infection and virus
development, plays a role in the regulation of tumor biology, including oncogenesis, tu-
mor metastasis, and tumor resistance to treatment [144]. In a study utilizing 60 cell lines,
reduced levels of RIPK3 were observed in two-thirds of the samples, indicating that cancer
cells can avoid necroptosis. Moreover, necroptosis is closely linked to the prognosis of nu-
merous cancers. The Cox proportional hazards model showed that RIPK3 expression is an
independent prognostic factor in colorectal cancer patients with respect to overall survival
and disease-free survival. Recent studies have shown that the expression of RIPK1, RIPK3,
and MLKL is associated with better overall survival in hepatocellular carcinoma [131].
Given the key role of necroptosis in tumor biology, necroptosis has emerged as a new
target for anticancer therapy, and new compounds and many therapeutic agents have been
thought to protect against cancer by inducing or modulating necroptosis [144].
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6.1. Quercetin

Research conducted with cholangiocarcinoma cells demonstrated that co-administration
of QUE with the Smac LCL-161 mimetic resulted in elevated pMLKL expression in cancer
cells. Utilization of inhibitors targeting pivotal necroptotic proteins, such as necrostatin-
1 (Nec-1), GSK’872 (GSK), and necrosulfamide (NSA), which specifically inhibit RIPK1,
RIPK3, and MLKL, respectively, revealed that all inhibitors markedly attenuated cell death
provoked by the combination treatment of QUE and the Smac mimetic LCL-161 in cells.
These studies indicate the involvement of the RIPK1/RIPK3/MLKL necroptosis pathway
after treatment in cholangiocarcinoma cells [145].

The involvement of necroptosis in QUE-induced cell death was confirmed in breast
cancer cells. In the presence of the necroptosis inhibitor Nec-1, MCF-7 cell viability increased
compared to the control. After QUE application, the expression of RIPK1 and RIPK3 genes
increased significantly. The authors suggest the involvement of QUE through the RIPK1-
and RIPK3-dependent necroptosis pathway [20]. In Figure 5, an illustration portraying the
key pathways of ferroptosis and necroptosis, along with the impact of flavonols on their
regulation, is depicted.
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6.2. Kaempferol

As in QUE, the application of KEM with the Smac mimetic LCL-161 on cholangio-
carcinoma cells led to a significant increase in pMLKL expression. The results following
inhibitors targeting key necroptotic proteins also showed that all inhibitors significantly in-
hibited cell death induced by combined treatment of KEM with the Smac mimetic LCL-161
in cells. It is concluded that KEM, like QUE, influences the induction of necroptosis via the
RIPK1/RIPK3/MLKL pathway [145].
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6.3. Fisetin

A2780 cells cultured with FIS supplemented with z-VAD showed a significant increase
in ZBP1, RIP3, and MLKL protein levels compared to control cells, while the level of
HMGB1, an inflammation-related marker, showed no significant difference between groups.
Study results indicate that FIS-induced necroptosis in ovarian cancer cell lines is mediated
by the ZBP1/RIP3/MLKL pathway [146].

7. Cuproptosis

Cuproptosis is a type of cell death induced by Cu accumulation in the mitochondria,
leading to the aggregation of lipoylated dihydrolipoamide S acetyltransferase (DLAT).
This leads to proteotoxic stress and consequently cell death. Cuproptosis occurs mainly
in energy-producing cells that use oxidative phosphorylation (OXPHOS) as the main
metabolic pathway. Cuproptosis is characterized by aggregation of lipoylated DLAT
mitochondrial enzymes and loss of the iron-sulfur cluster protein (Fe-S) [147].

The disruption of copper homeostasis fosters cancer development and leads to irre-
versible cell damage. A combination of cuproptosis-targeting molecules including drugs
or natural agents combined with existing therapies may open new possibilities for cancer
treatment [148]. Nonetheless, current copper-containing agents exhibit limited targeting
specificity and may induce significant side effects in patients undergoing treatment. These
limitations hinder the development and clinical implementation of cancer treatment strate-
gies based on cuproptosis mechanisms [149]. The use of flavonoids may maximize targeted
cancer treatment while limiting toxic side effects.

Previous research, including the study conducted on neuroblastoma cells, has shown
that QUE can support conventional treatment methods through its neuroprotective effect.
QUE reduced Cu-induced neurotoxicity in the SH-SY5Y cell line [150]. However, research
remains inconclusive. Unlike QUE, GAL enhances the toxic effects of copper and exac-
erbates cell death, while also helping to stimulate the production of ROS. The authors
therefore suggest caution when considering potent antioxidants for adjuvant therapy in
copper-related neurodegeneration [151]. Therefore, further research is needed to explain
the impact of individual flavonols on the course of copper-induced death.

8. Protective Effects of Flavonoids against Cancer: In Vivo Evidence

Experiments on animals play a crucial role in preclinical research as they provide an
excellent model for evaluating the effectiveness and safety of potential therapeutic agents
before transitioning to clinical trials.

8.1. Quercetin

To assess the impact of QUE on tumor growth, a xenograft model of gastric gland
adenocarcinoma was constructed, demonstrating that the tumor volume in the quercetin-
treated group was significantly smaller than in the control group. Additionally, following
quercetin treatment, levels of ROS and MDA significantly increased, while GSH levels
decreased compared to the control group. Results indicated that after quercetin treatment,
levels of TfR1, GPX4, and SLC7A11 significantly decreased. The findings suggest that the
anticancer action of quercetin is associated with autophagy-dependent ferroptosis [152].
Studies using a mouse model of prostate cancer have shown that tumor growth was sig-
nificantly inhibited due to the synergistic action of QUE and paclitaxel. Additionally, the
research demonstrated that the expression of cleaved caspase-3 increased in the Que+PTX
group compared to monotherapy, indicating that combination therapy may effectively
induce apoptosis in cancer cells. Expressions of CHOP and GRP78 also noticeably in-
creased, suggesting that the combined treatment effectively induced ER stress and ROS
production, leading to cancer cell death [153]. The experimental mouse model of liver
cancer demonstrated that treatment with QUE significantly reduced tumor volume. Addi-
tionally, the expression of PCNA was effectively decreased by QE treatment, while levels
of Bax increased. These results suggest that QUE inhibits tumor growth in vivo through
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apoptosis [154]. Other studies have shown that QUE significantly reduces tumor size in a
mouse model of liver cancer heterotransplantation. Additionally, it has been demonstrated
that the level of HK2 was significantly reduced in the QUE-treated group. Furthermore,
phosphorylated Akt and mTOR were significantly decreased, confirming that QUE inhibits
HCC progression by inhibiting glycolysis via HK2 in vivo [155]. It has also been demon-
strated that QUE inhibits liver tumor growth in an in vivo model partially through the
stimulation of autophagy. Levels of LC3A/B and p62 proteins in tumor tissues were quan-
titatively assessed by immunohistochemistry, showing that QCT treatment significantly
increased the level of LC3A/B protein and decreased the level of p62 protein in tumors
compared to the control. These results indicate that QCT can induce autophagy in liver
tumors in vivo [156].

8.2. Kaempferol

Using a mouse experimental model of breast cancer, it was demonstrated that the
expression of the tumor-promoting gene CCND1 was significantly decreased compared
to the control group. An increase in the expression of the Bcl2 gene was also observed.
Additionally, it was shown that the pro-tumorigenic gene CyPA and the pro-autophagic
gene BECN1 were significantly decreased after KEM administration [157]. Studies con-
ducted on mice with oral cavity cancer showed that tissue samples from mice treated with
KEM exhibited a significant increase in apoptosis compared to the control group. Analysis
of the expression of proteins related to apoptosis, autophagy, and MAPK revealed that
the expression of p-JNK was particularly high. Overall, KEM increased the expression
of apoptotic and autophagic marker proteins and decreased the expression of inhibitory
proteins. Additionally, compared to the control, reduced expression of p-ERK and increased
expression of p-JNK and p-p38 were observed. In particular, among the MAPK pathway,
the expression of p-JNK was higher. Therefore, the KEM-treated group indicated that the
JNK pathway of the MAPK pathway influences the apoptosis and autophagy of cancer
cells [104]. The impact of KEM on non-small-cell lung cancer showed that tumor growth
was significantly inhibited in increased mitochondrial mass in breast precancerous lesions.
Interestingly, KEM promoted the expression of p-MFF, PINK1, Parkin, and LC3II, and re-
duced the expression of TOM20. Thus, KEM induces mitochondrial fission and mitophagy
in vivo [158]. Studies investigating the role of 17β-estradiol and Triclosan, in combination
with KEM using an experimental mouse model with xenotransplantation of MCF-7 breast
cancer cells, showed that administration of 17β-estradiol and Triclosan in combination
with KEM resulted in a significant reduction in tumor volume. The combination treatment
showed a decreased number of nuclei with incorporated BrdU and reduced expression of
PCNA and cyclin D1. The expression of P21 showed an opposite pattern to the expression
of PCNA or cyclin D1. The combination therapy significantly increased the expression of
Bax and decreased the expression of cathepsin D protein [159].

8.3. Galangin

The results of studies conducted on mice have shown that GAL inhibits tumor growth
by suppressing the expression of H19 in vivo and may be involved in the apoptosis of
cancer cells. Additionally, there is evidence suggesting that GAL may induce apoptosis in
cells by regulating the expression of the p53 protein [81]. Studies using a retinoblastoma
xenograft model have demonstrated that treatment with GAL significantly reduces tumor
size. Furthermore, GAL lowers the expression level of KI-67 while enhancing the cleavage
of PTEN and caspase-3, and the expression of p-Akt is decreased by GAL. Additionally,
it has been shown that GAL decreases the expression of PIP2 and PIP3 in tumor tissue
samples in vivo [39]. To confirm the inhibition of human laryngeal cancer growth by
GAL, studies were conducted using a mouse xenograft model of TU212. Upon GAL
administration, both the volume and mass of the tumor were inhibited. Additionally,
in the GAL-treated group, a reduction in Ki-67 and an increase in TUNEL levels were
observed. These results indicate that GAL may promote the suppression of the growth
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of xenotransplanted human laryngeal cancer cells in vivo. The studies showed that GAL
prevents proliferation, invasion, and migration of human laryngeal cancer by suppressing
PI3K/AKT and p38, resulting in caspase activation, NF-κB dephosphorylation, and mTOR
inactivation with decreased Ki-67 expression and increased TUNEL levels [108].

8.4. Myricetin

The impact of MYR in vivo was investigated using a subcutaneous xenograft model
of A2780 cells in nude mice. The study demonstrated a reduction in tumor volume after
administration of MYR at a dose of 100 mg/kg. Additionally, the research confirmed that
oral administration of MYR led to an increase in Bax levels, a decrease in Bcl-2 levels,
and a corresponding elevation in the Bax/Bcl-2 ratio. It was demonstrated that MYR
inhibited metastasis to the liver and lungs. Furthermore, the expression of Ki-67, MMP9,
and EGFR in the myricetin-treated group was reduced compared to the control group [160].
The inhibitory effect of MYR on NCI-H446 and A549 cancer cells was also investigated
in an in vivo model by injecting them subcutaneously into nude mice and administering
MYR. The results showed that the tumor size in the MYR-treated group was significantly
smaller than in the control group, indicating that myricetin may effectively inhibit lung
cancer cells in vivo. The results also demonstrated that GSDME and cleaved caspase-3
were significantly higher in the MYR-treated group compared to the untreated group. In
summary, MYR may inhibit tumor growth and induce cell pyroptosis in vivo [127].

8.5. Isorhamnetin

Expression of Ki-67, caspase-3, and PD-L1 was analyzed using immunohistochemistry
in mice with breast cancer treated with ISO. It was demonstrated that ISO inhibited the
EGFR-STAT3-PD-L1 signaling pathway and blocked tumor development, significantly
increasing the survival of healthy cells. The cell membrane receptor EGFR was identified as
a direct target of ISO [161]. It was also demonstrated that ISO induces apoptosis in Ishikawa
cells by triggering the endogenous mitochondrial apoptotic pathway and the exogenous
death receptor pathway, promoting the endoplasmic reticulum stress-related pathway.
Additionally, ISO affected the expression of proteins associated with MMP2 and MMP9 and
suppressed metastasis. It was found that ISO resulted in a reduction in the proliferation
marker Ki-67, indicating that ISO has a beneficial effect on mitigating the malignancy of
cancer cells. Additionally, a decrease in the expression of caspase-3, MMP2, and MMP-9 was
demonstrated, along with an increase in the endoplasmic reticulum stress protein Chop [86].
An in vivo mouse model of gallbladder cancer cells was also developed to elucidate the
anti-tumor effects of ISO. The size and mass of the tumor significantly decreased after ISO
administration. Furthermore, no visible loss of body weight or mortality was observed
in mice undergoing ISO treatment, suggesting that ISO is safe for in vivo use and does
not induce side effects. The results indicate that ISO treatment significantly increased the
expression of cleaved PARP, p53, cleaved caspase 9, BAX, cleaved caspase 3, and p27, while
reducing the expression of BCL-2, N-cadherin, Slug, CDK1, p-PI3KP85α/γ/β, and p-AKT1
in the tumor tissues. A decreased level of proliferation marker Ki-67 and p-AKT1 expression
was demonstrated after isorhamnetin treatment. These findings suggest that isorhamnetin
may inhibit GBC growth in vivo and induce apoptosis through the PI3K/AKT signaling
cascade [87]. The results also indicate that ISO may downregulate Hsp70 genes and promote
apoptosis in colon cancer cells [162]. The anticancer effect of ISO was also investigated
in vivo on murine non-small-cell lung cancer cells (A549). In mice treated with ISO for two
weeks, no adverse effects were observed, including no loss of body weight, mortality, or
lethargy. The tumor size was significantly smaller in most mice treated with ISO at a dose
of 0.5 mg/kg compared to the control group. It is worth noting that the tumor size was
significantly smaller in the group that received simultaneous injection of 3-methyladenine
(22.4 mg/kg) or chloroquine (10 mg/kg) compared to mice injected only with ISO. It was
demonstrated that the apoptosis index significantly increased in groups receiving either
ISO alone or ISO in combination with 3-methyladenine or chloroquine. Additionally, levels
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of cleaved caspase-3 showed a similar trend. Significant reduction in the proliferation
index was also observed after ISO administration. These results confirmed that apoptosis
through caspase activation is a key factor contributing to tumor growth inhibition and that
suppressing autophagy significantly enhances the inhibitory effect of ISO on NSCLC [55]. It
has also been shown that ISO inhibits viability, enhances the apoptotic effect of capecitabine,
abolishes NF-κB activation, and suppresses the expression of various NF-κB-regulated
gene products in cancer cells. In the xenograft model of gastric cancer transplantation,
administration of ISO alone (1 mg/kg body weight, i.p.) significantly inhibited tumor
growth, as well as in combination with capecitabine. ISO additionally reduces NF-κB
activation and the expression of various proliferative and oncogenic biomarkers in tumor
tissues [163]. It has also been demonstrated that after ISO treatment, the lung tumor mass
in mice was significantly smaller, with tumor size being smaller than in the control group.
Morphological studies of the tumors revealed typical condensed chromatin, cell shrinkage
with condensed cytoplasms, and nuclear fragmentation characteristic of apoptotic cell
death [164].

8.6. Fisetin

Research conducted on female C57BL/6 mice with subcutaneous lymphoma indicates
that FIS inhibits tumor growth through the induction of cell apoptosis, inhibition of pro-
liferation, and angiogenesis. Biochemical studies have shown no significant differences
in liver and kidney function markers in female mice treated with FIS [165]. A preclinical
study conducted on female Albino Swiss CD1 mice with Ehrlich tumors as a model of
breast cancer showed that FIS treatment slightly inhibits tumor growth in mice. However,
treatment with modified cholefitosomes containing FIS significantly inhibited the rate of
tumor growth. Studies have shown that modified cholefitosomes had comparable cyto-
toxicity, significantly surpassing the cytotoxicity of free FIS. It has also been demonstrated
that TGF-β1 and its associated non-canonical signaling pathways, ERK1/2, NF-κB, and
MMP-9, were involved in halting tumor proliferation. Additionally, the investigated com-
pounds exhibited a pronounced increase in the amount of E-cadherin compared to free
FIS [166]. Other studies based on the same experimental model have also demonstrated the
anti-tumor efficacy of FIS. Mice serving as positive controls showed a significant increase
in tumor size throughout the study period. The inhibition of tumor growth was achieved
following treatment with FIS, FIS-loaded nanosponges, and actoferrin-coated FIS-loaded
β-cyclodextrin nanosponges. Furthermore, it was demonstrated that the positive control ex-
hibited significant overexpression of CD1 levels compared to the negative control, whereas
all treated groups showed a significant reduction in CD1 levels. Additionally, it was shown
that FIS significantly lowered the level of Bcl-2 and increased the expression of the Bax gene.
Moreover, loading FS into NS (nanosponges) resulted in a significant decrease in Bcl-2
levels along with increased expression of the Bax gene compared to FIS alone. All therapies
significantly increased the expression of the caspase-3 gene, confirming the involvement of
the apoptotic process in the anti-tumor activity of FIS [167]. To determine the effectiveness
of the in vivo combination therapy of FIS and gemcitabine, researchers utilized mice with
an orthotopic pancreatic cancer allografts. It was demonstrated that tumor sizes were
significantly reduced in mice treated with FIS or gemcitabine individually, with the combi-
nation regimen showing the best effect. It has been demonstrated that the levels of CDK1,
p-STAT3, CD44, and Sox2 decreased after treatment with FIS alone or in combination
therapy, indicating that FIS-mediated inhibition of the CDK1–STAT3 axis contributed to in-
creased chemosensitivity in vivo [168]. The impact of Zinc-FIS hybrid nanoparticles (ZFH)
was evaluated using a model of oral cavity cancer induced by 4-nitroquinoline 1-oxide
(4-NQO) in in vivo studies on rats. It was demonstrated that ZFH significantly reduced
the levels of biomarkers specific to oral squamous cell carcinoma in serum, decreased
the histological grade of the tumor, and increased the level of caspase-3.Incorporating FS
into networked zinc nanoparticles significantly enhanced its ability to induce apoptosis
in cancer cells [169]. Furthermore, to assess the impact of FIS on pancreatic tumor growth
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in vivo, a xenograft experiment was conducted on nude mice. It was demonstrated that the
mean tumor volume along with mass significantly differed between the treatment groups
and the control. Additionally, the expression of PI3K, p-AKT, and p-mTOR proteins was
markedly reduced in the FIS-treated group. These data indicate that FIS inhibits pancreatic
tumor growth in vivo [63]. The aim of the study was to delineate the in vivo mechanisms
of oral administration of FIS, with a particular focus on mitochondrial dysfunction in lung
tissues using benzo(a)pyrene as a model carcinogen for the lungs. Treatment with FIS led
to a significant increase in the expression of Bax and a decrease in the expression of Bcl-2,
along with a significant increase in the expression of caspase-3, caspase-9, and cytochrome
c in mice with lung cancer [170]. The effectiveness of intravesical instillations of FIS was
also investigated, and the fundamental mechanisms of FIS’s inhibitory action on bladder
cancer were determined using an orthotopic rat model of bladder cancer induced by N-
methyl-N-nitrosourea. It has been demonstrated that FIS-induced apoptosis in bladder
cancer occurs through the modulation of two related pathways: upregulation of the p53
pathway and downregulation of NF-κB pathway activity, leading to alterations in the
ratio of pro- and anti-apoptotic proteins. Meanwhile, administration of FIS significantly
reduced the incidence of MNU-induced bladder tumors by suppressing NF-κB activation
and modulating the expression of NF-κB target genes, which regulate cell proliferation and
apoptosis. FIS treatment significantly decreased the expression of PCNA, Bcl-2, and cyclin
D1, while increasing the expression of p21, p53, and Bax [171]. Figure 6 depicts a diagram
delineating the influence of flavonols on cell death mechanisms across various cancer types,
as evidenced by in vivo studies. The illustration highlights the regulatory role of flavonols
in modulating these pathways, shedding light on their potential therapeutic implications
in cancer treatment.
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9. Conclusions

Cells originating from different types of tumors may exhibit sensitivity to different
types of cell death, either through increased sensitivity or resistance to a particular mecha-
nism. A thorough understanding of the sensitivity of individual tumor types to the action
of a specific mechanism of cell death can play a crucial role in disease treatment by targeting
regulations involving that particular type of cell death.

The information presented in the study demonstrates that apoptosis is the most well-
understood mechanism of cell death through which flavonols act. It is worth noting that for
some compounds such as kaempferol, the action may occur through a series of mechanisms
involving nearly all described types of cell death. To harness the potential of compounds in
treating a particular type of cancer, it is essential to thoroughly understand the resistance
mechanisms characterizing that type of cancer and to apply the compound in a specific
mechanism, aided by the use of inhibitors. Furthermore, the obtained research indicates
the significance of the administered doses, which at certain concentrations can enhance
the treatment with chemotherapeutic agents but become toxic to cells if the concentration
is too high. It is therefore crucial to appropriately select the appropriate dose of flavonol
for a particular type of cancer, taking into account the action of additional drugs and the
resistance of the cells.

In summary, the aim of the study was to characterize various mechanisms of cell death
and to present the potential regulation of certain signaling pathways by selected flavonols.

Despite numerous studies, the anticancer role and the molecular mechanisms un-
derlying the regulation of apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and
cuproptosis mediated by flavonols remain incompletely elucidated and the results of stud-
ies conducted to date are inconclusive. It is worth noting that evaluating the mechanisms
underlying the anticancer activity of these compounds in therapy targeting pathways of
various types of cell death may prove useful in developing new therapeutic schemes and
overcoming resistance to currently used treatments.
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