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Abstract: Non-invasive diagnostics are crucial for the timely detection of renal cell carcinoma
(RCC), significantly improving survival rates. Despite advancements, specific lipid markers for
RCC remain unidentified. We aimed to discover and validate potent plasma markers and their
association with dietary fats. Using lipid metabolite quantification, machine-learning algorithms,
and marker validation, we identified RCC diagnostic markers in studies involving 60 RCC and
167 healthy controls (HC), as well as 27 RCC and 74 HC, by analyzing their correlation with dietary
fats. RCC was associated with altered metabolism in amino acids, glycerophospholipids, and
glutathione. We validated seven markers (L-tryptophan, various lysophosphatidylcholines [LysoPCs],
decanoylcarnitine, and L-glutamic acid), achieving a 96.9% AUC, effectively distinguishing RCC
from HC. Decreased decanoylcarnitine, due to reduced carnitine palmitoyltransferase 1 (CPT1)
activity, was identified as affecting RCC risk. High intake of polyunsaturated fatty acids (PUFAs) was
negatively correlated with LysoPC (18:1) and LysoPC (18:2), influencing RCC risk. We validated seven
potential markers for RCC diagnosis, highlighting the influence of high PUFA intake on LysoPC levels
and its impact on RCC occurrence via CPT1 downregulation. These insights support the efficient and
accurate diagnosis of RCC, thereby facilitating risk mitigation and improving patient outcomes.

Keywords: diagnosis markers; carnitine palmitoyltransferase 1; lysophosphatidylcholine; metabolite;
polyunsaturated fatty acid; renal cell carcinoma

1. Introduction

Globally, renal cell carcinoma (RCC) accounts for 70–80% of kidney cancers and is a
highly aggressive subtype [1,2]. Owing to the asymptomatic early stages, late diagnosis
and high metastasis rates are common [3]. Timely stage-1 RCC detection enhances 5-year
survival by 7.25-fold compared to that at stage-4 RCC detection (12%) [4], reducing dis-
ease progression, recurrence, and metastasis. RCC diagnosis via pathology or surgery is
challenging for small tumors [5]; therefore, non-invasive and specific biomarkers for RCC
detection are urgently required.

To the best of our knowledge, 13 prior case-control studies have identified potential
metabolic biomarkers in plasma [6–10] or serum [11–18] that distinguish RCC from controls.
The proposed profiles include lipids, lipoproteins [6–9,13–15,17,18], amino acids [6–8,10,12–
14,17], and carbohydrates [7,11,13,14,16]. However, robust RCC diagnostic biomarkers
remain unclear.

Abnormal RCC growth alters glucose, lipid, and amino acid metabolism [2]. Clear-cell
RCC is driven by the activation of hypoxia-inducible factors (HIFs) derived from the von
Hippel–Lindau (VHL) mutation, which accelerates tumor progression [19,20]. Increased
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HIF levels in RCC cause lipid-droplet accumulation and elevated levels of free fatty acids
(FFAs), particularly polyunsaturated fatty acids (PUFAs), which react with reactive oxygen
species (ROS) to cause lipid peroxidation [21]. Amino acid metabolism critically regulates
RCC stages, thereby affecting growth, angiogenesis, and prognosis [22].

Amino acid and lipid metabolism are vital in RCC. Prior studies lacked systematic
analyses of specific amino acids and lipids in the plasma of patients with RCC, as they
mainly used qualitative mass spectrometry methods [23], such as proton nuclear magnetic
resonance [7,13,16], MS or multivariate models [10–12,14,18], and liquid chromatography
(LC)-MS [8,9,15,17]. Our study quantified plasma metabolites and lipids using an Abso-
luteIDQ p400 high-resolution (HR) kit and ultra-high-performance LC (UHPLC)-MS, which
allowed for absolute quantification. Blood-based samples are less variable, diet-sensitive,
and rich in lipids, which are crucial for biology [8]. Machine-learning (ML) analysis of
extensive cancer data has shown promise in determining prognosis [24]. We aim to employ
ML algorithms to identify predictive plasma markers with accuracy.

Risk factors for RCC include smoking, obesity, and hypertension, but dietary links are
limited [25]. Previous studies on RCC show varied results regarding fat intake [26–29]. In
a European investigation, fish intake was found to have no association with an increased
risk of RCC [29], whereas a study conducted in Japan indicated otherwise [28]. Despite the
significance of lipids in RCC, previous studies have yielded varying results. Specifically,
studies linking nutrients to blood metabolites are rare.

Therefore, herein, we aim to identify robust potential markers for the diagnosis of
RCC through the quantification of plasma metabolites, machine learning, and marker
validation. Furthermore, we investigated the correlations and mechanisms between the
potential markers, dietary fats, and food to elucidate their impacts on RCC development.

2. Materials and Methods
2.1. Study Participants

In this research, we included adults (19+ years) diagnosed with RCC at the National
Cancer Center, South Korea. Two patients with RCC were excluded due to lung cancer
metastasis. A healthy control (HC) group without cancer was also gathered from the
same center. We randomly divided RCC and HC samples into discovery and validation
sets at a ratio of 70:30 (discovery set: 60 RCC and 167 HC, validation set: 27 RCC and
74 HC). A questionnaire assessed age, gender, height, weight, alcohol use, and smoking.
Body mass index (BMI) was measured by taking weight (kg) divided by height (m)2.
Smoking/drinking history was noted if present. Carcinomas were categorized into four
types (clear cell, chromophobe, papillary, and unclassified), and the categories included
cancer site, T stage, pathology stage, surgery type, nuclear grade, tumor size, margin,
necrosis, and invasion presence. This study was approved by the National Cancer Center
Institutional Review Board (IRB No. 2019-0116, approval date of ethical statement: 3 June
2019). Consent was attained per the Declaration of Helsinki.

2.2. Plasma Sample Preparation

Participants fasted for 12 h prior to blood collection. Blood was drawn into K2 EDTA
tubes (BD Vacutainer, BD Biosciences, Franklin Lakes, NJ, USA), centrifuged at 3000 rpm
for 20 min at 4 ◦C to get plasma, and stored at −80 ◦C for later analysis.

2.3. UPLC/Orbitrap MS and Metabolite Quantification Analysis

We used Vanquish Flex UHPLC (Thermo Fisher Scientific, Waltham, MA, USA) con-
nected to Q ExactiveTM Hybrid Quadrupole-Orbitrap MS (Thermo Fisher Scientific) for tar-
geted metabolic and lipid profiling. We employed the AbsoluteIDQ p400HR kit (Biocrates,
Innsbruck, Austria) to analyze 408 metabolites and lipids in the blood, including 21 amino
acids, 21 biogenic amines, 1 hexose, 172 phosphatidylcholines, 24 lysophosphatidylcholines,
31 sphingomyelins, 9 ceramides, 55 acylcarnitines, 14 cholesteryl esters, 18 diglycerides,
and 42 triglycerides. The analysis was performed following the kit’s instructions. Quanti-
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ties were calculated using software, including Quant Browser (Thermo Xcalibur 4.3.73.11)
and MetIDQ (Oxygen-DB110-3023), based on obtained spectra from the instrument.

2.4. Metabolomic Data Processing

Ninety-one metabolites with values < LoD or <LLoQ were excluded using MetaboAn-
alyst 5.0 (https://www.metaboanalyst.ca/ (accessed on 18 April 2023)). Missing values
were replaced with an LoD value (1/5 of minimum peak intensity). Normalization used
log transformation and auto-scaling, analyzing 284 metabolites. Principal component
analysis and partial least squares discriminant analysis (PLS-DA) were conducted using
MetaboAnalyst. For PLS-DA, R2 > 0.5 and Q2 > 0.5 were used for goodness of fit. Differ-
ential metabolites were selected with an FDR-adjusted p < 0.05 and multivariate PLS-DA
variable importance in projection (VIP) > 1.0. Heatmaps and volcano plots were generated
to identify differentially expressed metabolites.

2.5. Identification of RCC Diagnostic Candidate Markers through Machine Learning

In this study, we employed ML to analyze the blood metabolomes of patients with
RCC using a case-control design. An optimal RCC diagnostic model was developed using
the GOSS algorithm paired with lightweight GBM. The model’s performance was assessed
via 5-fold cross-validation on a training set. The model’s efficiency and generalizability
were evaluated with a fixed test set, ensuring reliable estimates. After trying XGBoost,
LightGBM, GBM, and Random Forest, Random Forest was chosen as the best-performing.
The model’s performance was comprehensively evaluated using 5-fold average scores for
metrics such as accuracy, AUC, sensitivity, specificity, F1 score, and precision.

2.6. Receiver Operating Characteristic (ROC) Curve, Enrichment, and Pathway Analysis

The ROC curve analysis identified potential RCC-associated markers. MetaboAnalyst
performed classical univariate and multivariate ROC analyses. The ROC was used to
assess metabolite-marker performance. ROCs compared sensitivity and specificity for
dichotomous outcomes. The area under curve (AUC) was used to assess marker effec-
tiveness. Both analyses used cutoffs for markers with high sensitivities and specificities
(AUC > 0.80). The linear SVM (Support Vector Machine) algorithm was used for ROC
curve analysis. Log2 fold change (FC) shows the metabolite differences between groups.
Enriched lipid–metabolite sets used a p < 0.05 cutoff; pathways used a p < 0.05 FDR cutoff
with MetaboAnalyst and Cytoscape (3.10.0, https://cytoscape.org/ (accessed on 20 April
2023)) to visualize major metabolite networks, and the shape sizes showed significance.

2.7. Carnitine Palmitoyltransferase (CPT) Family Genes Expression Analysis and
CPT1 Measurement

We analyzed CPT family genes (CPT1A, CPT1B, and CPT2), carnitine-acylcarnitine
translocase (CACT), and carnitine acetyltransferase (CrAT) in human kidneys using pub-
lished GEO microarray datasets (GSE781 and GSE6344) via the GEO database (https:
//www.ncbi.nlm.nih.gov/geo/ (accessed on 10 June 2023)). The data were compared
based on relative expressions.

CPT1 levels were measured using a CPT1 enzyme-linked immunosorbent assay
(ELISA) kit (mbs724213, MybioSource, Inc., San Diego, CA, USA). Plasma samples (1:5 di-
lution) were added to 96-well plates with standards. After adding a conjugate, the plates
were incubated at 37 ◦C for 1 h and then washed five times. Substrates A and B (50 µL
each) were added to the wells and incubated in the dark for 10 min. The reaction was
stopped with a 50 µL stop solution. The optical density was measured at 450 nm using
a UV–vis spectrometer (SPECTROstar Nano, BMG Labtech, Ortenberg, Germany). CPT1
concentrations were determined by comparing the standard curve with the absorbance
values of the samples at 450 nm.

https://www.metaboanalyst.ca/
https://cytoscape.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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2.8. Dietary Fat and Nutrient Intake Analysis and Correlations with Metabolites

The nutrition of each participant was assessed with a semi-quantitative Food Fre-
quency Questionnaire (FFQ), comprising 95 items. The FFQ surveyed 219 HCs and 27 indi-
viduals with RCC. FFQ data were analyzed via the Computer-Aided Nutritional Analysis
Program 5.0 (CAN-pro 5.0, http://canpro5.kns.or.kr/ (accessed on 11 May 2023)). We
computed the daily averages for energy, carbohydrates, lipids, and amino acids. Nutrient-
adequacy ratios were assessed based on the 2020 Dietary Reference for Koreans provided
by the Ministry of Health and Welfare and the Korean Nutrition Society. The intake of
dietary fats or nutrients was calculated as the amount consumed per day relative to a
daily average of 1000 kcal. Spearman’s rank correlation coefficient was used to analyze the
metabolite concentration correlation with nutrients and food groups.

2.9. Statistical Analysis

We employed SPSS (version 26.0, Chicago, IL, USA) for statistical analyses of the
general characteristics using the chi-squared test, student’s t-test, and Fisher’s exact test.
The results were presented as mean (SD) or n (%), with p < 0.05 indicating significance.
Python (version 3.9.12, Wilmington, DE, USA) performed a multivariate logistic regression
and correlation analysis for metabolites and nutrients. Metabolomics data used an FDR-
adjusted p to identify significant compounds in the HCs vs. RCC group. Multivariate
PLS-DA VIP scores > 1.0 were assessed with MetaboAnalyst 5.0.

3. Results
3.1. Clinical and Diagnostic Characteristics of HC and RCC Groups

The clinical and diagnostic characteristics of the HC and RCC groups are summarized
in Table 1. Both the RCC and HC groups in both sets had an average age in their 60s, with
a higher proportion of males, although the difference was not significant. In both sets,
there were a notable number of individuals with a BMI classified as overweight or obese
(discovery set: HC 72.6%, RCC 71.7%; validation set: HC 70.2%, RCC 85.2%).

Table 1. General characteristics of participants according to the discovery and validation sets.

Characteristics
Discovery Set Validation Set

HC
(n = 167)

RCC
(n = 60) p a HC

(n = 74)
RCC

(n = 27) p a

Sex (Male) 121 (72.5) 35 (58.3) 0.052 44 (59.5) 20 (74.1) 0.244

Age (year) 60.0 (8.84) 62.5 (11.0) 0.109 60.8 (9.90) 60.2 (10.9) 0.759

BMI (kg/m2) 24.6 (2.78) 25.4 (3.99) 0.170 24.3 (3.62) 25.6 (2.41) 0.024

Low (<18.5) 3 (1.80) 2 (3.30)

0.482

3 (4.10) 0 (0.00)

0.172
Normal (18.5–22.9) 41 (24.6) 15 (25.0) 19 (25.7) 4 (14.8)

Overweight (23.0–24.9) 51 (30.5) 13 (21.7) 26 (35.1) 7 (25.9)
Obese (≥25) 72 (42.1) 30 (50.0) 26 (35.1) 16 (59.3)

Experiences of
smoking 86 (53.8) 26 (43.3) 0.177 40 (55.6) 16 (59.3) 0.822

Experiences of
drinking 123 (79.9) 35 (58.3) 0.002 61 (83.6) 17 (63.0) 0.034

Data are presented as means (standard deviation) for continuous variables and n (%) for categorical variables.
a p-value calculated using the chi-square test for categorical variables and Student’s t-test for continuous variables.
Fisher’s exact test was performed when the categorical variable was more than 25% of the cells with an expected
frequency of five or less. BMI: body mass index.

In the validation set, the RCC prevalence was slightly higher compared to HC. Smok-
ing rates were similar between groups. The HC group had 20–30% more alcohol experience
than the RCC group. Stage 1 was the most common stage for RCC in both sets (discovery
set 78.4%, validation set 77.8%) (Table S1). There was no lymph node involvement. Radical

http://canpro5.kns.or.kr/
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nephrectomy accounted for approximately 20%, with the remainder being partial nephrec-
tomy. The Fuhrman nuclear grade was predominantly 2/3. The volume of the RCC tumors
was measured at 25.2 ± 15.5 cm3.

3.2. Metabolomic Profiling for Identification of Candidate Metabolites

Metabolomic profiling was conducted to identify candidate metabolites, as depicted
in Figure 1A. A non-targeted metabolomics analysis was performed on plasma samples
obtained from 167 HC and 60 RCC individuals, along with 35 QC samples. After excluding
metabolites, normalizing, model validating, and applying cutoffs via PLS-DA VIP values
and FDR-adjusted p values, 79 metabolites remained for analysis (Figure S1A). PLS-DA
plots displayed intergroup variations (Figure S1B). VIP values from PLS-DA indicated
potential discriminatory metabolites (VIP > 1.0). The goodness of fit and predictive ability of
the model were estimated by the R2 and Q2 values (0.845 and 0.624), clearly discriminating
groups (Figure S1C). A heatmap based on 79 differential metabolites (VIP > 1.0, FDR
p < 0.05) showed substantial HC-RCC metabolite profile differences (Figure 1B). Among
them, 74 metabolites (e.g., decanoylcarnitine, LysoPC (16:0)) were downregulated in RCC
vs. HCs, whereas 5 metabolites (e.g., L-glutamic acid) were upregulated in RCC vs. HCs
(Figure 1C, Table S2).
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Figure 1. Data processing for metabolite analysis, heatmap, and volcano plot. (A) Flow chart of total
analysis. (B) Heatmap of 79 metabolites between HC and RCC. (C) Volcano plot for HC vs. RCC.
Each point in the volcano plot represents one metabolite. Significant metabolites were calculated
with an FC threshold of 1.0 on the x axis and at FDR-adjusted p < 0.05 on the y axis. Negative log2 FC
values indicated in blue represent lower concentrations in RCC than in HC (m = 74); positive values
indicated in red represent higher concentrations of metabolites in RCC than in HC (m = 5).
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3.3. Quantitative Analysis and Multivariate Logistic Regression Analysis Results for Candidate
Metabolites

The quantitative analysis results for candidate metabolites are as follows (Figure 2A–G).
Among the key metabolites, L-Glutamic acid increased in RCC, while decanoylcarnitine,
L-Tryptophan, LysoPC (16:0), LysoPC (18:0), LysoPC (18:1), and LysoPC (18:2) decreased.
After controlling for age, sex, BMI, smoking, and drinking, we calculated the odds ratios
(ORs) for key metabolites (Figure 2H, Table S3). Six of the metabolites, except L-Glutamic
acid, consistently exhibited a negative OR.
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Figure 2. Quantitative analysis and multivariate logistic regression results of seven metabolomes
and machine-learning results. Quantitative analysis and signature score results for each metabolite
are (A) L-Tryptophan, (B) LysoPC (16:0), (C) LysoPC (18:0), (D) LysoPC (18:2), (E) Decanoylcarnitine,
(F) LysoPC (18:1), and (G) L-Glutamic acid. (H) Multivariate logistic regression plot of ORs and 95%
confidence intervals for evaluation of the relationship between HC and RCC. Adjusted for age, sex,
BMI, smoking, and drinking. (I) POD plot (J) SHAP plot for one fold. (K) ROC curves of Random
Forest. (L) Average score of 5-fold models. Each box plot of the AUC curve, accuracy, sensitivity,
specificity, F1-score, recall, and precision was shown. (M) Metabolites importance plot. The top-20
important metabolites are listed and sorted by importance. *** p < 0.001.
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3.4. ML for RCC Diagnostic Candidate Metabolites Prediction

Upon comparing the performance metrics of four models (XGBoost, LightGBM, GBM,
and Random Forest), Random Forest emerged as the optimal model (Table S4). Our
selected model demonstrated an impressive 95.9% AUC, indicating robust discrimination
between RCC and HC (Figure 2K,L). High sensitivity (0.9556 ± 0.0465) and specificity
(0.8720 ± 0.0642) were achieved. Further analyses encompassed the top-20 metabolites of
importance, ROC curve, confusion matrix, POD label, and SHAP techniques (Figures 2I,J,M
and S2). Building upon the previously analyzed VIP, FDR p-value, logistic regression
p-value, and the top-20 metabolites from ML, seven were selected as diagnostic candidate
markers (L-Tryptophan, LysoPC (16:0), LysoPC (18:0), LysoPC (18:2), decanoylcarnitine,
LysoPC (18:1), and L-Glutamic acid).

3.5. Discovery and Validation of Seven Potential RCC Diagnostic Markers

We evaluated whether the previously selected seven candidate markers could effec-
tively distinguish RCC from HC using an ROC analysis (Table S5). All seven candidate
markers exhibited AUC values > 0.8 and p < 0.05 in discovery (Figure 3A–G). In the vali-
dation set, these markers were confirmed as potential diagnostic markers for RCC, each
distinguished with an AUC of over 0.78. Further analysis explored combinations of these
metabolites (Figure 3H,I), with ROC analysis demonstrating high AUC values of 0.972
in the discovery set and 0.969 in the validation set for the panel of seven markers. This
suggests that these selected markers could serve as potent potential biomarkers for the
diagnosis of RCC. Our analysis was further conducted to evaluate the utility of these
markers in detecting early-stage versus late-stage RCC. The ROC analysis for five to seven
markers indicated that the AUC values for differentiating HC vs. T stage 1 were slightly
higher than those for HC vs. T stages 2 and 3 (Figure 3J). Additionally, after adjusting for
age, sex, BMI, smoking, and alcohol consumption, the direction of the ORs for each of the
seven markers between HC and T stage 1 remained consistent with the direction of the
ORs between HC and all RCC stages (Table S6).
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Figure 3. Metabolite-markers prediction of significant metabolites between HC and RCC groups. Analysis
of individual metabolite markers in the discovery set and validation set: (A) L-Tryptophan, (B) LysoPC
(16:0), (C) LysoPC (18:0), (D) LysoPC (18:2), (E) Decanoylcarnitine, (F) LysoPC (18:1), and (G) L-Glutamic
acid. Multivariate ROC curve results for 7 metabolites with AUC ≥ 0.8 in (H) discovery set or (I) validation
set. (J) Multivariate ROC curve of 5 to 7 metabolites with AUC ≥ 0.8 based on the cross-validation and the
resulting HC vs. T stage 1 or T stages 2 and 3. The set of 6 metabolites excludes LysoPC (18:1) from the
7-metabolite configuration, while the 5-metabolite set further excludes L-Glutamic acid.
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3.6. Enrichment and Pathway Analyses of HCs and RCC Differential Metabolites

To explain RCC-related metabolic function, we analyzed the enrichment of metabolites
in all RCCs and HCs (Figure S1D). Fatty acyls, including decanoyl carnitine, emerged as
key lipids altered in RCC vs. HCs, and 43 glycerophospholipids, including LysoPC (16:0),
significantly differed in RCC (p < 0.05). Human metabolic pathway enrichment indicated
that RCC was linked to an amino acid (alanine, aspartate, glutamic acid, and tryptophan)
and glycerophospholipid (LysoPCs) metabolism. Notable affected pathways included
alanine, aspartate, and glutamate metabolism; arginine and proline metabolism; arginine
biosynthesis; and histidine metabolism.

RCC-associated metabolic pathways analysis identified 35 pathways (Figure 4, Ta-
ble S7). Among the 11 significantly changed pathways, alanine, aspartate, and gluta-
mate metabolism stood out (FDR-adjusted p = 3.80 × 10−41, pathway impact = 0.5345).
Glycerophospholipid metabolism altered, impacting 24 phosphatidylcholines (PCs) and
nine LysoPCs. Most PCs and LysoPCs decreased in RCC, except PC (15:1/22:2) and PC
(21:0/22:2), which increased. Other pathways involved 12 amino acids, which are most
notably depleted in RCC plasma, except L-aspartic acid and L-glutamic acid.
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Figure 4. Analysis of pathway and network of differential metabolites between HC and RCC.
(A) Overview of the pathway analysis of 79 metabolites using the MetaboAnalyst software. The color
of the node reflects the p-value, changing from yellow to red as the significance increases, and the
radius reflects the path influence value. (B) Major metabolites were assigned to their corresponding
KEGG pathways. An increase in the relative concentration of metabolites in RCC compared to that in
HC is displayed in red, whereas a decrease in relative concentration is displayed in blue. The stars
indicate the major metabolites.

3.7. Decanoylcarnitine Decrease in RCC Is Regulated by CPT1a Downregulation

Prior research suggests that RCC increases HIF1 via VHL mutations, reducing CPT1a
and fatty acid (FA) transport [30]. In order to elucidate the process by which decanoylcarni-
tine (acylcarnitine), a diagnostic marker for RCC, is regulated by intracellular CPT1, we
validated the expression of CPT family members (CPT1A, CPT1B, CPT2, SLC25A20, and
CrAT) using databases and ELISA (Figure 5). All tested CPT members were downregu-
lated in RCC vs. HCs (Figure 5A–E). ELISA confirmed CPT1 reduction in RCC vs. HCs
(Figure 5F).
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Figure 5. GEO database and ELISA show CPT family mRNA and levels downregulated in RCC versus
controls. (A) CPT1A, (B) CPT1B, (C) CPT2, (D) SLC25A20 (CACT), and (E) CrAT were analyzed in
the GEO database. (F) CPT1 was assessed using an ELISA kit. The GSE781 and GSE6344 datasets
from the GEO database were used. ** p < 0.01; *** p < 0.001. CACT, carnitine-acylcarnitine translocase;
CrAT, carnitine O-acetyltransferase.

3.8. Diagnostic Potential Marker Levels Are Affected by Clinical Factors

To further substantiate the clinical relevance of seven key markers, we analyzed
changes based on clinical factors (RCC stage, site, age, BMI, and gender) (Figure 6). De-
canoylcarnitine increased in stage 2 vs. stage 1, and LysoPC (18:0) decreased (Figure 6A).
No site-based differences were observed (Figure 6B). With age rise, the RCC group showed
a decreasing trend in LysoPC (18:0) and LysoPC (16:0) (Figure 6C). An increasing BMI
raised L-glutamic acid in HCs and RCC, and LysoPC (18:2) dropped in RCC (Figure 6D). In
HCs, females had lower L-glutamic acid, L-tryptophan, LysoPC (16:0), LysoPC (18:1), and
LysoPC (18:2) than males. In RCC, L-tryptophan and LysoPC (18:2) decreased (Figure 6E).
Some glycerophospholipids were lower in the blood of females and those with higher ages
and BMIs.
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Figure 6. Comparison of changes according to RCC stage, site, age, BMI, and sex of seven metabolites.
(A) RCC stage, (B) RCC site, (C) age, (D) BMI, and (E) sex were compared between the HC group and
RCC group, while stage and site were compared within the RCC group. The diagnostic criteria for BMI
were low and normal (<22.9), overweight (23.0–24.9), and obese (≥25). Significance is marked with
the symbols ## p < 0.01 and ### p < 0.001 when compared to the HC group. The symbols * p < 0.05,
** p < 0.01, and *** p < 0.001 indicate significance between the groups. The red arrow indicates a gradual
increase in the normalized abundance in the RCC group, the blue arrow indicates a gradual decrease,
and the gray arrow indicates a gradual increase or decrease in the HC group.
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3.9. High PUFA Consumption Is Associated with an Increased Risk of RCC Due to Its Correlation
with Blood Fatty Acids

To examine the correlation between potential markers and dietary fats and food, a
nutritional analysis was conducted (Figure S3A). Higher PUFA, n-3 PUFA, and n-6 PUFA
intake were correlated with an elevated risk of RCC (Figure 7A, Table S3). The RCC group
exhibited a higher per-calorie consumption of PUFAs than the HCs (Figure 7A). The average
PUFA to recommended nutrient intake ratios were as follows: n-3 PUFAs, HC 83.2% and
RCC 89.0%; and n-6 PUFAs, HC 88.9% and RCC 111.2%. Additionally, an increase in the
consumption of fish and shellfish was associated with an elevated risk of RCC (Figure 7B).
Correlation analysis revealed a negative association between LysoPC and PUFA, n-3 PUFA,
fish, and shellfish (Figure 7C). This implies that PUFA consumption in RCC influences the
reduction of LysoPC interacting with PC. Specifically, highly unsaturated FAs exhibited
a stronger effect than saturated or monounsaturated FAs. Additionally, they exerted an
influence on n-3 PUFA rather than n-6 PUFA (Figure S3B,C). In contrast, LysoPC (18:0)
demonstrated a positive correlation with CPT1.
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Figure 7. Volcano plot and analyses reveal key metabolites and fats correlation in RCC. (A) Volcano
plot of lipid-related factors (B) Multivariate logistic regression plot of odds ratios and 95% confidence
intervals for evaluation of the relationship between HC and RCC; (C) Correlation of metabolites,
CPT1, PUFAs, and dietary fats in RCC. Red indicates a positive correlation, while blue indicates a
negative correlation. * p < 0.05 and ** p < 0.01. PUFA; polyunsaturated fatty acid, NS; not significant,
PS ratio; polyunsaturated–saturated fatty acid ratio.

4. Discussion

The aim of this study was to elucidate RCC diagnostic potential markers through
the quantification of plasma metabolites, machine learning, and marker validation. Seven
potential metabolites (L-glutamate, L-tryptophan, decanoylcarnitine, LysoPC (16:0), LysoPC
(18:0), LysoPC (18:1), and LysoPC (18:2)) emerged as potential markers with a high AUC of
96.9% for distinguishing RCC in the validation set. We revealed correlations between these
markers and dietary fat. These findings highlight the crucial role of lipid metabolism in
RCC pathogenesis and introduce a new perspective on RCC diagnostics.
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In elucidating the mechanism of RCC development, our findings suggest that high
dietary intake of PUFAs induces changes in plasma PC and LysoPC levels, and the down-
regulation of CPT1, leading to decreased acylcarnitine levels, which likely impacts lipid
synthesis and contributes to RCC onset. Initially, levels of LysoPC (16:0), LysoPC (18:0),
LysoPC (18:1), and LysoPC (18:2) were reduced in RCC plasma compared to that in HCs.
This observation is consistent with the findings of Lin et al., who reported a similar down-
regulation in RCC serum [17]. Multiple lysophosphatidylcholine (LPC) species decrease
in cancer tissues, corresponding to PC species increase [31]. Our results also indicated an
increase in PC (15:1/22:2) and PC (21:0/22:2), which contain omega-6 docosadienoic acid,
in RCC. In RCC, LysoPC (18:1) and LysoPC (18:2) showed a negative correlation with n-3
PUFA, suggesting a strong impact of n-3 PUFA on polyunsaturated fat. Dietary PUFA,
upon consumption, undergoes conversion into FAs and is further transformed into PC by
acyl-CoA [32]. The conversion between LPC and PC is facilitated by LPC acyltransferase
(LPCAT) and PLA2 [33]. LPCAT1 overexpression boosts LPC to PC conversion, influencing
cell proliferation and fluidity and promoting cancer growth and metastasis via membrane
PC-level alterations [31]. Short-chain LysoPCs exit the membrane and traverse into the
cell, whereas long-chain FAs generated from the intake of dietary PUFAs enter the cell
through FATP1 or CD36 [34]. Upon encountering carnitine via acyl-CoA, long-chain FAs
form acylcarnitine and enter the mitochondria [35].

One of the seven potential markers, acylcarnitine, specifically decanoylcarnitine (C10
carnitine), was observed to decrease in RCC compared to HC, aligning with the study
results of Liu et al. (O-decanoyl-L-carnitine, FC (RCC/HC) = 0.65) [9]. Currently, there is
limited research on the association between RCC and decanoylcarnitine. Decanoylcarnitine
is a medium-chain acylcarnitine [36]. Cells in different tissues require varying amounts
of carnitine for survival [37]. Dysregulated levels of fatty acylcarnitines indicate impaired
FA oxidation in the RCC group [38]. CPT1A, a key FA oxidation enzyme, showed reduced
expression in RCC kidneys compared to normal kidneys in The Cancer Genome Atlas
database [30,39]. Our mRNA expression analysis of CPT family members (CPT1A, CPT1B,
CPT2, SLC25A20, and CrAT) from the GEO database confirmed downregulation in RCC
compared to HCs. These findings align with our plasma CPT1 ELISA results. Moreover,
HIF inhibits the direct HIF target gene CPT1, reducing FA translocation into mitochondria
and promoting FA accumulation in lipid droplets, potentially contributing to RCC devel-
opment [30]. These findings collectively support the notion of upregulated FA synthesis
and downregulated FA oxidation in RCC [35,40], shedding light on potential mechanisms
underlying RCC development.

In ccRCC, tumors typically display the Warburg effect, reducing glucose oxidation
and TCA cycle conversion [41]. Our findings show increased L-glutamic acid but decreased
L-glutamine in RCC compared to HCs, consistent with Zira et al.’s study [7]. Glutamine, a
non-essential amino acid, is synthesized and metabolized in all body cells [19]. In ccRCC,
glucose metabolism induced by HIF1 leads to an increase in solute carrier family 1 member
5 (SLC1A5), glucose transporter 1 or 3 (GLUT 1/3), and lactate dehydrogenase A (LDHA),
thereby stimulating lactic acid production [42]. L-glutamine is absorbed through SLC1A5
and converted to L-glutamate by the enzyme glutaminase 1 or 2 (GLS1/2), entering the
TCA cycle in the form of alpha-ketoglutarate (α-KG) [19]. The increased glucose in RCC
enters through GLUT 1/3, leading to an elevated lactate production by the upregulated
LDHA1 from pyruvate [42]. The produced lactic acid induces acidification of the tumor
microenvironment, promotes inflammatory Th17 cell differentiation, and inhibits immune
cells, thereby contributing to the progression of RCC [43].

In this study, L-tryptophan levels were lower in RCC than in HCs. Prior studies have
shown mixed findings. Lee et al. reported elevated plasma [10], whereas Lin et al. found
decreased serum [17]. RCC, marked by anorexia and negative nitrogen balance, contributes
to tryptophan decline [17]. Most free tryptophan is metabolized via the kynurenine path-
way, pivotal for neurochemical transmission and immune response control [44]. Enzymes,
such as indoleamine-2,3-dioxygenase 1 (IDO1), IDO2, or tryptophan-2,3-dioxygenase, cat-
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alyze this, thereby modulating immunity and fostering cancer progression via tryptophan
depletion and aryl hydrocarbon receptor activation [45].

In this study, the entire amino acid pathway was found to be downregulated, aligning
with previous findings [6,16,46]. RCC subtypes exhibited significant changes in amino
acid metabolism and redox homeostasis [46]. Glycine, serine, and threonine metabolism
support synthesis and maintain redox balance through the methionine cycle [47]. Dysreg-
ulation of these pathways is linked to cellular metabolism reprogramming, supporting
tumor-cell survival [48]. Our findings highlight alterations in TCA metabolism, impaired
mitochondrial bioenergetics, and oxidative phosphorylation in RCC [49], underscoring the
role of lipid and amino acid metabolism in carcinogenesis.

In addition, age, BMI, and gender influence plasma metabolomics and lipidomics
in RCC [9]. We assessed seven major metabolites for variations by gender, age, and BMI.
Older age, higher BMI, or female gender are associated with lower LysoPC levels in plasma.
A large-scale study by the National Institutes of Health and the National Association for
Retired Persons found being overweight increases RCC risk regardless of gender [50].
Low plasma LysoPC concentration predicts aging and indicates mitochondrial oxidative
damage [51].

Numerous studies have demonstrated the influence of dietary and nutritional factors
on tumor formation in patients with RCC. However, consensus regarding the significance
of fat intake on renal cancer remains elusive. Our analysis using multivariate logistic regres-
sion on nutrients and food groups in RCC patients and HCs revealed that a higher intake
of PUFA, n-3 PUFA, or n-6 PUFA in the overall diet was associated with an increased risk
of RCC. This finding aligns with the previous results that indicated that high consumption
of n-3 PUFA among the Japanese population, who consume a greater quantity of fish com-
pared to Western populations, correlates with their elevated risk of RCC [29]. Conversely,
individuals who consistently consumed fatty fish showed a statistically 74% lower risk of
RCC [52], and there was no significant association with high levels of polyunsaturated fat,
n-3, and n-6 PUFA intake [27]. This study is the first to investigate the correlation between
metabolites and nutrition in RCC, revealing intriguing associations between PUFA intake
and RCC risk.

Our study has a few limitations that need consideration. Future research should
involve larger sample sizes than those used in our current study. Moreover, further
confirmation through in vivo and in vitro studies could offer more precise insights into
the role of the identified markers in RCC development. Additionally, more interventional
studies are necessary to validate the potential impact of dietary PUFA modulation based
on factors such as VHL mutation status and CPT expression profiles in RCC patients.

5. Conclusions

Seven potential markers for RCC diagnosis were identified and validated within
plasma metabolites and lipids. Their high sensitivity and high specificity have been
confirmed, rendering them valuable for diagnostic purposes. The consumption of a consid-
erable amount of dietary PUFAs may influence the development of RCC through alterations
in lipid metabolism. These findings enable efficient and accurate diagnosis of RCC and
timely interventions to improve overall survival rates and promote cancer prevention
through healthy lifestyle habits among individuals exposed to this cancer.

6. Patents

This research has led to the filing of the following patent: biomarkers for the diagnosis
of renal cell carcinoma and their use (patent numbers: KR10-2023-0177712)
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machine learning; Figure S3: Correlation between LysoPC and PUFAs in each group and nutritional
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