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Abstract: Phthalates and bisphenol A are recognized as the predominant endocrine-disrupting
substances (EDCs) in the environment, but their impact on sleep health remains unclear. Vitamin D
has often been reported to play a role in sleep health and may be affected by endocrine-disrupting
compounds. The study utilized data from 5476 individuals in the NHANES project to investigate the
correlation between combined exposure to environmental EDCs and sleep duration through modeling
various exposures. Furthermore, it emphasizes the importance of vitamin D in the present scenario.
Preliminary analyses suggested that vitamin D-deficient individuals generally slept shorter than
individuals with normal vitamin D (p < 0.05). Exposure to Mono-ethyl phthalate (MEP), triclosan
(TRS), and Mono-benzyl phthalate (MZP), either alone or in combination, was associated with
reduced sleep duration and a greater risk of vitamin D deficiency. Individuals with low vitamin D
levels exposed to TRS experienced shorter sleep duration than those with normal vitamin D levels
(p < 0.05). TRS and MZP were identified as crucial factors in patient outcomes when evaluating mixed
exposures (p < 0.05). The results provide new data supporting a link between exposure to EDCs and
insufficient sleep length. Additionally, they imply that a vitamin D shortage may worsen the sleep
problems induced by EDCs.

Keywords: vitamin D; sleep; environmental endocrine disruptors; NHANES

1. Introduction

Over 1000 EDCs have been identified in the environment, including a range of phenols,
industrial chemicals, pesticides, and plasticizers. These compounds are commonly used in
modern life and represent a major threat to human health owing to the ease of potential
exposure thereto [1]. EDCs can disrupt the production, regulation, and metabolism of
hormones, contributing to altered circadian rhythms and a range of adverse sleep-related
outcomes [2,3]. BPA and phthalates are the most common EDCs, functioning as endocrine
disruptors that modulate sex hormones and impact the hypothalamic-pituitary-adrenergic
axis to contribute to the incidence of a range of sleep issues [4,5]. BPA is also among the most
widely produced chemicals, with an estimated output in 2022 alone of 6000 kilotons [6],
leading to the inevitable exposure of the general public to BPA in the air, water, and food
they consume. While alternative chemicals are available, global phthalate use still exceeds
11 tons per minute, with a forecasted use of 84.8 million tons in 2024 [7]. Many of these
EDCs are present at high levels in everyday household products as components of food
packaging, antifungal agents, or preservatives, resulting in the potential for exposure via
ingestion, skin contact, or inhalation [8]. Both the US Environmental Protection Agency
and the European Union have, thus, categorized these compounds as priority control
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pollutants [4,9], and there has been growing research interest in understanding the severe
effects of BPA and phthalates on sleep-related health.

Sleep disorders are conditions that interfere with the duration, quality, or timing of
sleep, sleep-related behaviors, and physiological characteristics [10], with sleep disorders
affecting an estimated 50% of the global population [11]. Despite being highly prevalent,
sleep disorders and sleep deprivation are often not regarded as important health issues
by the general public. Poor sleep quality, however, can contribute to the incidence of a
range of chronic conditions, including endocrine issues, obesity, alcohol abuse, anxiety,
diabetes, hypertension, cardiovascular diseases, and neurological or immunological distur-
bances [12]. Many reports focused on animal-model systems have found that Bisphenol A
(BPA) and phthalate exposure can damage hypothalamic neurons in the brain, interfering
with the ability of this region to regulate circadian rhythms. These compounds can also
compete with endocrine hormones for binding to sex-hormone receptors, resulting in the
manifestation of sleep disorders of varying severity [13–16]. Only a limited number of
epidemiological studies conducted to date have examined associations between chemical
exposures and poor sleep outcomes. Studies performed in Mexico, for example, docu-
mented a relationship between BPA and phthalate exposure and longer sleep duration,
earlier sleep timing, and greater sleep fragmentation [17,18]. However, these studies only
focused on relatively limited patient populations.

Vitamin D is a steroid hormone consumed through dietary or supplemental sources, in
addition to being generated upon the exposure of the skin to UVB radiation. Vitamin D has
primarily been studied in the context of musculoskeletal health [19], but there is growing
evidence suggesting a link between vitamin D metabolism and a range of sleep-related
health outcomes [20–22]. One prospective analysis suggested an association between
1,25(OH)2D3 and overall sleep patterns and the overall incidence of type 2 diabetes [23].
Another interventional analysis focused on individuals > 60 years of age detected a positive
correlation between serum levels of 1,25(OH)2D3 and sleep duration. No reports to date,
however, have examined the impact of vitamin D on the effects of BPA and phthalates on
sleep disorders.

While previous studies have primarily focused on the correlation between single
EDCs and sleep, the present study was conducted by selecting six different statistical
approaches (Linear and logistic regression models, the Elastic net [ENET] model, the
weighted quantile sum [WQS] regression model, the Quantile G-computation [QGC] model,
and the Bayesian Kernel Machine Regression [BKMR] model) to evaluate the association
between exposures to chemicals and sleep in adults participating in the U.S. National Health
and Nutrition Examination Study (NHANES). In addition, there are fewer epidemiological
studies between EDC and vitamin D, and vitamin D may mitigate the health damage caused
by EDC. So, this study also analyzes the potential correlation between vitamin D deficiency
and EDC-induced sleep disorders to provide some insights into the psychoneurological
aspects of EDC-induced damage.

2. Materials and Methods
2.1. Study Design and Participant

The NHANES research is an official survey undertaken by qualified experts to evaluate
the health and nutrition of the overall U.S. population. Informed consent was obtained
from all individual participants included in the study. The NHANES agreement has been
reviewed and approved by the NCHS Research Ethics Committee. All participants provided
written informed consent before participating. Publicly accessible data from four NHANES
cycles (2007–2014) were utilized for the current analysis. Participants who did not have
data on sleep duration or failed to respond were eliminated from the study (n = 14,640).
The NHANES survey used a voluntary collection of participant samples, eliminating
17,937 research individuals who did not undergo urine BPA and phthalate testing. To
ensure the accuracy of the results, 2170 individuals who lacked data on relevant covariates
affecting the results were excluded, including alcohol intake, smoking behavior, thyroid-



Nutrients 2024, 16, 1291 3 of 19

related diseases, physical activity level, race, marital status, education level, household
income/poverty, body mass index (BMI), endocrine-disease status, and age (<20 years or
>80 years). Of the remaining participants, 394 with vitamin D-related data deficiencies
were excluded, and the remaining 5476 participants were retained for these analyses. The
specific screening process is shown in Figure 1.
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2.2. Exposure Information

BPA and phthalates were selected as common environmental endocrine disruptors
for evaluation in this study [24,25]. The urine samples underwent further examination for
environmental endocrine disruptors at the National Center for Environmental Health using
high-performance liquid chromatography (HPLC) combined with electrospray ionization
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tandem mass spectrometry (ESI-MS). When levels of these chemicals were below the lowest
limit of detection (LOD), the values were replaced with the LOD divided by the square
root of 2 as per NHANES laboratory requirements. Professionals supervised the entire
detecting process to ensure quality control.

2.3. Sleep Time Survey

Sleep-related data in the NHANES survey were derived from the Munich Chronotype
Questionnaire (MCTQ) [26], with the self-reported responses to the following question
regarding daily sleep: “How much sleep did you get (in hours)?”. Interviewers ask
questions at home using the CAPI method. The system’s sample of responders ranges in
age from 16 to 150. The study’s participants ranged in age from 20 to 80. To ensure quality
control, the questionnaire survey process is carried out by qualified personnel.

2.4. Serum 1,25(OH)2D3 Analyses

Cryopreserved blood samples from study participants were obtained following the
NHANES Laboratory Procedures Manual, and serum 1,25(OH)2D3 levels therein were
measured via ultra-high-performance liquid chromatography tandem mass spectrome-
try (UHPLC-MS/MS). Vitamin D deficiency was defined as 1,25(OH)2D3 <30 nmol/L
(12 ng/mL) [27,28]. Professionals handled the entire detecting process for quality control.

2.5. Assessment of Covariates

Participants were classified into three age groups, including young (20–39 years),
middle aged (40–59 years), and older (60–80 years) participants [29]. Other evaluated
covariates included gender (male and female), ethnicity (non-Hispanic white, non-Hispanic
black, Mexican-American, other Hispanic, and other), education level (<9th grade, 9th–11th
grade, high school graduate, partial college or related degree, and college graduate or
higher), family-income poverty ratios (<1.30, 1.30–3.50, and >3.50 [30]), BMI as measured
by trained technicians (underweight [<18.5 kg/m2], normal [18.5–24.9 kg/m2], overweight
[25–29.9 kg/m2], and obese [≥30.0 kg/m2]) [31], smoking status (nonsmoker [<100 lifetime
cigarettes] and smoker), drinking status (<12 alcoholic beverages/year and 12+ alcoholic
beverages/year). When assessing drinking status, one alcoholic beverage is defined as one
drink as 12 oz, one beer as 5 oz, and one glass of wine as 1.5 oz [32] and physical activity
(regular activities and infrequent activities).

2.6. Statistical Analysis

The continuous variables were expressed as mean ± standard deviation (Mean ± SD)
or median (interquartile range (M, IQR)), and the categorical variables were expressed as
number of cases (n) and percentage (%). We applied the Rao–Scott chi-square test and
Student’s t-test based on sampling weights to compare the categorical and continuous
characteristics between participants.

Correlations among different urinary EDCs were evaluated with Speraman’s correla-
tion coefficients. In this study, the elastic net model, the generalized linear model, the WQS
regression model, the Quantile g-computation model, and Bayesian kernel machine regres-
sion were used to analyze the correlation between environmental endocrine disruptors and
sleep duration. Regression analyses are reported as coefficients with corresponding 95% CI,
and a two-tailed p < 0.05 served as the threshold of significance.

All statistical analyses were conducted with R 4.3.2 (R Development Core Team), and
the WQS, QGC, and BKMR were implemented with the respective “gWQS”, “Qgcomp”,
and “ BKMR” R packages.

2.6.1. Elastic Net Model and Generalized Linear Model

ENET introduces penalty coefficients 1 and 2 based on the linear regression results,
enabling the selection of variables by leveraging the advantages of LASSO and ridge
regression strategies [33]. In this study, ENET was used to quickly screen EDC metabolites
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related to sleep time from 15 target compounds, and these relationships were quantified
according to the corresponding beta coefficient (β) values. Linear and logistic regression
analysis can quickly and easily get the results. The effects of individual or multiple EDCs
on sleep duration were assessed with linear and logistic regression analyses. A crude model
(Model 1) was not adjusted for any covariates for these analyses. In contrast, Model 2 was
adjusted for age, gender, ethnicity, education level, BMI, drinking status, smoking status,
and physical activity levels. Both models were adjusted for urinary creatinine levels, as
noted above.

2.6.2. WQS Regression Model and Quantile g-Computation Model

WQS regression analyses were used to evaluate the effects of mixtures of compounds
on sleep duration, as this model enables the examination of the impact of simultaneous
exposure to multiple pollutants on particular health outcomes and can effectively deal
with the high collinearity of these substances [34]. In this model, the overall effects of
exposure to EDCs on sleep were assessed by establishing a weighted WQS index included
in the regression model. This WQS model assumes that each environmental exposure
is directional, homogeneous, and linear to the outcome of interest [35]. In view of this
inherent limitation, we also use the g calculation method based on quartiles. This model
can reflect the correlation between chemical substances in different directions and health
outcomes in the same figure. Based on the adaptability of the g calculation, its calculation
speed is faster than WQS and BKMR [36].

2.6.3. Bayesian Kernel Machine Regression

The BKMR approach, widely employed in epidemiologic studies, focuses on the
effects of mixed environmental exposures, given that it can readily and flexibly assess the
combined effects of multiple chemicals with potential non-linear or nonadditive effects [37].
For this study, the following kernel machine regression was employed:

Yi = h(Zi1, . . . , ZiM) + §iβ + εi

where Yi represents the health outcome, Zi corresponds to the chemical exposures, §i
denotes potential confounders, εi is the residual complying with the normal distribution
N (0, δ2), i refers to the individual (i = 1, 2, 3 . . . n), and h ( ) is an exposure–response
function based on non-linear interactions among mixture components. For this study, the
MCMC method was used to run this model for 5000 iterations, and the BKMR model was
used to calculate posterior inclusion PIPs for each substance, with values exhibiting values
closer to 0 considered less important. Mixed exposure effect plots evaluated the mixture’s
relevance to the health result. Univariate exposure–response curves have been developed to
investigate potential non-linear relationships between substances and outcome indicators
while keeping all other substances at the 50th percentile. Bivariate exposure–response
curves were also drawn.

3. Results
3.1. Population Characteristics

In total, 40,617 individuals participated in the NHANES survey from 2007 to 2014. Ulti-
mately, 5476 eligible participants were included in this study based on the inclusion–exclusion
criteria shown in Table 1. These included 2709 (48.8%) males and 2767 (51.2%) females,
with a mean age of 47.2 ± 16.8 years. Additionally, the majority of participants were
non-Hispanic whites (70.4%), well-educated (83.7% above high school), smokers (44.3%),
alcohol drinkers (78.7%), and physically active (54.6%). The mean BMI and sleep duration
of the study population were 28.9 ± 6.8 kg/m2 and 6.8 ± 1.3 h, respectively. About 4%
(470) of participants had a vitamin D deficiency.
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Table 1. Characteristics of the study population.

Characteristics Total

Gender n(%)
Male 2709 (48.8)
Female 2767 (51.2)
Age n (%)
20–39 years 1856 (36.1)
40–59 years 1919 (40.2)
60–80 years 1701 (23.7)
Race n (%)
Mexican American 767 (7.8)
Other Hispanic 536 (5.5)
Non-Hispanic White 2560 (70.4)
Non-Hispanic Black 1095 (10.2)
Other Race—Including Multi-Racial 518 (6.1)
Educational level n (%)
Less Than 9th Grade 510 (5.2)
9–11th Grade (Includes 12th grade with no diploma) 808 (11.2)
High School Grad/GED or Equivalent 1276 (22.6)
Some College or AA degree 1574 (30.8)
College Graduate or above 1308 (30.3)
Marital Status n (%)
Married 2882 (57.1)
Widowed 432 (5.6)
Divorced 597 (10.2)
Separated 164 (2.0)
Never married 995 (18.0)
Living with partner 406 (7.1)
Ratio of family income to poverty n (%)
<1.3 1751 (21.3)
1.3–3.5 1966 (34.6)
>3.5 1759 (44.1)
Smoke n (%)
Yes 2473 (44.3)
No 3003 (55.7)
Alcohol drinking n (%)
Yes 4042 (78.7)
No 1434 (21.3)
Recreational activities n(%)
Yes 2636 (54.6)
No 2840 (45.4)
Body mass index (BMI) n (%)
<18.5 kg/m2 82 (1.4)
18.5 to <25 kg/m2 1509 (28.8)
25 to <30 kg/m2 1829 (33.4)
≥30 kg/m2 2056 (36.4)
Sleep duration (mean ± SD) (h) 6.87 ± 1.34
Is vitamin D deficient? n (%)
Yes 5006 (96.0)
No 470 (4.0)

3.2. Distribution, Correlation, and Selection of Environmental Endocrine Disruptors in Urine

The detectable rates of most urinary phthalate metabolites were above 90%, except
for Mono-(2-ethyl)-hexyl phthalate (MHP) and TRS, which had detectable rates of 68.12%
and 75.66%, respectively. The median concentration of EDC metabolites in urine was 4.5
(24.84, 197.19) µg/mmol Cr for MEP. The mean values and distributions of other EDC
metabolites are summarized in Supplementary Table S1. Furthermore, we performed
Spearman’s correlation analysis to find associations among 15 EDC metabolites in urine.
We found that the range of Spearman correlation coefficients was in the same direction
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(p < 0.05) for all substances except for Mono (carboxyisoctyl) phthalate (COP)
(Supplementary Figure S2), indicating correlations among all substances except COP. The
strongest correlation was observed between Mono-(2-ethyl-5-hydroxyhexyl) phthalate
(MHH) and Mono-(2-ethyl-5-oxohexyl) phthalate (MOH) (r = 0.97). Here, the results,
shown in Supplementary Table S2, revealed a statistically significant correlation between
sleep duration and EDCs in the ‘Vitamin D normal’ and ‘Vitamin D deficient’ groups.
Additionally, the distribution of EDCs in the body and their correlations were related to
the vitamin D status of the participants (Supplementary Figure S2 and Table S3). Subse-
quently, we used the ENET method to identify fifteen relevant elements in the mixture of
EDC metabolites that play an essential role in sleep time. Among the 15 EDCs that were
associated with sleep duration, 12 showed a strong association, except Propyl paraben
(PPB), Mono-n-butyl phthalate (MBP), and Benzophenone-3 (BP3) (Figure 2). Similarly, we
screened for EDC metabolites associated with the risk of vitamin D deficiency using the
ENET method and found that, except for Bisphenol A (BPH), the remaining 14 substances
were associated with vitamin D deficiency (p < 0.05).

Nutrients 2024, 16, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 2. The correlation coefficients between environmental endocrine disruptors and sleep du-
ration and vitamin D concentration. The dotted line represents 0, and each circle represents each 
EDCs substance. The farther the circle is from the dotted line, the greater the correlation between 
EDCs and sleep duration and vitamin D concentration. The model was adjusted for urinary creati-
nine, age, gender, race, education level, marital status, family-income-to-poverty ratio, BMI, smok-
ing status, alcohol status, and physical activity. (A) Correlation between mixed EDCs metabolites 
and sleep duration; (B) Correlation between mixed EDCs metabolites and vitamin D concentration. 

3.3. Correlation between Urinary EDC Metabolites and Sleep Duration 
The results of univariate and multiple linear regression models designed to assess 

the correlation between EDC metabolites and sleep duration are listed in Table 2. The re-
sults of univariate linear regression analysis revealed that, among EDC metabolites, TRS 
(β: 0.027, 95% CI: (0.000, 0.040), p < 0.05) was positively correlated with sleep duration 
regardless of covariates adjustment, while MEP (β: −0.050, 95% CI: (−0.073, −0.022), p < 
0.05), MZP (β: −0.034, 95% CI: (−0.085, −0.085), p < 0.05), and BPH (β: −0.040, 95% CI: 
(−0.104, −0.020), p < 0.05) were negatively correlated with sleep duration. In addition, after 
adjusting for covariates, BP3 was positively correlated with sleep duration (p< 0.05), and 
Methyl paraben (MPB) was negatively correlated with PPB and sleep duration (p< 0.05). 

  

Figure 2. The correlation coefficients between environmental endocrine disruptors and sleep
duration and vitamin D concentration. The dotted line represents 0, and each circle represents each
EDCs substance. The farther the circle is from the dotted line, the greater the correlation between
EDCs and sleep duration and vitamin D concentration. The model was adjusted for urinary creatinine,
age, gender, race, education level, marital status, family-income-to-poverty ratio, BMI, smoking status,
alcohol status, and physical activity. (A) Correlation between mixed EDCs metabolites and sleep
duration; (B) Correlation between mixed EDCs metabolites and vitamin D concentration.
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3.3. Correlation between Urinary EDC Metabolites and Sleep Duration

The results of univariate and multiple linear regression models designed to assess the
correlation between EDC metabolites and sleep duration are listed in Table 2. The results of
univariate linear regression analysis revealed that, among EDC metabolites, TRS (β: 0.027,
95% CI: (0.000, 0.040), p < 0.05) was positively correlated with sleep duration regardless
of covariates adjustment, while MEP (β: −0.050, 95% CI: (−0.073, −0.022), p < 0.05), MZP
(β: −0.034, 95% CI: (−0.085, −0.085), p < 0.05), and BPH (β: −0.040, 95% CI: (−0.104,
−0.020), p < 0.05) were negatively correlated with sleep duration. In addition, after adjust-
ing for covariates, BP3 was positively correlated with sleep duration (p< 0.05), and Methyl
paraben (MPB) was negatively correlated with PPB and sleep duration (p< 0.05).

Table 2. Correlation between single metabolite and multiple metabolite exposure and sleep time.

Chemicals.
Model 1 Model 2

β (95%CI) p β (95%CI) p

Single substance
CNP −0.004 (−0.046, 0.033) 0.760 −0.014 (−0.061, 0.018) 0.288
ECP 0.003 (−0.033, 0.043) 0.808 −0.012 (−0.057, 0.021) 0.366
MBP −0.012 (−0.056, 0.022) 0.389 −0.024 (−0.075, 0.005) 0.087
MC1 −0.009 (−0.046, 0.024) 0.528 −0.016 (−0.056, 0.013) 0.230
MEP −0.039 (−0.063, −0.012) 0.004 −0.050 (−0.073, −0.022) <0.001
MHH −0.016 (−0.057, 0.015) 0.248 −0.026 (−0.071, 0.001) 0.055
MHP −0.009 (−0.048, 0.024) 0.509 −0.020 (−0.063, 0.008) 0.131
MOH −0.002 (−0.041, 0.035) 0.891 −0.013 (−0.056, 0.020) 0.350
MZP −0.038 (−0.089, −0.016) 0.005 −0.034 (−0.085, −0.010) 0.013
BP3 −0.003 (−0.021, 0.017) 0.821 0.028 (0.001, 0.035) 0.040
BPH −0.031 (−0.091, −0.008) 0.020 −0.040 (−0.104, −0.020) 0.004
TRS 0.046 (0.015, 0.054) 0.001 0.027 (0.000, 0.040) 0.047
MPB −0.009 (−0.029, 0.015) 0.523 −0.041 (−0.058, −0.010) 0.005
PPB 0.001 (−0.016, 0.017) 0.963 −0.030 (−0.037, 0.000) 0.045

Multi-material
CNP −0.013 (−0.066, 0.028) 0.424 −0.014 (−0.068, 0.025) 0.371
ECP −0.023 (−0.071, 0.006) 0.819 0.031 (−0.052, 0.140) 0.369
MBP −0.009 (−0.058, 0.031) 0.548 −0.016 (−0.069, 0.021) 0.291
MC1 −0.008 (−0.052, 0.032) 0.637 −0.007 (−0.052, 0.032) 0.645
MEP −0.035 (−0.060, −0.007) 0.015 −0.037 (−0.063, −0.009) 0.009
MHH −0.237 (−0.465, −0.175) <0.001 −0.222 (−0.446, −0.156) <0.001
MHP 0.005 (−0.031, 0.044) 0.728 −0.003 (−0.042, 0.033) 0.819
MOH 0.177 (0.095, 0.412) 0.002 0.186 (0.108, 0.424) 0.001
MZP −0.059 (−0.181, −0.001) 0.039 −0.030 (−0.079, −0.003) 0.033
BP3 −0.003 (−0.021, 0.017) 0.844 0.022 (−0.003, 0.032) 0.107
BPH −0.040 (−0.071, 0.006) 0.049 −0.040 (−0.071, −0.006) 0.049
TRS 0.043 (0.012, 0.052) 0.002 0.029 (0.001, 0.041) 0.038
MPB −0.021 (−0.056, 0.022) 0.382 −0.023 (−0.079, 0.008) 0.113
PPB 0.030 (−0.011, 0.048) 0.216 0.013 (−0.022, 0.038) 0.586

Note: Model 1: rough model. Model 2: adjusted according to age, gender, race, education level, marital
status, family-income-to-poverty ratio, BMI, physical activity, smoking status, alcohol consumption, and urinary
creatinine. The thickening part indicates that the p < 0.05.

The results of the multiple linear regression model revealed that urinary MOH
(β: 0.186, 95% CI: (0.108, 0.424), p < 0.05) and TRS (β: 0.029, 95% CI: (0.001, 0.041),
p < 0.05) transformed were significantly positively correlated with sleep time with ad-
justed covariates, while MEP (β: −0.037, 95% CI: (−0.063, −0.009), p < 0.05), MHH
(β: −0.222, 95% CI: (−0.446, −0.156), p < 0.05), and MZP (β: −0.030, 95% CI: (−0.079,
−0.003), p < 0.05) were negatively related to sleep duration. The above results are con-
sistent with the model without covariates adjustment, except for BPH. After adjusting
for covariates, BPH demonstrated a significantly negative correlation with sleep duration
(β: −0.040, 95% CI: (−0.071, −0.006), p < 0.05).
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We also employed the WQS and QGC models to examine the relationship between
mixed exposure to EDCs and sleep duration (Figure 3). In the WQS model, a positive
association was observed, with TRS having the highest weight (41.1%), while in the negative
direction, Mono (carboxyisononyl) phthalate (CNP) (19.3%), MZP (17.6%), MEP (16.3%),
BPH (13.7%), MPB (10.4%), and MHH (7.0%) were the primary contributors, with CNP
(19.3%) significantly negatively impacting sleep duration. The results from the QGC model
were generally aligned with those of the WQS model. MOH and TRS were positively
associated with sleep duration, whereas MHH, MEP, MZP, and BPH showed negative
associations (p< 0.05). Notably, MEP, TRS, and MZP all played a role in sleep duration,
regardless of whether the exposure was to a single substance or a mixture of multiple
substances and whether or not covariates were taken into account. These findings were
statistically significant.
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a different metabolite of EDCs. The same colors in the QGC model represent the same orientation.
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3.4. Correlation between Urinary EDC Metabolites and Vitamin D Deficiency

The results in Table 3 demonstrate that BP3 (OR: 0.859, 95% CI: (0.813, 0.906)), TRS
(OR: 0.954, 95% CI: (0.904, 0.997)), and CNP (OR: 0.833, 95% CI: (0.751, 0.925)) were
significantly different from Mono-(3-carboxypropyl) phthalate (MC1) (OR: 0.864, 95% CI:
(0.787, 0.949)) (p < 0.05), with or without adjustment for covariates. The risk of vitamin
D deficiency decreased with increasing exposure to BP3, TRS, CNP, and MC1. Without
covariate adjustment, the risk of vitamin D deficiency increased with increasing exposure
to MZP. In contrast, with adjusted covariates, MEP was identified as a possible risk factor
for vitamin D deficiency.

Table 3. Correlation between single metabolite and multi-metabolite exposure and vitamin D deficiency.

Chemicals Model 1 Model 2
OR (95%CI) p OR (95%CI) p

Single substance
BP3 0.833 (0.793, 0.874) <0.001 0.859 (0.813, 0.906) <0.001
TRS 0.909 (0.863, 0.957) <0.001 0.954 (0.904, 0.997) 0.049
MPB 1.007 (0.954, 1.064) 0.799 1.023 (0.962, 1.087) 0.464
PPB 0.990 (0.950, 1.032) 0.647 0.991 (0.945, 1.040) 0.716
CNP 0.805 (0.726, 0.892) <0.001 0.833 (0.751, 0.925) 0.001
ECP 1.094 (0.995, 1.203) 0.062 0.959 (0.867, 1.060) 0.412
MBP 1.044 (0.946, 1.151) 0.391 1.043 (0.940, 1.157) 0.428
MC1 0.844 (0.770, 0.925) <0.001 0.864 (0.787, 0.949) 0.002
MEP 1.051 (0.988, 1.119) 0.116 1.069 (1.002, 1.141) 0.044
MHH 0.964 (0.881, 1.055) 0.425 0.996 (0.908, 1.093) 0.936
MHP 0.991 (0.906, 1.083) 0.840 1.016 (0.928, 1.113) 0.724
MOH 0.938 (0.852, 1.033) 0.196 0.964 (0.873, 1.066) 0.477
MZP 1.132 (1.032, 1.240) 0.008 1.051 (0.954, 1.158) 0.314

Multi-material
BP3 0.834 (0.792, 0.878) <0.001 0.857 (0.810, 0.906) <0.001
TRS 1.101 (1.000, 1.213) 0.042 0.931 (0.882, 0.982) 0.009
MPB 0.912 (0.811, 1.025) 0.121 0.957 (0.906, 1.012) 0.122
PPB 0.975 (0.908, 1.047) 0.488 0.940 (0.872, 1.014) 0.112
CNP 0.902 (0.798, 1.020) 0.101 0.885 (0.780, 0.994) 0.047
ECP 0.890 (0.704, 1.125) 0.330 1.006 (0.772, 1.311) 0.965
MBP 1.019 (0.897, 1.158) 0.769 1.039 (0.912, 1.184) 0.568
MC1 0.897 (0.800, 0.995) 0.032 0.910 (0.825, 0.992) 0.046
MEP 1.139 (1.008, 1.301) 0.044 1.080 (1.007, 1.158) 0.031
MHH 1.298 (0.891, 1.892) 0.175 1.453 (1.275, 2.166) 0.046
MHP 1.078 (0.964, 1.207) 0.188 1.121 (0.976, 1.288) 0.107
MOH 0.735 (0.493, 1.096) 0.130 0.610 (0.399, 0.933) 0.023
MZP 1.159 (1.042, 1.290) 0.007 1.059 (1.009, 1.133) 0.043

Note: Model 1: rough model. Model 2: adjusted according to age, gender, race, education level, marital
status, family-income-to-poverty ratio, physical activity, BMI, smoking status, alcohol consumption, and urinary
creatinine. The thickening part indicates that the p < 0.05.

The results of mixed exposure-adjusted covariates indicated that BP3 (OR: 0.857,
95% CI: (0.810, 0.906)), TRS (OR: 0.931, 95% CI: (0.882, 0.982)), and MC1 (OR: 0.910, 95%
CI: (0.825, 0.992)) played a protective role against vitamin D deficiency. Meanwhile, MEP
(OR: 1.080, 95% CI: (1.007, 1.158)) and MZP (OR: 1.059, 95% CI: (1.009, 1.133)) (p < 0.05)
were possible risk factors. The above results were also applicable in the model without
adjusting for covariates. Additionally, after adjusting for covariates, MOH and CNP were
found to be possible vitamin D deficiency protective factors (p< 0.05), while MHH was a
risk factor for vitamin D deficiency. All these results were statistically significant.

The results of the WQS and QGC models indicated that MHH, MEP, and MZP were
risk factors for vitamin D deficiency in mixed exposures to EDCs (Figure 4), while BP3,
MC1, and TRS were protective factors for vitamin D deficiency. BP3 contributed the most
weight in the mixed exposures. Also, BP3, MC1, and TRS were found effective in single-
substance exposures irrespective of covariate adjustment. These results were statistically
significant for mixed substances. After adjustment for covariates, only CNP and MEP were
affected versus mixed exposures to vitamin D (p< 0.05).
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Figure 4. Estimated weight of urine EDCs mixed exposure with Vitamin D concentrations in the
WQS and QGC models. Model adjusted for urinary creatinine, age, gender, race, education level,
marital status, family-income-to-poverty ratio, physical activity, BMI, smoking status, and alcohol
consumption. (A) Positive direction of the WQS model, (B) Negative direction of the WQS model.
(C) Each weight represents the proportion of the positive or negative partial impact per individual
EDCs. The length of each bar indicates the effect size of each exposure in the same direction. Each
color in WQS represents a different metabolite of EDCs. The same colors in the QGC model represent
the same orientation.

3.5. Stratified Analysis by Vitamin D Level

We screened substances that were associated with sleep duration and vitamin D in
EDCs alone and mixed exposure. The participants were grouped according to vitamin
D deficiency or normal level. The results showed that after adjusting for covariates in
the vitamin D deficiency group (Table 4), TRS exposure (β: 0.121, 95% CI: (0.023, 0.177),
p < 0.05) was positively associated with sleep time, whereas MEP exposure (β: −0.052, 95%
CI: (−0.077, −0.023), p < 0.05) was negatively correlated with sleep time in the vitamin
D-normal group. However, this correlation was not statistically significant in the vitamin
D-deficient group.
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Table 4. The correlation between multi-EDC exposure and sleep duration was grouped by vitamin D level.

Chemicals Model 1 Model 2
β (95%CI) p β (95%CI) p

Vitamin D is normal
TRS 0.038 (0.007,0.048) 0.008 0.023 (−0.004, 0.038) 0.112
MEP −0.042 (−0.067, −0.013) 0.004 −0.050 (−0.075, −0.021) 0.001
MHH −0.200 (−0.415, −0.119) <0.001 −0.193 (−0.406, −0.109) 0.001
MOH 0.205 (0.133, 0.447) <0.001 0.187 (0.106, 0.422) 0.001
MZP −0.021 (−0.069, 0.012) 0.173 −0.015 (−0.062, 0.021) 0.332

Vitamin D deficiency
TRS 0.135 (0.037, 0.187) 0.004 0.128 (0.029, 0.183) 0.007
MEP −0.012 (−0.106, 0.081) 0.797 −0.018 (−0.113, 0.077) 0.709
MHH −0.246 (−0.809, 0.067) 0.097 −0.266 (−0.842, 0.040) 0.074
MOH 0.242 (−0.080, 0.856) 0.104 0.265 (−0.050, 0.898) 0.079
MZP −0.145 (−0.345, −0.074) 0.003 −0.143 (−0.349, −0.066) 0.004

Model 1: rough model. Model 2: adjusted according to age, gender, race, education level, marital status, family-
income-to-poverty ratio, physical activity, BMI, smoking status, alcohol consumption, and urinary creatinine. The
thickening part indicates that the p < 0.05.

The results of TRS and MEP in mixed exposures were generally consistent with those
of single EDC exposures (Supplementary Table S4). The results of mixed exposures revealed
that MHH and MOH were statistically significantly associated with sleep duration in the
vitamin D-normal group but not in the vitamin D-deficient group. The opposite was
observed for MZP, with a not statistically significant association in the vitamin D-normal
group. However, MZP was negatively correlated with sleep duration in the vitamin D
deficiency group (p< 0.05). The results of the WQS and QGC models (Figure 5) showed
a stable positive correlation of TRS and MOH with sleep duration and a stable negative
correlation of MHH, MZP, and MEP with sleep duration (p< 0.05).
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status, family-income-to-poverty ratio, physical activity, BMI, smoking status, alcohol consumption,
and urinary creatinine. (A–C) is the WQS and QGC model of the vitamin D non-deficiency group,
and (D–F) is the WQS and QGC model of the vitamin D deficiency group. (A) WQS model positive
direction, (B) WQS model negative direction, and (C) QGC model. (D) WQS model positive direction,
(E) WQS model negative direction, and (F) QGC model.

Subsequently, the results of BKMR were examined for univariate exposure–response,
bivariate exposure–response, and overall effect plots. The trends of the five EDCs are shown
in Figure 6. In the normal vitamin D group, only MEP was associated with sleep duration,
whereas in the vitamin D-deficient group, all five EDCs showed an exposure–response
trend with sleep duration. We then explored the interactions between EDCs by fixing EDCs
at the 25th, 50th, and 75th percentile levels and their dose–response relationship with sleep
duration (Figure 7). The results showed that all EDCs had interactions.
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Figure 6. Association between EDC mixtures and sleep duration in Bayesian kernel machine
regression models (grouped by vitamin D level). Model adjusted for age, gender, race, education
level, marital status, family-income-to-poverty ratio, physical activity, BMI, smoking status, alcohol
consumption, and urinary creatinine. (A,B) Univariate exposure–response functions (95%CrI) for
single EDCs when other EDCs fixed at 50% percentile values. (C,D) Overall associations of the
mixture of EDCs metabolites on sleep duration in Bayesian kernel machine regression (BKMR). Dots
indicate the β value, and vertical lines indicate the 95% credible intervals (CrI).
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Figure 7. Association between EDC mixtures and sleep duration in Bayesian kernel machine
regression models (grouped by vitamin D level). (A,B) describe the estimated difference in sleep
time for each EDC from the 25th to the 75th percentile, when all other EDCs are fixed at the 25th
(red line), 50th (green line), or 75th percentile (blue line). Dots indicate the estimate, and horizontal
lines indicate the 95% credible intervals (CrI). (C,D) is a bivariate exposure–response function of
environmental endocrine disruptors and sleep duration. When an environmental endocrine disruptor
is fixed in different (25, 50, 75) percentiles and other EDCs are fixed at the 50th, the average difference
between the other EDCs and the sleep duration as a bivariate exposure–response function.

4. Discussion

This study is the first to use several statistical models and data from the NHANES
database to analyze the effects of combined environmental EDC exposures on sleep deficit
and to investigate the influence of vitamin D insufficiency levels on this connection. These
analyses showed a relationship between individual sleep duration and exposure to MEP,
TRS, and MZP alone or in combination. Low vitamin D levels were also linked to BP3,
MC1, and TRS. Vitamin D deficiency was associated with longer sleep duration in those
exposed to MZP and TRS. Overall, the findings show that exposure to environmental EDCs
can affect how long people sleep and that getting enough vitamin D may help lessen the
adverse effects of these EDCs on sleep quality.

Environmental chemicals can have complex complementary, overlapping, and ad-
ditive effects [38], and hundreds of different chemical exposures may begin even at the
fetal stages of development [39]. Therefore, it is necessary to determine the exposure
risk of mixed endocrine disruptors and any plausible processes influencing individual
sensitivity. The statistical models of WQS, QGC, and BKMR have been widely used to
assess the effects of chemical combinations on humans. Relative to traditional models,
these models can more effectively simulate exposures to chemical mixtures under realistic
environmental conditions [40], allowing for the identification of critical compounds within
a given mixture. A study conducted on a group of teenagers from Mexico discovered that
exposure to higher levels of EDCs may be linked to both later and longer sleep durations,
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with varying EDCs having a role in both effects [18]. This Mexican study found that Tri-
closan, Bisphenol A, Mono-benzyl phthalate, Mono-(2-ethyl-5-oxohexyl) phthalate, Mono-
(2-ethyl-5-hydroxyhexyl) phthalate, and Mono-ethyl phthalate all significantly contributed
to the effect of mixed EDC exposures on sleep. The strong correlations between these
substances may explain variances in correlations due to changes in drug levels. The BKMR
data further confirmed the strong interactions among various environmental EDCs.

Humans are exposed to a wide variety of EDCs [41] every day through various routes,
interfering with normal hormone signaling by affecting endocrine hormone synthesis
and competing for hormone-receptor binding, disrupting normal immunity, metabolism,
and sleep [42]. Unlike MEP and Mono-n-butyl phthalate (MBP), TRS levels showed a
positive correlation with sleep duration in this study. The data partially align with findings
from a previous study showing a correlation between elevated levels of certain phthalates
and reduced sleep duration in adolescents [43]. Animal studies have demonstrated that
exposure to bisphenol A before birth negatively impacts brain volume in children and
young rats, as observed using magnetic resonance imaging (MRI) [44]. The suprachiasmatic
nucleus (SCN) in the hypothalamus is crucial for regulating circadian rhythms and is highly
susceptible to external environmental influences [45]. Research has shown that EDC can
disrupt the SCN and cause animal circadian rhythm disturbances. This mechanism involves
both endocrine hormones and genes that regulate circadian rhythms [46].

In addition, EDCs can induce metabolic disorders and produce related adverse health
effects. The results of this study also found that Benzophenone-3, Mono-(3-carboxy propyl)
phthalate, and triclosan were found to be associated with vitamin D deficiency both
individually and in combination, in line with the results of a prior Korean study [47].
A previous study from the US also found repeated measures of phthalate metabolites to be
negatively correlated with total blood 1,25(OH)2D3 levels [48]. The interaction between
EDCs and vitamin D is mutual. Vitamin D has been shown to reduce the incidence and
severity of EDC-induced diseases [49]. Bisphenol A-treated mice exhibit elevated genes
associated with vitamin D metabolism, as per studies [50]. An essential function of vitamin
D is in metabolism. Following vitamin D administration, mice exposed to BPA showed
improvements in their heart, kidney, lung, and neurobehavioral problems [51].

The present results revealed that vitamin D-deficient individuals slept less than people
with normal levels. A prior meta-analysis also explored the association between vitamin D
levels and sleep disorders [52], ultimately finding vitamin D deficiency related to sleepiness,
poorer sleep quality, and shorter sleep duration. Vitamin D deficiency was not associated
with sleeping time when using triclosan or monobenzylphthalate. Even so, they were
linked to the length of sleep for those who were diagnosed as vitamin D deficient; in
contrast, this was not the case with mono-ethyl, mono-(2-ethyl-5-oxohexyl), or mono-(2-
ethyl-5-hydroxyhexyl) phthalates. Sleep patterns can be directly and indirectly regulated
by vitamin D [53]. Vitamin D receptors can be detected in brain regions involved in sleep
regulation [54]. Research has shown variations in the magnetic resonance spectroscopy
of the hippocampus in adult mice with vitamin D deprivation, leading to impaired brain
amyloid plaque load and astrocyte numbers [55]. Animal tests have shown that mice with
vitamin D deficiency exhibit an increased inclination towards sleep, which is associated
with circadian rhythm disturbances in mice [56].

Sleep duration is defined as the time during which sleep occurs [57], and it can be
impacted by environmental, behavioral, psychological, and pathophysiological factors.
Inappropriate sleep duration can contribute to adverse outcomes. Numerous studies have
shown the crucial role of sleep in mental health in recent years. The likelihood of developing
depression doubles when one is sleep deprived [58]. People with sleep disorders had a
1.65 times higher risk of cognitive impairment compared to those without sleep problems,
with a 95% confidence interval of 1.45–1.86 [59]. In the United States, approximately 2–5%
of the population has severe depression, while up to 20% experience less severe types of
psychiatric disorders [60]. Given the substantial social burden and financial costs associated
with psychiatric diseases, prevention is imperative. Our study investigates the relationship
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between EDCs and sleep and the possible advantages of vitamin D supplementation in this
regard. The results offer novel approaches to the prevention and treatment of EDCs that
exacerbate existing psychiatric illnesses.

This study has two major strengths. The study population is large and representative,
as it was conducted using the NHANES dataset. Various models analyzed the connec-
tions between EDC exposure and health effects in American adults, resulting in consistent
results. However, these findings are limited by several constraints. The NHANES study
is cross-sectional, so it is difficult to establish a causal relationship, highlighting the ne-
cessity for future cohort studies that mainly investigate the relationship between EDCs
and health outcomes. In the future, we can also explore the molecular mechanism behind
it by conducting relevant animal research. Vitamin D is a prevalent vitamin associated
with sunlight and exercise patterns. Insufficient data has prevented the analysis of these
factors, which may create a bias in the results. In addition, Vitamin D deficiency is defined
at different levels in different countries, thus limiting the results from being extended
worldwide. Because sleep-disorder questionnaires are inherently subjective, missing data
and inconsistencies limit the conclusions that could be drawn. In the future, wearable
devices could be used to detect participants’ sleep more objectively and accurately, making
the results more powerful. Finally, there may have been bias in these results due to the
replacement of EDC levels below the LOD by dividing the LOD by the square root of
two [61].

5. Conclusions

The current findings provide additional data indicating a potential link between expo-
sure to environmental endocrine disruptors and sleep duration. Vitamin D insufficiency
may also worsen the adverse effects of poor sleep caused by exposure to environmental
endocrine disruptors.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/nu16091291/s1. Figure S1: The correlations of the urinary concentrations
in the 15 chemicals examined. Spearman correlation was used to analyze the correlations between the
urinary concentrations in the 15 chemicals. The numbers in the lower-left part were the correlation
coefficients. The upper-right part was the heat map of the correlation coefficients between chemical
concentrations. The white represents the uncorrelation (r = 0.00), the blue represents the positive corre-
lation, and the red represents the negative correlation. The darker the color, the greater the correlation
coefficient. Figure S2: The correlations of the urinary concentrations in the 14 chemicals examined.
Spearman correlation was used to analyze the correlations between the urinary concentrations in the
14 chemicals. (A) Vitamin D non-deficiency group; (B) Vitamin D deficiency group. The numbers
in the lower-left part were the correlation coefficients. The upper-right part was the heat map of
the correlation coefficients between chemical concentrations. The white represents the uncorrelation
(r = 0.00), the blue represents the positive correlation, and the red represents the negative correlation.
The darker the color, the greater the correlation coefficient. Table S1: The distribution of the urinary
metabolites in the study population. Table S2: Sleep duration and EDC concentrations grouped by
vitamin D level. Table S3: EDCs metabolite distribution in the population (grouped by vitamin D
level). Table S4: The correlation between EDC metabolite exposure and sleep duration (grouped by
vitamin D level). Table S5: Names of urinary metabolites and their detection limits.
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