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Abstract: It is widely acknowledged that the ketogenic diet (KD) has positive physiological effects
as well as therapeutic benefits, particularly in the treatment of chronic diseases. Maintaining nutri-
tional ketosis is of utmost importance in the KD, as it provides numerous health advantages such
as an enhanced lipid profile, heightened insulin sensitivity, decreased blood glucose levels, and
the modulation of diverse neurotransmitters. Nevertheless, the integration of the KD with phar-
macotherapeutic regimens necessitates careful consideration. Due to changes in their absorption,
distribution, metabolism, or elimination, the KD can impact the pharmacokinetics of various medica-
tions, including anti-diabetic, anti-epileptic, and cardiovascular drugs. Furthermore, the KD, which
is characterised by the intake of meals rich in fats, has the potential to impact the pharmacokinetics of
specific medications with high lipophilicity, hence enhancing their absorption and bioavailability.
However, the pharmacodynamic aspects of the KD, in conjunction with various pharmaceutical
interventions, can provide either advantageous or detrimental synergistic outcomes. Therefore, it
is important to consider the pharmacokinetic and pharmacodynamic interactions that may arise
between the KD and various drugs. This assessment is essential not only for ensuring patients’
compliance with treatment but also for optimising the overall therapeutic outcome, particularly by
mitigating adverse reactions. This highlights the significance and necessity of tailoring pharmaco-
logical and dietetic therapies in order to enhance the effectiveness and safety of this comprehensive
approach to managing chronic diseases.

Keywords: ketogenic diet; nutritional ketosis; pharmacotherapeutics; drug interactions; chronic
disease management

1. Introduction

As non-communicable diseases continue to impose a disproportionate burden, partic-
ularly in low- and middle-income countries with over 31.4 million deaths annually [1], the
role of dietary interventions alongside pharmacological treatments gains prominence [2].
The ketogenic diet (KD), in particular, offers a novel approach to combating the rising tide
of chronic diseases, including cardiovascular diseases, cancer, chronic respiratory diseases,
and diabetes, by potentially mitigating the risk factors associated with these conditions [3].

The KD involves consuming less than 30 grammes of carbohydrates per day and
maintaining a protein intake of 1.2–1.5 grammes per kilogramme of ideal body weight
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or 1.0–1.2 grammes per kilogramme of fat-free mass [4]. In a standard macronutrient
distribution, lipids account for around 55% to 60%, protein for 30% to 35%, and carbs for
5% to 10%. The recommended daily carbohydrate limit for a 2000-calorie regimen, for
example, would range between 20 and 50 grammes [5].

This diet generates ketosis by decreasing dietary carbs and increasing protein and
fat intake, causing the body to consume fat as its primary source of energy instead of
carbohydrates. The main goal of the KD is to reduce fat stores and enhance metabolic
function [6]. There are four types of KDs: the long-chain triglyceride KD (LCT KD), the
medium-chain triglyceride KD (MCT KD), the low-glycaemic index KD (LGI KD), and the
modified Atkins KD [2].

Changes in lipid metabolism are notable when following the KD, with a common
focus on its effects on blood lipids. During a shortage of glucose, the energy focus switches
from glycolysis to the breakdown of fatty acids [7]. Despite being high in fat, the KD is able
to surprisingly reduce heart disease risk factors, as proven by studies indicating decreased
total cholesterol, increased HDL, and reduced triglyceride (TG) amounts [8]. The diet’s
focus on reducing carbohydrates helps lower insulin levels, improve insulin sensitivity,
and increase fat breakdown, leading to a decrease in blood lipids [9]. In particular, the KD
alters metabolism to promote higher levels of lipid oxidation along with liver ketogenesis,
leading to a decrease in liver fat [10–12]. Furthermore, it enhances fibroblast growth
factor-1, which helps in TG clearance [13] and could potentially modify the dimension of
LDL-cholesterol fragments to lower the risk of cardiovascular disease. Moreover, reducing
dietary carbohydrates through the KD hinders the production of cholesterol, which is
influenced by insulin and plasma glucose levels [14].

The KD has a substantial effect on glucose, resulting in positive aspects consisting of
enhanced glucose tolerance and increased sensitivity to insulin. When following a KD,
the body shifts to burning fat for energy when carbohydrates are restricted. This results
in the generation of ketone bodies within a specific range known as nutritional ketosis
(0.5–3.0 mmol/L) while also lowering circulating glucose levels without impacting blood
pH [15–17]. This reduces the absorption of monosaccharides in the intestines, leading to a
decrease in plasma glucose levels [18]. Moreover, the KD enhances insulin sensitivity and
attenuates HOMA-IR scores [15,19–21].

Moreover, the KD changes the cerebral activity and the management of seizures by
involving the neurological chemicals GABA and glutamate, during which ketone bodies
reduce the utilisation of glucose and affect neurotransmitter functions [22,23]. By modify-
ing glutamate and GABA levels, the diet plays a key role in its antiepileptic effects. This
is achieved by restricting glutamate decarboxylase and boosting GABA production via
metabolic processes [24–26]. Higher levels of GABA have been found in various studies,
both in murine models and clinical settings. These elevated levels are associated with
elevated levels of β-hydroxybutyrate, which aid in reducing neuronal activity and im-
proving seizure management. Furthermore, KB affects ion channels and neurotransmitter
carriers, impacting the glutamate-to-ketone percentage and potentially decreasing epileptic
events [27,28]. Figure 1 summarises the most important health benefits of the KD.

When it comes to cancer cases, the KD has been shown to decrease inflammation by
lowering TNF-α expression, promoting IL-10 expression, reducing the NLRP3 inflamma-
some, and decreasing the amount of glucose utilised by tumour cells. These processes
result in reduced tumour growth, improved cancer survival rates, and increased effective-
ness of chemotherapy and radiotherapy [29]. The KD has shown promising results as an
additional treatment for gliomas [30,31]. In this scenario, drug interactions may arise in
patients diagnosed with cerebral tumours who are also receiving pharmacologic treatment
for other conditions.
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Figure 1. KD metabolic effects (created with BioRender.com) (accessed on 13 March 2024). 
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Although highly acknowledged for its beneficial effects on health and in managing
chronic conditions, the KD can cause severe health problems if followed without surveil-
lance. A diet that is severely restricted in carbohydrates often excludes or drastically reduces
the intake of vegetables, fruits, and whole cereals while substantially raising the consump-
tion of animal-derived foods. Consequently, individuals following low-carbohydrate diets
are susceptible to serious nutritional deficiencies [32,33]. Furthermore, the initiation of
a dietary regimen rich in saturated lipids elevates the likelihood of developing coronary
heart disease, atherosclerosis, and stroke [34]. Additional concerns linked to the ketogenic
diet encompass renal dysfunction and reduced bone density [35]. Continuous nutritional
monitoring is necessary for KDs to ensure their efficacy and minimise the risk of both
immediate and long-term negative consequences. According to the guidelines provided by
the International Ketogenic Diet Study Group for the most effective clinical management,
it is recommended that a comprehensive team consisting of neurologists, nutritionists,
dietitians, and paediatricians closely oversee patients in order to optimise the therapeutic
outcomes [36]. Furthermore, in instances where patients present with various comorbidi-
ties, particularly those with liver and kidney dysfunction, it is imperative to prescribe
the KD under rigorous medical oversight, accompanied by strict clinical and laboratory
surveillance. This surveillance should encompass the monitoring of beta-hydroxybutyrate
levels and drug plasma concentrations [37].

In the face of the escalating prevalence of chronic diseases, the KD emerges as a
multifaceted intervention with potential impacts on metabolic processes, glucose regulation,
lipid management, and neurological functions. This review aims to assess the interactions
between the KD and pharmacotherapeutic agents and to elucidate both synergistic benefits
and potential adverse effects arising from the concurrent administration of the KD and
medications across various chronic conditions.

2. Methods

The purpose of this narrative review was to examine the effects of the ketogenic diet
on drug pharmacokinetics and pharmacodynamics, specifically in relation to medications
used to treat a variety of chronic pathologies. The primary objective was to compile data
from the scientific literature in order to generate a comprehensive list of potential positive
or negative consequences, as well as clinical implications for practitioners.
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The literature search methodology encompassed the process of identifying several key-
words tailored to our objectives: “ketogenic diet”, “chronic diseases management”, “dietary
interventions for disease management”, “nutritional ketosis”, “diabetes management”,
“metformin and ketogenic diet”, “SGLT-2 inhibitors and ketogenic diet”, “cardiovascular
diseases and ketogenic diet”, “cardiovascular drugs and ketogenic diet”, “hypertension
management and ketogenic diet”, “beta-blocking agents and ketogenic diet”, “neurologi-
cal effects of ketogenic diet”, “antiepileptic drugs and ketogenic diet”, “neurotransmitter
modulation and ketogenic diet”, “CNS drugs and ketogenic diet”, “psychiatric disorders
and ketogenic diet”, “cancer therapy and ketogenic diet”, “ketogenic diet in oncology”,
“chemotherapy and ketogenic diet”, “radiation therapy and ketogenic diet”, “oncologic
drugs and ketogenic diet”, “ketogenic diet on gut microbiota”, “ketogenic diet effects”,
“probiotics and ketogenic diet”, “microbiota-modifying medications”, “gastrointestinal
health and ketogenic diet”, “lipophilic drugs”, “drugs with increased absorption in lipids”,
“ketosis-disrupting drugs”, and “carbohydrate content in medications”. A comprehen-
sive search was conducted on many databases, including Scopus, Web of Science, Google
Scholar, and PubMed, using the identified keywords. The search was limited to publica-
tions published up until 1 January 2024. Furthermore, subsequent to the identification
of pertinent papers, an analysis was conducted on the references within such articles in
order to identify further studies. The present narrative review encompasses a compre-
hensive analysis of several studies that investigate the effects of the ketogenic diet on the
pharmacokinetics and/or pharmacodynamics of the drug. These studies cover a range
of methodologies, including experimental studies, observational studies, clinical studies,
reviews, and case reports. The exclusion criteria comprised research that did not directly
evaluate the influence of KD on pharmaceuticals, publications written in languages other
than English, or articles that solely examined the effects of the ketogenic diet on specific
medical conditions. In light of the narrative characteristics of our review, the data were
qualitatively synthesised and classified based on the framing disease, kind of interaction,
and drug subclass.

3. KD versus Antidiabetic Drugs

The significant increase in diabetes cases, rising from 108 million people in 1980 to
422 million in 2014, and its impact on around 2 million deaths in 2019 underscore the
major public health issue it poses, especially in low- and middle-income countries. The
significant rise in numbers, along with a 3% rise in diabetes-related deaths from 2000 to
2019, highlights the urgent requirement for comprehensive management strategies [38].
Studying the combined effects of the KD and diabetes medication is an important research
focus that aims to improve treatment results and reduce side effects.

3.1. Metformin

Metformin is a commonly prescribed medication that offers significant advantages for
glucose regulation and managing diabetes-related diseases [39]. The main mechanism of
action involves changing the cell’s energy metabolism. Metformin demonstrates its major
glucose-lowering impact by reducing hepatic gluconeogenesis and counteracting the effects
of glucagon. When mitochondrial complex I is inhibited, it leads to impaired cAMP and
protein kinase A signalling in reaction to glucagon. While not essential for metformin’s
ability to lower blood sugar, activating 5′-AMP-activated protein kinase enhances insulin
sensitivity primarily through the regulation of lipid metabolism [40,41].

Additional research has delved into metformin’s ability to inhibit cancer growth and
advancement in different forms [42–44]. Evidence from cellular and preclinical studies sup-
ports the drug’s potential for cancer treatment. These studies demonstrate antineoplastic
effects and tumour growth inhibition by targeting mitochondrial OXPHOS [45] and down-
regulating mTOR signalling [46]. A recent study has demonstrated that fasting-induced
hypoglycaemia combined with metformin can hinder tumour growth by affecting the
PP2A-GSK3βMCL-1 axis, a pathway involved in glioblastoma [47]. During a recent phase
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I clinical trial, researchers explored the combined effects of the KD with metformin and
radiotherapy on gliomas. Individuals were placed on a modified Atkins diet in addition
to receiving radiation therapy and metformin. The research showed that increased serum
ketone levels, linked to metabolic stress believed to improve radiation effectiveness, were
strongly connected to dietary changes, the use of metformin, and reduced insulin levels.
This led to a beneficial pharmacodynamic interaction among the regimens [48].

3.2. SGLT-2 Inhibitors

Sodium-glucose cotransporter-2 (SGLT-2) inhibitors, commonly referred to as gliflozins
or flozins, are medications used extensively to treat type 2 diabetes (T2D) owing to their
benefits in reducing glucose levels and improving cardiovascular and renal function [49].
These include empagliflozin, dapagliflozin, canagliflozin, sotagliflozin, and ertugliflozin,
which are antihyperglycemic drugs that inhibit the reabsorption of glucose within the
lumen, reducing the tubular limit for glucose and promoting the elimination of glucose
in the form of urine [50]. Urinary tract infections and diabetic ketoacidosis (DKA) are the
most prevalent adverse effects [51]. Canagliflozin is the most probable inducer of DKA,
with Dapagliflozin and Empagliflozin having a lower likelihood of inducing it [52].

The KD and SGLT-2 inhibitors show great promise as treatment strategies for managing
T2D and its associated problems. Recently, there has been a growing interest in both
treatments because of their potential combined health benefits, including weight loss,
enhanced insulin sensitivity, and reduced cardiovascular risk [49,53]. The positive and
negative pharmacodynamic effects of the combination of KD and SGLT-2 are depicted
in Figure 2.
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4. KD versus Cardiovascular Drugs

According to the WHO, cardiovascular conditions, or CVDs, are the primary global
contributing factor to mortality, resulting in 17.9 million deaths each year. Coronary heart
disease, cerebrovascular accidents, and rheumatic heart disease are primarily triggered by
strokes and cardiac events, with one-third happening prematurely in individuals under
70. Primary risk factors consist of inadequate eating habits, a sedentary lifestyle, tobacco
consumption, and alcohol misuse [54].
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The KD has been extensively explored as a therapeutic strategy for managing cardio-
vascular diseases. Research has linked the KD to a number of health benefits, including
lower total cholesterol, higher HDL cholesterol, lower triglyceride levels, and lower LDL
cholesterol [6,55–57]. There is evidence that a decrease in atherogenicity and an increase in
the size and volume of LDL cholesterol particles are connected with the KD, which, in turn,
reduces cardiovascular risk [58].

Yurista S.R. et al. suggested that ketone bodies produced by the KD may have vari-
ous beneficial impacts on cardiovascular health. Ketone bodies can enhance endothelial
function, reduce oxidative stress, enhance mitochondrial function, have anti-inflammatory
effects, and alleviate cardiac remodelling. Additional systemic extracardiac effects may
also have positive impacts on body mass index, blood sugar levels, and lipid composition
and levels in patients with cardiovascular disease [59].

Various adverse consequences on heart health have been recorded with the use of the
KD. Electrocardiographic evidence of QT prolongation and selenium insufficiency, both of
which are linked to decreased cardiac function, are two side effects of the KD [60].

Tao J. et al. conducted a study on the impact of a KD on diabetic cardiomyopathy,
specifically examining cardiac function and underlying mechanisms. The study found that
the KD has positive effects on metabolic indicators in diabetic mice, but it has negative
impacts on heart diastolic function and leads to increased ventricular fibrosis. The study
emphasised how ketone bodies impact T-regulatory cell activity, worsening heart problems
through interactions with mitochondrial-associated endoplasmic reticulum membranes
and the utilisation of fatty acids. It appears that despite the metabolic advantages, the
KD has a predominantly adverse effect on cardiac remodelling in dilated cardiomyopathy,
influenced by reduced T-reg cell function and increased fibroblast activation [61]. Figure 3
provides an extensive overview of the effects resulting from the concurrent administration
of cardiovascular medications and KD.
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4.1. Agents Acting on the Renin-Angiotensin System

The relationship between the KD and drugs acting on the renin–angiotensin–
aldosterone system (RAAS) is a very promising research field, especially for dietary inter-
ventions and their endocrine effects. Recently, a study compared the action of KDs, with
and without ketone salt supplements, to a low-fat diet (LFD) on the activity of RAAS in
overweight and obese individuals. Their results identified that all dietary strategies had led
to statistically significant weight loss. KDs increased plasma aldosterone without increasing
levels of other key cardiometabolic risk factors adversely. This increase in aldosterone, with
the direct association of the presence of ketone bodies, would strongly indicate a direct
mechanistic link between the metabolic state of ketosis, induced by KDs, and an increase
in aldosterone production. It is therefore implied that a physiological response to KDs
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modulating the effectiveness and side effects of drugs acting on the RAAS may be different
from that evoked by LFDs [62].

This study investigates the effect of the low-protein diet supplemented with ketoacids
(LPD+KA) on the RAAS in chronic kidney disease. It has been concluded that LPD+KA
can reduce proteinuria and intrarenal activation of the RAAS. This effect proceeds inde-
pendently of changes in renal hemodynamics and strongly implies the presence of a direct
interaction of dietary components with the RAAS pathways. On the other hand, LPD+KA
was shown to specifically reduce the expression of major RAAS components, such as
angiotensin II and its receptor, in mesangial cells and the renal cortex. The mechanisms
underlying these phenomena are considered to include the amelioration of nutritional
metabolic disorders and oxidative stress [63]. This finding, therefore, is pertinent to the
way in which dietary intervention, such as LPD+KA, can aid in increasing the efficacy of
RAAS-blockading drug administration in CKD. Such combinations of diets with pharma-
cologic agents acting on the RAS system, therefore, would imply that they may have a
synergistic effect and thus lead to possibly better clinical outcomes in CKD patients.

4.2. Beta-Blocking Agents

A study conducted 30 years ago examined the impact of a ketogenic diet when
administered alongside beta-blockers. Exercise alone did not have an independent effect
on post-exercise ketosis levels in carbohydrate-starved individuals. Additionally, the
treatment with propranolol heightened ketosis levels in individuals who had exercised
but reduced ketosis levels in those who had not exercised. Beta-blockers and exercise are
both involved in mediating ketosis, with beta-blockers playing a more significant role than
exercise. Glucose, insulin, and other metabolic indicators have minimal impact on this
process, while the predominant changes are attributed to the impact of muscle metabolite
flow on liver metabolism [64].

Currently, there are a limited number of studies examining the impact of beta-blockers
when used in conjunction with KD. Research revealed that a low carbohydrate diet led
to notable improvements in blood pressure levels [65]. An additional investigation ex-
amined the impact of a very-low-calorie ketogenic diet (VLCKD) on a group of female
patients with obesity and hypertension. The study concluded that VLCKD is an effective
therapeutic method for treating hypertension and obesity due to its positive metabolic
and anti-inflammatory impacts. However, one exclusion criterion for the trial was women
undergoing treatment with beta-blockers and/or other antihypertensive medications [66].
It has to be acknowledged that combining a KD with antihypertensive drugs may lead to a
significant decrease in blood pressure, necessitating more research.

For patients with heart failure and coronary artery disease, beta-blockers are a crucial
part of guideline-directed therapy. They are also commonly used to treat hypertension [67].
Non-selective beta-blockers have been widely recognised to be correlated with a dete-
rioration in lipid and glycaemic control [68]. Beta-blockers can affect hypoglycaemia
symptoms in insulin-dependent diabetes and increase the risk of hyperglycaemia in non-
insulin-dependent diabetics. Beta-blockers have the ability to raise blood glucose levels
and counteract the effects of oral hypoglycaemic medications [69]. Considering all of these
factors and the fact that nutritional ketosis, in which ketone bodies serve as the body’s
primary energy source, is the most important state to maintain on the KD [70], it is note-
worthy that patients taking beta-blockers and attempting to adhere to a KD may find it
considerably more challenging to maintain ketosis.

4.3. Diuretics

In accordance with the 2020 Global Practice Guidelines for Hypertension of the In-
ternational Society of Hypertension, diuretics are critical first-line treatments not only
for hypertension but also for hypertension in conjunction with other common comor-
bidities [71]. By increasing the elimination of water and electrolytes, they exert their
hypotensive effect. Thus, electrolyte imbalances and dehydration are the most frequent
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adverse effects [72]. It is also well known that the KD induces severe dehydration and
numerous electrolyte imbalances [73]. It is therefore important to note that patients under-
going combined therapies may experience an exacerbation of dehydration and electrolyte
imbalances due to the negative pharmacodynamic interaction between the two treatments.
These side effects should be closely monitored.

Hyperglycaemia is a commonly recognised negative consequence of diuretic medica-
tion. Hydrochlorothiazide and furosemide reduce the rate of glucose transfer in adipose
tissue [74]. Hence, similar to beta-blockers, it is imperative to note that rigorous mon-
itoring is required when administering thiazide diuretics to patients on a KD, as their
pharmacodynamics have the potential to disrupt the ketogenic state.

5. KD versus Haematological Agents

There is some concern that the KD might interfere with anticoagulant and antiplatelet
drugs, but the number of studies exploring these interactions is limited. It has been
hypothesised that the drop in INRs could be caused by an increase in levels of serum
albumin as well as cytochrome P450 activity, which could be achieved by increasing dietary
protein intake. It seems that the most probable explanation is a spike in warfarin metabolism
caused by cytochrome P450 activation, based on the available data that show changes in
drug metabolism when dietary protein consumption is increased [75].

Warfarin acts through the inhibition of vitamin K epoxide reductase (VKORC1), an
enzyme that facilitates the reutilisation of vitamin K subsequent to its participation in
coagulation factor carboxylation. Vitamin K undergoes a fundamental transformation
from its hydroquinone state to a form that aids in the carboxylation of coagulation factors;
VKORC1 then facilitates the process of converting vitamin K backwards to its active form.
Vitamin K restitution is impeded by warfarin via inhibition of VKORC1, resulting in a
depletion of vitamin K supplies. The combination between warfarin and vitamin K is a
clinically pertinent concern [76]. Clinicians should regularly check vitamin K consumption
in individuals administered warfarin. INR and PT are laboratory tests used to monitor
the blood clotting time, rate, and anticoagulant medication efficiency. Patients on warfarin
typically need to adhere to a modified vitamin K consumption plan. Consuming consistent
daily amounts of foods with low levels of vitamin K may be important for preserving
steady and appropriate INR levels [77].

Rich sources of vitamin K include green leafy vegetables such as kale, spinach, and
broccoli, as well as moderate use of olive and canola oils. Animal food rich in vitamin K
include chicken liver, egg yolks, hard cheeses, chicken, bacon, and gammon. Fermented
foods, especially natto, provide a significant amount of vitamin K2 [78]. Each of these
products is permitted on the KD [79]. As a result, warfarin-type anticoagulants should be
administered to patients on a KD while the diet plan and vitamin K levels in the blood are
closely monitored.

6. KD versus Anti-Inflammatory Agents

KD has garnered considerable attention in recent years due to the possibility that it
possesses anti-inflammatory properties. Several potential mechanisms may account for
the observed effects: reduced production of amyloid precursor protein [80], stimulation
of PPAR-γ activation [80,81], and ketone body-induced activation of hydroxy-carboxylic
acid receptor 2 (HAC2), which subsequently inhibits nuclear factor kappa B and increases
prostaglandin production [82–86].

Each of these mechanisms has the potential to reduce inflammation in a synergistic
manner, which could lead to the development of a novel strategy for treating inflam-
matory diseases that are resistant to conventional treatments. Additionally, this dietary
approach may pave the way for novel opportunities to decrease medication dependence
among chronically ailing patients and improve the efficacy of anti-inflammatory drugs
by possibly allowing for lower doses of medication and reducing the risk of side effects.
Furthermore, the KD selectively targets a multitude of cellular and molecular pathways
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that modulate inflammation in an alternative manner to conventional anti-inflammatory
drug treatments [87].

Steroidal Anti-Inflammatory Drugs

When attempting to implement a KD for patients undergoing chronic corticosteroid
therapy, caution should be advised. The primary detrimental effects of corticosteroids are an
increase in blood glucose levels (via stimulation of gluconeogenesis in the liver), a reduction
in glucose utilisation in adipose and muscle tissue, and a decrease in insulin sensitivity [88].
These effects have the potential to disrupt nutritional ketosis. An additional prevalent
adverse consequence of prolonged corticosteroid treatment is the accumulation of sodium
and water [89]. When used in conjunction with the KD, the potential for hydro-electrolyte
imbalances is heightened.

Hypercortisolism symptoms and hypothalamic–pituitary–adrenal (HPA) axis sup-
pression are both known side effects of systemic corticosteroids [90]. In contrast, research
conducted in the past ten years has demonstrated that the KD disrupts the hormonal
equilibrium by influencing the synthesis of cortisol and other metabolic regulating hor-
mones [91]. Actually, it was found that rats’ blood cortisol levels rise during a KD. Research
conducted by Ryan et al. showed that the HPA axis may be acutely and persistently
activated by a dietary treatment that involved a relative reduction of carbs, leading to
nutritional ketosis [92].

7. KD versus CNS Disorders
7.1. Antiepileptic Drugs

Antiepileptic medications (AED) are commonly employed in the management of
epilepsy, a prevalent neurological disorder. Nevertheless, a notable 30% of individuals
suffer from refractory epilepsy, indicating their inability to attain long-lasting seizure re-
lief despite attempting two distinct antiepileptic treatment regimens. A subset of these
individuals do not meet the criteria for surgical intervention, hence requiring the explo-
ration of alternate therapeutic approaches such as palliative surgery, neuromodulation, and
adherence to a KD [93]. AEDs are categorised into two distinct classifications: liver enzyme-
inducing antiepileptic drugs (EIAEDs) (phenytoin, phenobarbital, and carbamazepine) and
non-enzyme-inducing antiepileptic drugs (NEIAEDs) (levetiracetam, valproate sodium,
topiramate, clobazam, clonazepam, ethosuximide, gabapentin, lacosamide, lamotrigine,
pregabalin, tiagabine, vigabatrin, and zonisamide) [94,95].

Considerable discussion has developed within this context regarding the potential
interactions that may arise between KD and AEDs, with a specific emphasis on the ramifi-
cations for the effectiveness and safety of refractory epilepsy management [96–101].

In recent years, the KD has been increasingly utilised as an adjunctive treatment
for epileptic disorders. Numerous studies have examined the antiepileptic potential of
this diet, delving extensively into the mechanisms by which nutritional ketosis produces
its therapeutic effect [24,93,102,103]. The primary hypothesised mechanisms underlying
the antiepileptic effect of the KD are summarised in Figure 4. Regarding the pharmaco-
dynamic interaction between the KD and antiepileptic drugs, it is possible to discuss a
synergistic effect that is either additive or potentiating, contingent upon the specific drug
selected for pharmacotherapy. Figure 4 illustrates the proposed mechanisms underlying
the antiepileptic effect of the KD.
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With regard to pharmacokinetic interactions, nevertheless, serious caution is advised.
Certain AEDs and KD, due to their high lipid content, may interact with one another in
terms of absorption. Tiagabine, valproic acid, phenobarbital, and topiramate were reported
to have a decreased absorption of fats, leading to reduced peak serum concentrations. Con-
versely, a meal rich in fat was observed to increase the rate at which phenytoin is absorbed.
Moreover, soy-based foods have the potential to substantially reduce plasma concentrations
of valproic acid through the facilitation of glucuronidation, thereby promoting increased
rates of valproic acid excretion and clearance [105]. In contrast, consuming rufinamide with
food increases peak exposure by 50% and AUC by 30–40%; thus, administering rufinamide
with meals is suggested. Gabapentin should also be taken with food because it absorbs
more quickly and completely when combined with a high-fat meal [95].

According to a number of studies, the KD might increase the activity of certain
cytochrome P450 enzymes [106,107]. This is especially critical for antiepileptic drugs that
are metabolised by these enzymes, as an increased metabolism could potentially lead to
decreased plasma concentrations of the drugs and a subsequent decline in their therapeutic
effectiveness [108]. A patient who initiated a KD while concurrently taking clobazam
demonstrated a reduction of 42% in clobazam concentrations in their serum. The authors
suggested that the KD might elevate the activity of cytochrome P450 enzymes, thereby
resulting in an increased rate of drug metabolism [109]. The effect of the Atkins diet on
serum concentrations of anticonvulsant medications in 63 adult patients with drug-resistant
epilepsy was the subject of another study. During the trial, the following medications
were administered: lamotrigine, topiramate, valproic acid, carbamazepine, clobazam,
levetiracetam, lacosamide, zonisamide, and oxcarbazepine. Significant reductions in serum
concentrations of clobazam, carbamazepine, and valproic acid occur after 4–12 weeks of
following the modified Atkins diet. In contrast to lamotrigine, topiramate, and lacosamide,
which all reduce the serum concentration, oxcarbazepine, zonisamide, and levetiracetam
do not. Plasma concentrations of anticonvulsant medications may be decreased by KD,
resulting in diminished efficacy and potential adverse effects [101,110,111].

Biorender.com
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7.2. Antipsychotic Agents

Psychotic disorders are a group of mental illnesses that include severe disturbances
of perception, thinking, and behaviour, frequently leading to a loss of contact with re-
ality. These disorders include illnesses such as schizophrenia, schizoaffective disorder,
and delusional disorder. Each disorder has its own distinct symptoms and course [112].
Hallucinations and delusions are fundamental components of psychotic disorders. They
can occur in several ways, such as auditory, visual, tactile, and olfactory hallucinations. In
addition, they may include the maintenance of incorrect, unchanging ideas uninfluenced by
contradictory data. The cause of psychotic illness is complex, with many elements at play,
including genetic predispositions, neurobiological abnormalities, environmental stress, and
psychosocial factors. Pharmacotherapy, particularly antipsychotic drugs, is the mainstay of
treatment. However, other therapies, including psychotherapy, psychological support, and
new approaches such as KD, are also receiving increased attention [113].

The association between KD and antipsychotic agents represents a significant diver-
gence in treatment approaches for mental illness. Antipsychotic drugs have been the
cornerstone of psychiatric treatment for conditions such as schizophrenia, bipolar disorder,
and schizoaffective disorder, aiming to relieve symptoms such as hallucinations, delusions,
and mood disorders. However, their effectiveness is often limited, with a substantial pro-
portion of patients experiencing only partial relief of symptoms or significant side effects
such as weight gain, metabolic disorders, and extrapyramidal symptoms. Instead, KD
offers a new therapeutic pathway, focusing on altering the metabolic state of the brain by
inducing ketosis, which involves using ketone bodies as an alternative source of energy
instead of glucose. This metabolic change can influence various neurochemical pathways
involved in mental illness, potentially leading to improvements in mood stability and
psychotic symptoms. Furthermore, KD has shown promise for alleviating some of the
metabolic side effects associated with antipsychotic drugs, such as weight gain and insulin
resistance [114,115].

Regarding the therapeutic management of schizophrenia, it is mainly represented by
antipsychotic drugs targeting dopamine activity. The KD has attracted attention because
of its potential impact on brain function. Ketosis can alter levels of neurotransmitters,
particularly GABA and glutamate, which play a crucial role in the pathology of schizophre-
nia. Studies suggest that ketogenic diet-induced ketosis may increase GABA synthesis
while modulating glutamate metabolism, which may improve symptoms associated with
schizophrenia. However, there are challenges, including adherence to dietary restrictions
and potential adverse effects on lipid profiles and metabolic health. Nevertheless, emerging
evidence suggests that ketogenic diet therapy holds promise as an adjunctive treatment
for schizophrenia, offering a novel approach to addressing treatment-resistant symptoms
and improving overall patient outcomes [114]. A study on mice showed the effects of
co-administration of the KD with the antipsychotic drug olanzapine. It has been shown
that the KD can exert synergistic effects with antipsychotic drugs by modulating neuro-
transmitter systems, stabilising neuronal networks, and improving neuroplasticity. The
adverse effects of olanzapine, blamed for decreased insulin secretion and insulin resistance,
were neutralised by diet-induced ketosis. Compared to the control and control groups, an
enhanced therapeutic effect and greater safety were demonstrated when olanzapine was
administered to mice in the ketosis state [116].

In a retrospective study of 31 patients undergoing antipsychotic treatment, researchers
demonstrated the need to reduce the dose of the drug or even eliminate the antipsychotic
from therapy in patients who followed a ketogenic diet [113]. The diet also showed signifi-
cant effects in two cases of treatment-resistant schizophrenia. Patients treated concomitantly
with lithium, olanzapine, ziprasidone, aripiprazole, lamotrigine, quetiapine, haloperidol,
perphenazine, and risperidone stopped taking medication after several months. They con-
tinued to follow the diet, and the hallucinations and suicidal thoughts disappeared. Their
mood improved significantly, and they became independent without needing specialist
care or medication [117].
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In children with autism spectrum disorders, IQ scores were found to increase when
the KD was combined with drug therapy [118].

A negative aspect of the concomitant administration of antipsychotic medication in
patients with the KD is the accentuation of metabolic adverse reactions such as constipa-
tion, fatigue, acidosis, and dehydration. In patients with autism spectrum disorders or
bipolar disorder, these reactions are an impediment to continuing the diet, especially for
children [115].

7.3. Anxiolytics and Hypnotic Agents

Anxiolytics and hypnotic agents (benzodiazepines, zolpidem, zaleplon, eszopiclone,
etc.) are commonly prescribed medications for the management of anxiety disorders
and insomnia. There is no evidence in the literature that these medications and the KD
interact directly. However, we can highlight potential indirect interactions based on their
pharmacological properties and the metabolic effects of the KD.

The KD may affect the activity of liver enzymes involved in drug metabolism, such as
cytochrome P450 enzymes. Anxiolytics and hypnotic agents are metabolised in the liver,
which means that diet-induced changes in CYP P450 activity could theoretically affect their
metabolism and elimination from the body. This may lead to changes in the effectiveness
of the drugs or adverse effects [105].

In addition, the ketogenic diet influences neurotransmitter levels and neuronal ex-
citability in the brain, which could interact with the mechanisms of action of anxiolytic and
hypnotic agents. For example, benzodiazepines enhance the inhibitory effects of gamma-
aminobutyric acid (GABA) in the central nervous system, leading to sedative and anxiolytic
effects [119].

7.4. Antidepressants

Regarding the choice of a ketogenic diet in patients on antidepressant medication,
no information has been found to show a direct link between the two. According to
the observations so far from clinical trials, it can be assumed that there is a synergistic
therapeutic effect. Both the ketogenic diet and selective serotonin reuptake inhibitors
(SSRIs) or serotonin and norepinephrine reuptake inhibitors (SNRIs) have a significant
impact on the neurotransmitter systems and metabolic pathways of the brain on their
own. SSRIs influence mood and emotional control by blocking serotonin reuptake, which
increases synaptic serotonin levels. On the other hand, SNRIs influence the reuptake of both
norepinephrine and serotonin, which affects both neurotransmitter systems. The high-fat,
low-carb ketogenic diet causes the body to change its metabolism to one that uses ketone
bodies, which affects neurotransmitter creation and neuronal energy consumption [120].

7.5. General Anaesthetics

The ketosis state characteristic of the KD leads to high levels of ketone bodies, which
serve as an alternative energy substrate for the brain. This “fuel” can potentially influence
the body’s response to general anaesthesia, which usually involves the administration
of anaesthetic agents that modulate neurotransmitter systems and neuronal activity. In
addition to direct interactions as a result of the ketosis state, the administration of general
anaesthetics, such as sevoflurane, in patients undergoing the KD determines possible
implications for anaesthetic depth, pharmacokinetics, and recovery dynamics. In addition,
the impact of the KD on systemic metabolism, electrolyte balance, and liver function could
influence the metabolism, distribution, and elimination of anaesthetic drugs [121].

A condition of ketosis brought on by a high-fat, low-carb diet may have anticon-
vulsant benefits via boosting neuronal energy stores, antioxidant capabilities, and anti-
inflammatory effects [122].

The effects of the KD on serum electrolytes and acid–base status, the impact of intra-
venous fluid selection on acid–base status, the modification of ketogenic status through the
administration of glucose in intravenous fluids or medication, the risk of hypoglycaemia,
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and the effects of ketosis and acidosis on cardiovascular function are among the specific
perioperative concerns of patients undergoing the KD [30].

The acidosis caused by the KD is usually not severe and has little effect on perioper-
ative care or physiological function. On the other hand, kidney stones, decreased bone
mineralisation, and changes in blood electrolyte levels might all be long-term consequences
of chronic acidosis [123,124].

Severe acidosis can occasionally be observed after extended surgical procedures or
when the patient is subjected to additional stressors, such as dilutional acidosis from non-
buffered intravenous fluids, metformin, or medications that inhibit carbonic anhydrase
(zonisamide or topiramate) [125].

Regarding the use of propofol in general anaesthesia, propofol-related infusion syn-
drome has been reported in children following the KD, a very rare but potentially fatal
reaction [126].

7.6. Cannabidiol (CBD)

CBD is the non-psychoactive component of cannabis, which, although controversial,
is associated with various potential health benefits, including relief of pain, anxiety, inflam-
mation, and seizures. While there is little direct research on the interaction between the KD
and CBD specifically, there are some indirect ways in which the two might interact [99,127].

Both the KD and CBD influence metabolism. The KD alters metabolism to prioritise
fat burning for energy, while CBD may affect metabolism through its interaction with the
endocannabinoid system. However, there is no clear evidence to suggest that the KD would
significantly alter CBD metabolism.

Because the KD is high in fat, it could enhance CBD absorption, as CBD is a fat-soluble
compound. Consumption of CBD with high-fat foods or in the context of a high-fat diet
could lead to better absorption and potentially stronger effects.

Compared to their beneficial effects in the management of conditions such as epilepsy
or chronic pain, we can consider the existence of a synergistic effect between the two. Both
have been studied independently for their potential neuroprotective and anti-inflammatory
properties, so combining them could theoretically enhance their effects in certain situations.

Both the KD and CBD can have side effects such as digestive problems, appetite
changes, and mood swings. Combining the two could exacerbate these side effects for some
people, although this would likely vary depending on the individual and their specific
health condition [127]. The KD can also induce overexpression of cannabidiol receptors,
resulting in a therapeutic underdose of CBD [128].

8. KD versus Cancer

According to the latest studies in the field, the KD may be an adjuvant therapy in
the advanced treatment of various cancers. Acidosis and lowering the concentration of
available glucose may prevent the growth of cancer cells. Combining the KD with classical
cancer therapy leads to decreased tumour cell growth [129–132].

The synergism of using the KD concurrently with chemotherapy has been demon-
strated in several cancers. In a study of 518 women with recurrent or metastatic local
breast cancer, the effect of irinotecan in combination with the KD was studied. Patients in
the study were randomly assigned to the combination intervention group or the control
group, followed by treatment with irinotecan + ketogenic diet or irinotecan + normal
diet, respectively. Irinotecan sensitivity, response rate to therapy, survival, quality of life,
incidence of adverse reactions, and cost-effectiveness were followed. A longer response
time was observed with irinotecan administration in patients with a normal diet [133].

Another study demonstrated the effectiveness of the KD in pancreatic cancer. The
KD has made phosphoinositide 3-kinase inhibitors (PI3K) inhibitors, which are normally
inactive against pancreatic cancer, effective in KPC tumours. Here, we will show that in the
model KPC mouse (KrasG12D/+; Trp53R172H/+; P48-Cre), the ketogenic diet synergizes
with the clinically active cytotoxic chemotherapy regime of gemcitabine, nab-paclitaxel, and
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cisplatin. Surprisingly, while it has no effect on tumour growth on its own, the ketogenic
diet triples the survival benefits of triple chemotherapy [134].

Also, another study demonstrated increased therapeutic efficacy and decreased inci-
dence of adverse reactions for oxaliplatin and leucoplatin in patients diagnosed with stage
III-IV locally advanced or metastatic gastric adenocarcinoma that received metabolically
supported chemotherapy and followed a KD [135].

A study in a murine model of lung cancer revealed the metabolic effects of radiotherapy-
associated KD. Different concentrations of glucose and beta-hydroxybutyrate (bHB) were
administered to simulate different levels of ketone bodies, combined with radiotherapy,
on LLC cell proliferation. The KD may enhance the anti-tumour effect of radiotherapy in
LLC tumour-bearing mice by reducing glucose and increasing the energy supply ratio from
fat [136].

The KETOCOMP study highlighted the impact of KD on the body composition of
patients with different types of cancer during radiotherapy. After initial water losses,
KD tends to reduce body weight and fat mass while maintaining fat-free muscle mass and
skeletal mass, which are essential in breast cancer [137]. In head and neck cancer, combining
the KD with radiotherapy had beneficial effects compared to chemotherapy [138].

9. KD on the Microbiome

The KD has been seen to cause substantial alterations in the makeup of the gut mi-
crobiota. These changes are marked by a decrease in diversity and shifts in the relative
abundance of certain bacteria. The effects of probiotics and microbiota-modifying medi-
cations are exerted via direct influence on the structure and function of the gut microbial
population. Preclinical studies have shown that there may be interactions between the
KD and some probiotics. These interactions may have either a synergistic impact, where
the two work together to improve metabolic health, reduce inflammation, and enhance
gastrointestinal function, or an antagonistic effect, where they work against each other.
Probiotic treatment may reduce the negative effects of KD-induced dysbiosis and relieve
gastrointestinal symptoms that are often linked to KD, such as constipation and dyspepsia.
On the other hand, medications that change the makeup of the gut microbiota, including
antibiotics or prebiotics, might disturb the metabolic effects of the KD and weaken its
effectiveness as a treatment [139].

In an animal model of childhood epilepsy, how the KD affects hepatic steatosis and its
modulation by a defined probiotic mixture was studied. An assessment was conducted
using liver homogenates to measure several factors, including malondialdehyde levels,
fatty acid profiles, mRNA expression of enzymes involved in lipid metabolism, mito-
chondrial function, histone deacetylase activity, cytokines, and chemokines. The liver
homogenates were used to analyse a combination of several measures, including malon-
dialdehyde levels, fatty acid profiles, mRNA expression of enzymes associated with lipid
metabolism, mitochondrial function, histone deacetylase activity, as well as cytokines and
chemokines [140].

The outcomes of the study showed that the use of the KD led to a decrease in seizures,
but it also caused severe hepatic steatosis. This condition is characterised by a white liver,
a buildup of triglycerides, increased levels of malondialdehyde, and decreased levels of
polyunsaturated fatty acids and acyl-carnitines compared to yearlings that were given a
normal diet. The metabolic phenotype caused by the KD was averted by simultaneously
administering a combination of Streptococcus thermophilus HA-110 and Lactococcus lactis
subsp. lactis HA-136. The probiotic combination provided liver protection by enhancing
pAMPK-mediated signalling and stimulating lipid oxidation. The strains further increased
the production of caspase 1 and interleukin 18, perhaps contributing to their hepatopro-
tective impact in this animal. These findings indicate that administering probiotics at an
early stage might be a potential strategy to mitigate the risk of liver-related complications
in children who follow a medically prescribed ketogenic diet [140,141].
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10. Other Pharmacotherapeutic Interactions
10.1. Pharmacodynamics of Ketoacidosis-Inducing Agents

Nutritional ketosis is a flexible metabolic state that has several therapeutic implications,
namely, in the areas of metabolic health and the treatment of various diseases. Ketosis is
characterised by elevated levels of blood ketone substances, including acetoacetate, beta-
hydroxybutyrate, and acetone. These groups of molecules are produced when there is an
increase in the oxidation of fatty acids or when there is a reduced carbohydrate intake,
such as when following a KD. Fatty acids are the metabolic precursors of ketone molecules.
Acetoacetate and beta-hydroxybutyrate ketone bodies serve as alternate energy sources in
peripheral tissues, while acetone is eliminated by the lungs and urine [17,142–145].

On the other hand, diabetic ketoacidosis (DKA) is a serious metabolic complication of
diabetes that is characterised by high blood sugar levels, elevated ketone levels, abnormali-
ties in electrolytes, increased osmolarity, and metabolic acidosis [146]. This condition is a
result of insufficient insulin and the increase in chemicals that lead to insulin resistance,
including glucagon, growth hormone, and catecholamines. Diabetic ketoacidosis is most
frequently caused by a decrease in insulin activity or an increase in insulin demand. This
can happen as a result of missed doses, incorrect delivery, or infections. This results in the
inability to transfer glucose into the cells, causing cellular malnourishment and starvation.
The majority of cells transition to using free fatty acids as their primary source of energy. In
the absence of insulin, there is an abundance of free fatty acids in the circulatory system,
which are carried to the liver and then transferred through the mitochondria for the process
of oxidation [147–149]. Inadequate insulin levels lead to excessive ketone generation [150].
DKA is more prevalent in young children and adolescents compared to adults, although it
can manifest at any age [151].

Simultaneously, it is widely recognised that there is a diverse range of medicines
that can have the adverse effect of triggering diabetic ketoacidosis [152]. Table 1 displays
the primary categories of medications frequently used in pharmacotherapy that have the
potential to induce diabetic ketoacidosis.

Table 1. Ketoacidosis-inducing drugs.

ATC Therapeutics Chemical/Pharmacological
Class Compounds Observations Reference

A10 DRUGS USED IN
DIABETES

Insulin and analogues Insulin Improper administration or
incorrect handling [153]

Sodium-Glucose
Cotransporter-2 (SGLT2)

Inhibitors

Canagliflozin,
dapagliflozin,
empagliflozin

Because of their ability to promote
increased breakdown of fats and

elevated levels of glucagon
[154–156]

C01 CARDIAC THERAPY Sympathomimetics
Epinephrine,

norepinephrine,
terbutaline

[157–159]

C02DA DIURETICS Thiazides Hydrochlorothiazide,
chlorthalidone [160–162]

H02 CORTICOSTEROIDS FOR
SYSTEMIC USE Glucocorticosteroids Prednisone,

dexamethasone

At high concentrations, such as
those used to alleviate intracranial

tumours
[152,163,164]

J05 ANTIVIRALS FOR
SYSTEMIC USE

Integrase Strand Transfer
Inhibitor (INSTI)

Raltegravir, elvitegravir,
dolutegravir

The usage of INSTI was linked to a
higher risk of developing new-onset
diabetes mellitus or hyperglycaemia

within the first 6 months after
starting antiretroviral therapy

[165–167]

J05 HIV Protease inhibitors Ritonavir [168]

L01 ANTINEOPLASTIC
AGENTS

Checkpoint Inhibitors Pembrolizumab,
nivolumab, ipilimumab [169–171]

Chemotherapy drugs L-asparaginase [172–174]

L03 IMMUNOSTIMULANTS Interferons Interferon alpha [175,176]

L04 IMMUNOSUPPRESSANTS Calcineurin inhibitors Tacrolimus

Immunosuppressive medicines
administered post-transplantation

are a primary risk factors for
diabetic ketoacidosis.

[177,178]
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Table 1. Cont.

ATC Therapeutics Chemical/Pharmacological
Class Compounds Observations Reference

N02B ANALGESICS AND
ANTIPYRETICS Salicylates Salicylic acid derivates

High anion gap acidosis is a
common symptom of paediatric
overdose, whereas adults may
experience a combination of

respiratory alkalosis and metabolic
acidosis

[179]

N03 ANTIEPILEPTICS Anticonvulsivants Valproate, phenytoin [180–182]

N05A ANTIPSYCHOTICS
Atypical Antipsychotics Clozapine, olanzapine DKA can manifest suddenly and

without weight increase [183,184]

Mood stabilisers Lithium [185,186]

R03A ADRENERGICS,
INHALANTS Beta-adrenergic agonists Albuterol, salmeterol

Although insulin secretion is
enhanced due to specific

beta(2)-agonist actions on pancreatic
beta cells, overall serum glucose

levels are raised and insulin
sensitivity appears to be decreased
due to other mechanisms, such as

increased glucagon production and
hepatic effects

[187–189]

Thus, the use of the KD at the same time with various drugs that can induce or
aggravate diabetic ketoacidosis may increase the risk of serious metabolic complications,
through a pharmacodynamic adverse effect of synergistic potentiation of ketone body
formation. For this reason, clinicians should carefully monitor pharmacotherapy as well as
dietary therapy, which emphasises the importance of individualised and patient-centred
pharmacotherapy.

10.2. Pharmacokinetics of Lipophilic Drugs

Numerous studies have demonstrated that a high-lipid diet can enhance the absorption
of lipophilic medications [190–194]. Petit et al. discovered that a sustained high-fat diet
alters gastrointestinal physiology and the manner in which the body utilises lipids, resulting
in enhanced lipid absorption capacity [190]. Furthermore, Patel and Brocks noted that
pharmaceuticals that possess a significant level of lipophilicity may demonstrate elevated
bioavailability when administered in conjunction with diets high in fat [191]. There are a
number of ways in which dietary lipids and lipid-based formulations could affect the oral
absorption of lipophilic medications. By forming different types of colloidal structures, the
drug’s solubility can be enhanced. The presence of lipids and the modelling of physiological
lipid processing pathways can affect drug solubilisation by increasing the release of bile
salts and phospholipids [193]. Some of the most widely used medications with high
lipophilicity are shown in Table 2.

The impact of a high-fat diet on the absorption of lipophilic drugs may result in
fluctuations in drug effectiveness and an elevated likelihood of adverse effects, given
that heightened drug absorption corresponds to an intensified drug mechanism and the
consequent danger of toxicity. When prescribing lipophilic drugs, clinicians should consider
the patient’s dietary habits and potentially modify dosages in order to maintain therapeutic
levels and minimise side effects. This approach ensures patient safety and optimises
treatment outcomes.
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Table 2. Medications with a high lipophilicity.

Chemical/Pharmacological Class Compounds Reference

Antipsychotics Olanzapine, clozapine [195]

Antidepressants Amitriptyline, nortriptyline, doxepin [196–198]

Benzodiazepines Diazepam, midazolam [199]

Sedatives Zolpidem, zopiclone [200,201]

Antiepileptics Phenytoin, carbamazepine, valproic
acid, gabapentin, pregabalin [202,203]

Antiarrhythmic drugs Amiodarone [204]

Beta-blocking agents Propranolol, metoprolol [205]

Statins Simvastatin, fluvastatin, lovastatin,
pitavastatin, and atorvastatin [206]

Antimalarian drugs Chloroquine, mefloquine [207,208]

Antifungal drugs Ketoconazole, itraconazole [209,210]

Immunosuppressants Tacrolimus [211]

Antivirals Ritonavir, saquinavir [212,213]

Opioids Methadone [214]

Antihistamines Cetirizine, loratadine [215,216]

Antiparasitic drugs Ivermectin [217]

Antituberculosis Rifampicin [218]

Diuretics Spironolactone [219]

10.3. Drugs Disrupting Ketosis

In order for the KD to reach its full therapeutic potential, it is imperative that the
state of nutritional ketosis be maintained throughout the course of treatment. However,
the state of ketosis can be disrupted by the consumption of carbohydrates [220]. While
therapeutic guidelines and clinicians diligently monitor patients to advise them against con-
suming carbohydrate-rich foods, particular emphasis should be placed on pharmaceutical
formulations that incorporate carbohydrates either as active ingredients or excipients.

Lactulose, also known as 4-O-β-D-galactopyranosyl-D-fructofuranose, is a widely
recognised carbohydrate that is frequently employed in the management of chronic consti-
pation [221]. Inulin, an increasingly prevalent prebiotic in the nutraceutical industry, is a
carbohydrate derivative composed of two to sixty fructose units connected to a terminal
glucose by β-(2, 1) glycosidic bonds [222].

Simultaneously, the pharmaceutical industry extensively utilises carbohydrates as
excipients in pharmaceutical technology [223]. The primary categories of carbohydrates
commonly utilised in both liquid pharmaceutical forms (such as syrups, solutions, injectable
or infusible solutions) and solid pharmaceutical forms (such as tablets and capsules with
regular or modified release) include sugars like sucrose, glucose, lactose, mannitol, and sor-
bitol, which are employed as sweeteners [224]. Additionally, cellulose-type polysaccharides
or cellulose derivatives (such as microcrystalline cellulose, hydroxypropyl methylcellulose,
and carboxymethylcellulose) are primarily used as thickening agents [225]. Starch-type
polysaccharides serve as disintegrating agents, binding agents, and filling agents [226].
Dextran-type polysaccharides are used as stabilising agents for parenteral solutions [227].
Various types of gums (such as xanthan, acacia, and guar) are employed as emulsifying
agents or thickening agents [228]. Lastly, cyclodextrins are used to enhance the absorption
of different classes of active substances [229].

A further investigation determined that anticonvulsant, sedative, and antibiotic medi-
cations include significant quantities of propylene glycol and other carbohydrates. These
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substances have the potential to disrupt nutritional ketosis and exacerbate propylene glycol
poisoning and metabolic acidosis [230].

Hence, to enhance the therapeutic benefits of the KD, it is crucial to take into account
the existence of various categories of carbohydrates in pharmaceutical formulations.

11. Identified Research Gaps and Future Perspectives

The findings derived from this narrative review reveal some potential future prospects
with therapeutic consequences, along with several gaps in the existing research. There is a
need for a more comprehensive investigation of the potential processes that may contribute
to drug interactions with KD. While the impact of the KD on the pharmacokinetics of
certain medications has been identified, there are still certain mechanisms that have not
been fully understood. Subsequent investigations should prioritise understanding of
these pathways at the molecular scale to enhance the precision of forecasting potential
KD-drug interactions.

Additionally, clinical trials examining the long-term effects of combining the ketogenic
diet with various medications used to treat chronic diseases are required to assess its
effectiveness and safety. Concurrently, the primary aim of this investigation ought to
be the development of clear, extensively documented protocols that apply to a broad
spectrum of health practitioners. In consideration of the inter-individual variability of each
patient, these recommendations may facilitate the tailoring of therapeutics via dietary and
treatment plans.

Nevertheless, upon conducting a comprehensive review of the existing literature, sev-
eral deficiencies in the research could be identified. One of these challenges is the absence of
study standardisation, as substantial discrepancies exist among studies concerning the im-
plementation of the KD. This characteristic limits the ability to compare studies and derive
conclusive findings. Additionally, the literature fails to adequately represent certain patient
populations, including children, pregnant women, the elderly, and patients with special
needs. Changes in pharmacokinetic parameters and other physiological modifications
that occur in these patient populations are crucial to comprehend how the KD influences
drug mechanisms and metabolism. However, it is important to note that the scientific
literature contains a lack of research examining the effects of dietary associations in various
pathologies on patients’ mental health, general well-being, quality of life, and satisfaction.

The present narrative review conducted a thorough and focused investigation into
the dual function of KD as a pharmacotherapeutic potentiating agent, exhibiting both
positive and negative effects. In addition, a diverse range of chronic pathologies and
pharmacotherapeutic regimens are provided, thereby offering a holistic approach to a
subject that is rarely addressed in the scientific literature. Through this approach, the
present study offers numerous clinically applicable insights regarding the incorporation of
the KD into conventional pharmacotherapeutic regimens.

12. Conclusions

This narrative review has offered various perspectives on the prospective benefits
of incorporating the KD into the treatment of chronic pathologies. While KD has demon-
strated encouraging results in treating various clinical conditions (e.g., diabetes, epilepsy,
and cardiovascular diseases), these results must be assessed in a cautious and balanced
manner in order to comprehend the potential negative consequences that may arise from
inadequate monitoring of clinical outcomes. In addition, it is important to fully understand
the adverse effects of KD and its potential interactions with multiple medication classes
to improve the patients’ adherence to treatment and their quality of life. To ensure the
efficacy of this nutritional intervention, it should be emphasised that the diligent selection
of patients who qualify for KD implementation and their careful monitoring throughout
treatment, particularly patients with renal and hepatic dysfunction, are crucial. Conse-
quently, although KD presents numerous and highly beneficial opportunities for integration
with pharmacotherapeutic regimens, this integration must be performed exclusively by
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specialists (physicians, pharmacists, and nutritionists) to ensure that patients receive a
personalised therapy that is both safe and effective.
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