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Abstract: In this study, the influence of total sn-2 palmitic triacylglycerols (TAGs) and ratio of 1-
oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) to 1,3-dioleoyl-2-palmitoylglycerol (OPO) in human
milk fat substitute (HMFS) on the metabolic changes were investigated in Sprague–Dawley rats.
Metabolomics and lipidomics profiling analysis indicated that increasing the total sn-2 palmitic
TAGs and OPL to OPO ratio in HMFS could significantly influence glycine, serine and threonine
metabolism, glycerophospholipid metabolism, glycerolipid metabolism, sphingolipid metabolism,
bile acid biosynthesis, and taurine and hypotaurine metabolism pathways in rats after 4 weeks
of feeding, which were mainly related to lipid, bile acid and energy metabolism. Meanwhile, the
up-regulation of taurine, L-tryptophan, and L-cysteine, and down-regulations of lysoPC (18:0) and
hypoxanthine would contribute to the reduction in inflammatory response and oxidative stress, and
improvement of immunity function in rats. In addition, analysis of targeted biochemical factors
also revealed that HMFS-fed rats had significantly increased levels of anti-inflammatory factor (IL-
4), immunoglobulin A (IgA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px),
and decreased levels of pro-inflammatory factors (IL-6 and TNF-α) and malondialdehyde (MDA),
compared with those of the control fat-fed rats. Collectively, these observations present new in vivo
nutritional evidence for the metabolic regulatory effects of the TAG structure and composition of
human milk fat substitutes on the host.
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1. Introduction

Human breast milk has been recognized as the most ideal food source for infants.
Breast milk fat contributes approximately 50% of the total energy needed for infant growth
and development, which is well known for its desirable absorption efficiency, immunity,
and intestinal benefits [1,2]. Meanwhile, triacylglycerols (TAGs) in breast milk fat have a
unique stereo-distribution and composition. About 70% of palmitic acid (PA) is esterified
at the sn-2 position and forms sn-2 palmitic TAGs [3]. In addition, two main types of sn-2
palmitic TAGs in breast milk fat are 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1-oleoyl-
2-palmitoyl-3-linoleoylglycerol (OPL), and their mass ratio differs in the breast milk of
different ethnic groups. The OPL to OPO mass ratio was less than 1 in Western breast milk
and approximately 1.35 in Chinese breast milk [4,5].

Owing to the positive nutritional effects of breast milk fat, sn-2 palmitic TAGs have
been synthesized and supplemented into infant formula as the human milk fat substitute
(HMFS) to mimic the nutritional and functional characteristics as close as possible to those
of breast milk fat [6,7]. Meanwhile, our recent studies have found that the total sn-2 palmitic
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TAGs and its TAG composition in HMFS play a synergistic role in the utilization of nutrients
(lipids and minerals) and energy, serum lipid, and bile acid profiles in Sprague–Dawley (SD)
rats. Increasing the total sn-2 palmitic TAGs and OPL to OPO mass ratio could decrease
body weight gain and lipid accumulation in liver and perirenal adipose tissue, and improve
serum lipid parameters in high-fat fed rats [8,9]. All of these observations indicate the
influence of total sn-2 palmitic TAGs and their TAG composition on metabolic alternations
in rats. However, to the best of our knowledge, there are few studies dealing with the
specific changes in metabolic pathways and related metabolites.

In addition, Guo et al. confirmed that the feces of infants fed with high levels of sn-2
palmitic TAGs were enriched with beneficial fecal metabolites such as amino acids and fatty
acids, whose potential biological functions include inhibiting inflammation and improving
immunity, compared to those of infants fed the formula using regular vegetable oil [10].
Several in vivo studies have also shown that sn-2 palmitic TAGs have some immunity
benefits. Chen et al. found that the OPO-supplemented diet could regulate the levels of
serum immunity-related factors and enhance the immune function in mice [7]. According
to the observations of Wei et al., mice fed with a high-level OPL diet (consisting of 43%
OPL and 57% soybean oil) had an improved immunity function compared to mice fed with
soybean oil only, which might be related to the increased short-chain fatty acid-producing
intestinal bacteria [11]. Meanwhile, it is known that inflammatory responses are modulated
by the host immune system [12], while oxidative stress, an excessive accumulation of
reactive oxygen species, could severely interfere with the immune function and stimulate a
localized hyperinflammatory response [13]. Although sn-2 palmitic TAGs have shown some
immunity benefits on the host, the influence of its major TAG composition on immunity
function, and related inflammatory responses and oxidative stress is still lacking.

In this study, nontargeted metabolic and lipidomic profiling analysis by using ultra-
high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS)
was applied to explore the metabolic alterations of rats, which were fed with control fat
or HMFS with different total sn-2 palmitic TAGs and OPL to OPO ratios. Meanwhile, the
targeted biochemical factors were further analyzed to unveil the influence of HMFS on the
inflammatory responses, immunity function, and oxidative stress in rats. The study may
help to better understand the metabolic regulatory effects of the structure and composition
of TAGs in HMFS on the host.

2. Materials and Methods
2.1. Chemicals

Enzyme-linked immunosorbent assay (ELISA) kits for interleukin-6 (IL-6), interleukin-
4 (IL-4), tumor necrosis factor-α (TNF-α), immunoglobulin A (IgA), immunoglobulin M
(IgM), superoxide dismutase (SOD), glutathione peroxidase (GSH-px), and malondialde-
hyde (MDA) were all obtained from Dakewe Biotech Co., Ltd. (Shanghai, China). LC-MS
(liquid chromatography-mass spectrometry) grade methanol, acetonitrile, and formic acid
were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Chlorophenylalanine
was purchased from Anpel Laboratory Technologies, Inc. (Shanghai, China). All other
chemical reagents were of the highest quality and purchased from Sigma-Aldrich (St. Louis,
MO, USA).

2.2. Experimental Animals and Treatment

Since this study is a continuation of our previous work, the animals were fed and
grouped as reported in our recently published literature [8]. Briefly, forty male SD rats were
randomly selected into four groups (n = 10 rats per group) after one week acclimatized
feeding, which were then fed with control fat (CF) and 3 kinds of HMFS for 4 weeks,
respectively. The CF and HMFS were kindly provided by Kerry Oils & Grains Industries
Co., Ltd. (Shanghai, China), and the detailed chemical composition of CF (sn-2 palmitic
acid level of 15.54%, OPL to OPO ratio of 0.4), HMFS1 (sn-2 palmitic acid level of 54.36%,
OPL to OPO ratio of 0.3), HMFS2 (sn-2 palmitic acid level of 60.02%, OPL to OPO ratio
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of 0.9), and HMFS3 (sn-2 palmitic acid level of 57.87%, OPL to OPO ratio of 1.4) is shown
in Table S1. The four experimental diets were made from 15 wt% CF or HMFS mixed
with commercial non-fat diets, and the detailed diet components are shown in Table S2.
All animal procedures were conducted in strict accordance with the laboratory animal
guidelines, which were approved by the Animal Care and Use Committee of Shanghai Jiao
Tong University (A2020078).

2.3. Serum Collection

After the 4-week experimental feeding, the SD rats were anesthetized with CO2 and
whole blood was collected from the abdominal aorta. Serum was obtained from the
blood samples by centrifugation (1300× g, 10 min, 4 ◦C), and then stored at −80 ◦C until
analysis [14].

2.4. Serum Metabolomics Analysis

Serum metabolomics was analyzed according to a previously reported literature with
some modifications [15]. Rat serum (50 µL) was mixed with 200 µL of extract solvent
(acetonitrile: methanol = 1:1, containing 2 µg/mL of chlorophenylalanine) and vortexed
for 30 s. After resting at −20 ◦C for at least 2 h, 150 µL of supernatant was obtained after
centrifugation (13,400× g, 20 min, 4 ◦C). The supernatant was concentrated to dryness
using a centrifugal concentrator. A total of 50 µL of solvent (methanol:water = 3:7) was
added for redissolving and then vortexed mixing. After centrifugation, the supernatant
was taken in the injection vial for measurement.

An UHPLC system (Vanquish, Thermo Fisher Scientific, Bremen, Germany) cou-
pled with a Q exactive plus mass spectrometer (Orbitrap MS) was carried out for the
analysis of metabolic profiles at both ESI positive (+) and negative (−) ion modes. Chro-
matographic separation was performed on a Waters ACQUITY UPLC HSS T3 column
(100 mm × 2.1 mm, 1.7 µm). The column temperature was 40 ◦C, the flow rate was
0.4 mL/min, and the injection volume was 1.0 µL. The gradient mobile phase comprised
of 0.1% formic acid aqueous solution (A) and 0.1% formic acid acetonitrile solution (B).
The gradient program was as follows: 0–12 min, 1–100% B; 12–13 min, held at 100% B.
The conditions of the mass spectrometer were as follows: scan range, 67–1000 amu; spray
voltage, 3.2 kV (positive mode) and 2.8 kV (negative mode); capillary temperature, 320 ◦C.
Raw chromatographic and MS data of serum metabolites were acquired by Xcalibur 3.0,
and processed using Progenesis QI v2.3 (Waters Co., Milford, MA, USA) for peak pick-
ing, alignment, and normalization. UNIFI software version 1.8 and an online database
[human metabolome database (HMDB)] were used to identify the metabolites in four
experimental groups.

2.5. Serum Lipidomics Analysis

Serum lipidomics analysis was carried out following a literature published before with
some modifications [16]. Serum (50 µL) was mixed with 200 µL of methanol and vortexed
sufficiently. A total of 400 µL of trichloromethane was added to the mixed solution, vortexed
thoroughly, and shaken for 1 h at room temperature. A total of 170 µL of ultrapure water
was added to the solution and vortexed thoroughly. After resting at 4 ◦C for 10 min, the
bottom trichloromethane layer was obtained after centrifugation (13,400× g, 10 min, 4 ◦C).
The supernatant was added to 400 µL of washing solution (trichloromethane: methanol:
water = 85:14:1), and the two lower layers collected were combined after centrifugation. A
total of 100 µL of solvent (dichloromethane: isopropanol: methanol = 1:1:2) was added for
redissolving and then vortexed for 1 min. After centrifugation, the supernatant was taken
in the injection vial for measurement.

A UHPLC system (Vanquish, Thermo Fisher Scientific) coupled with a Q exactive
plus mass spectrometer (Orbitrap MS, Thermo) was used for the analysis of lipids at
both ESI positive (+) and negative (−) ion modes. Waters ACQUITY UPLC BEH C18
(100 mm × 2.1 mm, 1.7 µm) was used for the chromatographic separation. The column
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temperature was 55 ◦C, the flow rate was 0.4 mL/min, and the injection volume was 1.0 µL.
The gradient mobile phase comprised acetonitrile/water (60:40) with 10 mM ammonium
formate and 0.1% formic acid (A), and isopropanol/acetonitrile (90:10) with 10 mM ammo-
nium formate and 0.1% formic acid (B). The gradient program was as follows: 0–17 min,
5–100% B. The conditions of the mass spectrometer were as follows: scan range, 150–2000
amu; spray voltage, 3.8 kV (positive mode) and 3.0 kV (negative mode); capillary tempera-
ture, 320 ◦C. Raw chromatographic and MS data of serum lipids were acquired by Xcalibur
3.0, and processed by Lipidsearch 4.2 to obtain lipid information.

2.6. Serum Immunity-Related Parameter and Antioxidant Parameter Measurement

Serum immunity-related parameters and antioxidant parameters, including IL-6, IL-4,
TNF-α, IgA, IgM, SOD, GSH-px, and MDA, were determined using ELISA kits according
to the manufacturer’s instructions, respectively.

2.7. Statistical Analysis

Principal component analysis (PCA), volcano plot analysis, and pathway analysis were
performed using MetaboAnalyst 6.0 software. Statistics were analyzed using SPSS 24.0 and
statistical significance was calculated by one-way ANOVA and Tukey’s post hoc multiple
comparisons (p < 0.05 or 0.01). All the figures were made by using GraphPad Prism 8.0.
The correlation analysis was performed using Spearman’s correlation analysis method.

3. Results and Discussion
3.1. Metabolomics and Lipidomics Profiling

PCA is a linear dimensionality reduction technique applied to examine the overall
profile among samples and the consistency of the analytical process [17]. Therefore, PCA
was first used to detect serum metabolomics and lipidomics profiles of CF or HMFS-fed
rats. As shown in Figure 1, a clear separation in the PCA score plots was observed among
the CF and HMFS-fed rat groups both at the positive ion mode and negative ion mode, no
matter for metabolomics (Figure 1A,B) or lipidomics profiles (Figure 1C,D), which indicated
that the total sn-2 palmitic TAGs and OPL to OPO ratio in HMFS had some influence on
the serum metabolites and lipids in rats.
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Figure 1. Serum principal components analysis (PCA) score plots for Sprague–Dawley rats. Positive
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lipidomics. CF, control fat group; HMFS1, human milk fat substitute 1 group; HMFS2, human milk
fat substitute 2 group; HMFS3, human milk fat substitute 3 group.

3.2. Metabolomics Analysis

The identified serum metabolites between different experimental groups were utilized
to generate the volcano plots (Figure S1). These significantly altered serum metabolites
were further screened and identified as differential metabolites based on the fold change
(FC) > 2 or <0.5, and variable importance in projection (VIP) > 1. Finally, a total of 16 serum
differential metabolites were obtained among four experimental groups, including 3 glyc-
erophospholipids, 1 bile acid, 2 organosulfonic acids, 5 indoles and derivatives, 3 amino
acids and derivatives, 2 purines and purine derivatives (Table 1). These differential metabo-
lites were further used for the metabolic pathway analysis. Based on the p < 0.05 and rich
factor > 0.1, the differential metabolic pathways were further filtered out.

Compared to the CF-fed rat group, increasing the sn-2 palmitic acid content from
15.54% to 54.36% in HMFS1 could significantly up-regulate the abundances of taurocholic
acid, 6-hydroxymelatonin, 5-hydroxy-L-tryptophan, L-tryptophan, L-glutamine, and crea-
tine, and down-regulate the abundances of glycerol 3-phosphate, lysophosphatidylcholine
(lysoPC) (18:0), and xanthosine (p < 0.05 or 0.01) (Table 1). Meanwhile, a total of four
differential metabolic pathways, including tryptophan metabolism, glycerophospholipid
metabolism, purine metabolism, and bile acid biosynthesis were found between CF and
HMFS1-fed rats (Figure 2A). When the sn-2 palmitic acid content of HMFS was main-
tained in the range of 54.36% to 60.02%, increasing the OPL to OPO ratio in HMFS from
0.3 (HMFS1) to 0.9 (HMFS2) could further increase the abundance of L-tryptophan and
decrease the abundance of xanthosine (p < 0.01). Meanwhile, other four differential metabo-
lites were also observed in HMFS2-fed rats, including taurine, glycine, L-cysteine, and
hypoxanthine. As shown in Figure 2B, three differential metabolic pathways of taurine
and hypotaurine metabolism, glycine, serine and threonine metabolism, and bile acid
biosynthesis were identified between HMFS1 and HMFS2 groups. When the OPL to OPO
ratio in HMFS further increased to 1.4 (HMFS3), a new differential metabolic pathway of
cysteine and methionine metabolism was found between the HMFS1 and HMFS3-fed rats
(p < 0.01), besides six differential metabolic pathways mentioned earlier (Figure 2C). For
the metabolites involved in the cysteine and methionine metabolism pathway, L-cysteine
was significantly increased (p < 0.01), indicating the up-regulated cysteine and methionine
metabolism pathway in HMFS3-fed rats.
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Table 1. Identification of serum differential metabolites in Sprague–Dawley rats.

Class Ion
Mode

Identity HMDB ID Observed
m/z RT (min) Formula

Mass
Error
(ppm)

HMFS1 vs. CF HMFS2 vs. HMFS1 HMFS3 vs. HMFS1

VIP FC Trend VIP FC Trend VIP FC Trend

Glycerophospholipids
− Glycerol 3-phosphate HMDB00126 171.0065 0.65 C3H9O6P 0.31 1.23 0.37 ↓ ** 0.91 0.97 ↓ 2.88 0.21 ↓ **
+ LysoPC (16:0) HMDB10382 478.3291 7.50 C24H50NO7P −0.17 1.13 0.82 ↓ 0.88 0.92 ↓ 1.54 0.05 ↓ **
+ LysoPC (18:0) HMDB10384 524.3713 6.06 C26H54NO7P 0.53 1.24 0.45 ↓ ** 0.65 0.93 ↓ 1.83 0.33 ↓ **

Bile acids + Taurocholic acid HMDB00036 538.2805 5.07 C26H45NO7S −0.18 1.01 2.06 ↑ * 1.65 1.18 ↑ 1.91 3.08 ↑ **

Organosulfonic
acids

+ Taurine HMDB00251 126.0219 0.62 C2H7NO3S −0.24 1.18 1.29 ↑ 1.48 1.02 ↑ 2.11 2.94 ↑ **
− Taurine HMDB00251 124.0073 0.61 C2H7NO3S 0.03 1.33 1.11 ↑ 1.76 1.01 ↑ 1.98 3.16 ↑ **
− Glycine HMDB00123 74.0246 0.65 C2H5NO2 −1.41 1.09 1.10 ↑ 1.84 5.57 ↑ ** 2.43 6.02 ↑ **

Indoles and
derivatives

+ 5-Hydroxyindoleacetic acid HMDB00763 192.0656 3.13 C10H9NO3 0.28 1.09 0.70 ↓ 0.93 1.63 ↑ 1.98 3.44 ↑ **
− 5-Hydroxyindoleacetic acid HMDB00763 190.0510 3.15 C10H9NO3 0.16 1.18 0.86 ↓ 0.88 1.33 ↑ 1.69 3.01 ↑ **
+ Melatonin HMDB01389 255.1056 4.76 C13H16N2O2 −0.63 1.52 2.45 ↑ 1.63 1.51 ↑ 1.21 8.36 ↑ **
− 6-Hydroxymelatonin HMDB04081 293.1142 4.09 C13H16N2O3 −0.19 1.98 2.79 ↑ * 0.82 1.06 ↑ 1.83 2.48 ↑ **
+ 5-Hydroxy-L-tryptophan HMDB00472 221.0920 2.74 C11H12N2O3 0.19 1.09 7.61 ↑ ** 1.02 1.49 ↑ 0.44 1.08 ↑
− 5-Hydroxy-L-tryptophan HMDB00472 219.0774 2.74 C11H12N2O3 −0.24 1.16 8.13 ↑ ** 1.29 1.27 ↑ 0.72 1.41 ↑
+ L-Tryptophan HMDB00929 205.0971 3.87 C11H12N2O2 −0.10 1.63 2.04 ↑ ** 1.26 2.54 ↑ ** 1.29 3.11 ↑ **
− L-Tryptophan HMDB00929 203.0826 3.87 C11H12N2O2 0.33 1.82 2.21 ↑ ** 1.04 2.15 ↑ ** 1.43 3.28 ↑ **

Amino acids and
derivatives

− L-Glutamine HMDB00641 145.0619 0.63 C5H10N2O3 0.52 1.69 3.46 ↑ ** 1.77 1.00 — 2.05 3.15 ↑ **
− Creatine HMDB00064 130.0622 0.73 C4H9N3O2 0.23 1.25 7.06 ↑ ** 0.88 1.10 ↑ 1.67 3.10 ↑ **
− L-Cysteine HMDB00574 120.0125 1.00 C3H7NO2S 0.11 0.77 0.98 ↓ 2.00 4.25 ↑ ** 1.32 4.28 ↑ **

Purines and purine
derivatives

+ Hypoxanthine HMDB00157 137.0458 3.54 C5H4N4O 0.55 0.80 0.60 ↓ 1.87 0.37 ↓ ** 1.74 0.18 ↓ **
+ Xanthosine HMDB00299 285.0826 3.31 C10H12N4O6 −1.42 2.71 0.22 ↓ ** 1.76 0.22 ↓ ** 1.82 0.11 ↓ **
− Xanthosine HMDB00299 283.0685 3.34 C10H12N4O6 −0.21 2.55 0.39 ↓ ** 1.98 0.37 ↓ ** 1.95 0.06 ↓ **

* and ** stand for p < 0.05 and p < 0.01, respectively. ↑ and ↓ stand for the increased or decreased trend of certain metabolite, respectively. LysoPC (16:0), lysophosphatidyl choline (16:0);
LysoPC (18:0), lysophosphatidyl choline (18:0). CF, control fat group; HMFS1, human milk fat substitute 1 group; HMFS2, human milk fat substitute 2 group; HMFS3, human milk fat
substitute 3 group.
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In our recent study, compared to CF-fed rats, the increased levels of total serum bile
acids, especially for the tauro-conjugated bile acids were observed in HMFS-fed rats [8],
which might be explained by the up-regulated bile acid biosynthesis pathway observed
in this study. Meanwhile, glycerophospholipid metabolism was one of the essential lipid
metabolism pathways, which showed a strongly positive association with hyperlipidemia
and obesity in mice [18,19]. Qu et al. found that the tripeptide DT-109 (Gly-Gly-Leu) dose-
dependently attenuated hepatic steatosis in mice through up-regulating glycine, serine and
threonine metabolism [20]. In this study, it was found that increasing total sn-2 palmitic
TAGs and OPL to OPO ratio in HMFS could down-regulate the glycerophospholipid
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metabolism and meanwhile up-regulate glycine, serine and threonine metabolism pathway.
These results may help us better understand our previous observations that HMFS-fed rats
had reduced body weight and accumulation of lipid droplets in liver and perirenal adipose
tissue, and improved serum lipid indicators [8]. The taurine and hypotaurine metabolism is
an energy metabolic homeostasis-related signaling pathway. According to the observations
of Zhu et al., Brassica rapa L. extract could strengthen energy metabolism in mice and help
against fatigue through up-regulating taurine and hypotaurine metabolism pathways [21].
In this study, increasing the OPL to OPO ratio in HMFS also significantly up-regulated
the taurine and hypotaurine metabolism in a dose-dependent manner, which provides
further evidence for the significantly higher expressions of two key thermogenic proteins
(peroxisome proliferators-activated receptor γ coactivator lalpha and uncoupling protein 1)
in perirenal adipose tissue of HMFS-fed rats, especially for the rats fed with HMFS3 (OPL
to OPO ratio of 1.4) [22].

Furthermore, a recent study has shown that cysteine and methionine metabolism,
tryptophan metabolism, and purine metabolism all have a strong correlation with the in-
flammatory responses and immunity function in COVID-19 patients [23]. In addition, Zhao
et al. found that the up-regulation of glycerophospholipid metabolism might exacerbate
oxidative damage and induce hyperinflammatory response in zebrafish [24]. Therefore,
serum biochemical indicators related to the inflammatory response, oxidative stress, and
immunity function were also measured in this study. As shown in Figure 3, the statistically
lower pro-inflammatory factor levels, including IL-6 and TNF-α, were observed for HMFS-
fed rats, compared to that of CF-fed rats. The lowest levels of IL-6 and TNF-α were also
shown in HMFS3-fed rats (168.32 pg/mL and 244.72 pg/mL) (Figure 3A,B). Meanwhile,
the level of anti-inflammatory factor IL-4 was just the opposite, and the highest IL-4 was
shown in HMFS3-fed rats (79.34 pg/mL) (Figure 3C). Moreover, the correlation between
these inflammatory factors and serum differential metabolites was analyzed. As shown in
Figure 4A, IL-6 level was observed to be negatively correlated with the L-tryptophan and L-
cysteine, while positively correlated with hypoxanthine. Moreover, there was a significant
negative correlation between TNF-α and taurine or L-tryptophan, and a significant positive
correlation between TNF-α and hypoxanthine. Taurine, L-tryptophan, and hypoxanthine
were crucial metabolites involved in taurine and hypotaurine metabolism, tryptophan
metabolism, and purine metabolism. L-cysteine was involved in cysteine and methionine
metabolism. These observations could further indicate that the increased sn-2 palmitic
TAGs and OPL to OPO ratio in HMFS might reduce the inflammatory response in rats by
up-regulating taurine and hypotaurine metabolism, tryptophan metabolism, and cysteine
and methionine metabolism, and down-regulating purine metabolism. A previous study
also found that mogroside V could reduce the TNF-α level in serum and attenuate lung in-
flammation through the up-regulation of taurine and hypotaurine metabolism in asthmatic
mice [25]. Xiao et al. found that the decreased IL-6 level in serum and up-regulated cysteine
and methionine metabolism were shown in healthy people, in comparison to COVID-19
patients [23].

Immunoglobulin, including IgA and IgM, is a kind of glycosylated protein, which
plays a critical role in defending against a variety of pathogenic infections [26]. As shown
in Figure 3D,E, compared to that of CF-fed rats, three groups of HMFS-fed rats all exhibited
a significant increase in the IgA level (p < 0.05), with the highest IgA level shown in the
HMFS3-fed rats (300.70 µg/mL). Meanwhile, there is no significant difference in the IgM
level among the four experimental rat groups. Based on the Spearman correlation analysis,
the IgA level was positively correlated with L-tryptophan involved in the tryptophan
metabolism pathway. Shi et al. showed consistent observations that the activation of IgA
could be modulated by up-regulating the tryptophan metabolism pathway in high-fat-
diet mice [27]. Oxidative stress induces cellular damage, which is often characterized by
decreased levels of antioxidant enzymes, and increased levels of MDA [28]. As shown in
Figure 3F,G, the increased levels of antioxidant enzymes, including SOD and GSH-Px were
both observed in three HMFS-fed rat groups, compared with those of the CF-fed rat group.
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The highest SOD and GSH-Px levels were shown in HMFS3-fed rats (226.94 U/mL and
643.87 U/mL). Moreover, a statistically lower MDA level was observed for HMFS1-fed rats
(5.03 nmol/mL) compared to that of CF-fed rats (6.20 nmol/mL). The MDA level of HMFS3-
fed rats was further significantly decreased to 3.25 nmol/mL, compared to those of the
other two HMFS-fed rat groups (p < 0.05) (Figure 3H). Meanwhile, the correlation between
serum antioxidant parameters and differential metabolites was also analyzed (Figure 4A).
MDA was observed to be positively correlated with the lysoPC (18:0) and hypoxanthine,
which were crucial metabolites involved in glycerophospholipid metabolism and purine
metabolism, respectively (p < 0.05). Meanwhile, the significantly negative correlations
between SOD or GSH-Px and lysoPC (18:0) or hypoxanthine in rats could also be found.
Han et al. have shown that the hydroxytyrosol treatment could increase the activities of
SOD and GSH-Px, and decrease the MDA level in mice serum through down-regulating the
glycerophospholipid metabolism pathway [29]. Meanwhile, a previous study showed that
the chrysanthemum extract could increase SOD and GSH-Px activities in LO2 hepatocytes
by down-regulating the purine metabolism pathway [30].
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Figure 3. Serum immunity-related parameters for IL-6 (A), TNF-α (B), IL-4 (C), IgA (D), and IgM
(E) in Sprague–Dawley rats. Serum antioxidant parameters for SOD (F), GSH-px (G), and MDA
(H) in Sprague–Dawley rats. The vertical bars stand for the standard deviation of data (n = 10).
Different letters stand for significant differences among four dietary fat formula groups (p < 0.05).
IL-6, interleukin-6; TNF-α, tumor necrosis factor-α; IL-4, interleukin-4, IgA, immunoglobulin A;
IgM, immunoglobulin M; SOD, superoxide dismutase; GSH-px, glutathione peroxidase; MDA,
malondialdehyde. CF, control fat group; HMFS1, human milk fat substitute 1 group; HMFS2, human
milk fat substitute 2 group; HMFS3, human milk fat substitute 3 group.

3.3. Lipidomics Analysis

By using the lipidomics technique, the serum lipids of CF and HMFS-fed rats were
identified, which were first utilized to generate the volcano plots (Figure S2). According
to FC > 2 or <0.5, p < 0.05, and VIP > 1, a total of 4 differential lipid species, including
fatty acids, glycerophospholipids, glycerolipids, and sphingolipids, were further identified
(Table 2). Specifically, the significantly down-regulated fatty acid (FA) (22:5), lysoPC (18:0),
lysoPC (18:2), and lysoPC (20:1), lysophosphatidyl ethanolamine (lysoPE) (18:0), lysoPE
(18:2), lysoPE (20:4), lysoPE (22:6), phosphatidylcholine (PC) (16:0_16:0), PC (18:1_22:6), tria-
cylglycerol (TG) (16:0_16:0_16:0), TG (16:0_16:0_18:1), and sphingomyelin (SM) (d18:1_16:0)
were observed in HMFS1-fed rats compared to CF-fed rats. Based on the metabolic pathway
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analysis (Figure 2D), these differential lipids were mainly involved in glycerophospholipid
metabolism and glycerolipid metabolism, suggesting that increasing the total sn-2 palmitic
TAGs could down-regulate glycerophospholipid metabolism and glycerolipid metabolism
in rats. In addition, increasing the OPL to OPO ratio in HMFS from 0.3 (HMFS1) to 0.9
(HMFS2) could further decrease the abundance of lysoPE (18:2) and TG (16:0_16:0_16:0)
(p < 0.01). Meanwhile, other three differential lipids were also decreased in HMFS2-fed
rats, that was lysoPC (20:0), PE (18:0_18:2), and PE (18:1_18:1). These differential serum
lipids were mainly involved in the glycerophospholipid metabolism pathway (Figure 2E).
Moreover, increasing the OPL to OPO ratio from 0.3 (HMFS1) to 1.4 (HMFS3), all the
above-mentioned differential lipids were further significantly down-regulated, except for
lysoPC (20:1) and SM (d18:1_16:0). Meanwhile, an additional metabolic pathway of sphin-
golipid metabolism was observed between HMFS1 and HMFS3-fed rats (Figure 2F). It is
known that glycerophospholipid metabolism, glycerolipid metabolism, and sphingolipid
metabolism are all related to the lipid metabolism homeostasis in the host. Wei et al. found
that fermented tomatoes could reduce serum total cholesterol (TC) and triacylglycerol
(TAG) levels and regulate lipid metabolism in high-fat diet-induced mice through down-
regulating glycerophospholipid metabolism and sphingolipid metabolism [31]. Meanwhile,
Feng et al. observed that tangeretin could decrease serum TC and low density lipoprotein-
cholesterol (LDL-c) by down-regulating glycerophospholipid metabolism and glycerolipid
metabolism in high-fat diet-fed rats [32].
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Figure 4. Heatmap of Spearman correlation analysis between serum differential metabolites and
serum immunity-related parameters or antioxidant parameters measurement (A). Heatmap of Spear-
man correlation analysis between serum differential lipids and serum lipid parameters (TC, TAG,
HDL-c, and LDL-c). The serum lipid parameters have been published in our previous article [8]
(* p < 0.05) (B). IL-6, interleukin-6; TNF-α, tumor necrosis factor-α; IL-4, interleukin-4, IgA, im-
munoglobulin A; IgM, immunoglobulin M; SOD, superoxide dismutase; GSH-px, glutathione peroxi-
dase; MDA, malondialdehyde; LysoPC(16:0), lysophosphatidyl choline(16:0); LysoPC(18:0), lysophos-
phatidyl choline(18:0); FA, fatty acid; LysoPC, lysophosphatidyl choline; LysoPE, lysophosphatidyl
ethanolamine; PC, phosphatidyl choline; PE, phosphatidyl ethanolamine; TG, triacylglycerol; SM,
sphingomyelin.
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Table 2. Identification of serum differential lipids in Sprague–Dawley rats.

Class Ion
Mode

Identity HMDB ID Observed
m/z RT (min) Formula

Mass
Error
(ppm)

HMFS1 vs. CF HMFS2 vs. HMFS1 HMFS3 vs. HMFS1

VIP FC Trend VIP FC Trend VIP FC Trend

Fatty acids − FA (22:5) HMDB0247288 329.2486 3.94 C22H34O2 0.01 1.84 0.42 ↓ ** 0.92 0.65 ↓ 1.63 0.43 ↓ **

Glycerophospholipids

+ LysoPC (16:0) HMDB0010382 496.3398 2.15 C24H50O7NP 1.20 0.76 0.97 ↓ 0.85 0.93 ↓ 1.52 0.45 ↓ **
+ LysoPC (18:0) HMDB0010384 524.3711 2.40 C26H54O7NP 0.75 1.59 0.45 ↓ ** 0.92 0.98 ↓ 1.81 0.31 ↓ **
+ LysoPC (18:2) HMDB0010386 520.3398 2.22 C26H50O7NP 0.37 1.51 0.35 ↓ ** 0.82 0.87 ↓ 1.15 0.45 ↓ **
+ LysoPC (20:0) HMDB0010390 552.4024 3.96 C28H58O7NP 0.68 0.91 1.00 — 1.14 0.38 ↓ ** 1.36 0.31 ↓ **
+ LysoPC (20:1) HMDB0010391 550.3867 3.36 C28H56O7NP 0.35 1.91 0.31 ↓ ** 0.75 0.82 ↓ 0.78 0.65 ↓
− LysoPE (18:0) HMDB0011130 480.3096 3.67 C23H48O7NP 0.69 1.63 0.49 ↓ ** 0.87 1.00 — 1.03 0.45 ↓ **
− LysoPE (18:2) HMDB0011507 476.2783 2.16 C23H44O7NP 0.47 1.81 0.38 ↓ ** 1.75 0.44 ↓ ** 1.38 0.22 ↓ **
− LysoPE (20:4) HMDB0011487 500.2783 2.14 C25H44O7NP 1.32 1.59 0.33 ↓ ** 0.95 0.88 ↓ 1.55 0.41 ↓ **
− LysoPE (22:6) HMDB0011496 524.2783 2.28 C27H44O7NP 0.25 1.21 0.28 ↓ ** 0.74 0.97 ↓ 1.98 0.34 ↓ **
+ PC (16:0_16:0) HMDB0000564 756.5514 7.87 C40H80O8NP 0.01 1.24 0.40 ↓ ** 0.85 0.82 ↓ 1.62 0.49 ↓ **
+ PC (16:0_20:4) HMDB0007982 804.5514 8.41 C44H80O8NP 1.05 0.76 0.75 ↓ 0.98 0.94 ↓ 1.54 0.42 ↓ **
+ PC (18:0_18:1) HMDB0008037 810.5983 10.97 C44H86O8NP 1.41 0.91 0.90 ↓ 0.94 0.93 ↓ 1.54 0.40 ↓ **
+ PC (18:1_22:6) HMDB0008090 854.5670 7.96 C48H82O8NP 0.01 1.24 0.48 ↓ ** 0.56 0.74 ↓ 1.39 0.40 ↓ **
+ PC (20:4_20:4) HMDB0008444 852.5514 6.72 C48H80O8NP 0.01 0.52 0.96 ↓ 0.73 0.64 ↓ 1.98 0.45 ↓ **
− PE (18:0_18:2) HMDB0008994 742.5392 10.72 C41H78O8NP 1.29 0.32 0.97 ↓ 1.62 0.32 ↓ ** 1.32 0.31 ↓ **
− PE (18:1_18:1) HMDB0009025 742.5392 7.33 C41H78O8NP 0.02 0.68 0.88 ↓ 1.61 0.45 ↓ ** 1.28 0.23 ↓ **

Glycerolipids
+ TG (16:0_16:0_16:0) HMDB0005356 829.7256 12.25 C51H98O6 1.05 1.59 0.49 ↓ ** 1.52 0.07 ↓ ** 1.67 0.05 ↓ **
+ TG (16:0_16:0_18:1) HMDB0005360 855.7412 14.75 C53H100O6 1.51 1.38 0.44 ↓ ** 0.97 0.74 ↓ 1.18 0.24 ↓ **
+ TG (16:0_18:1_22:6) HMDB0044135 905.7593 12.24 C59H100O6 0.17 0.94 0.81 ↓ 0.88 0.76 ↓ 1.28 0.36 ↓ **

Sphingolipids
+ SM (d18:1_16:0) HMDB0010169 725.5568 8.01 C39H79O6N2P 1.48 1.11 0.45 ↓ ** 0.98 0.83 ↓ 0.42 0.74 ↓
+ SM (d18:1_23:0) HMDB0012105 823.6663 11.65 C46H93O6N2P 0.71 0.53 0.77 ↓ 0.93 0.82 ↓ 1.73 0.35 ↓ **
+ SM (d18:1_24:0) HMDB0011697 837.6820 11.83 C47H95O6N2P 1.50 0.96 0.88 ↓ 0.89 0.72 ↓ 1.92 0.48 ↓ **

** Stands for p < 0.01. ↓ stands for the decreased trend of certain metabolite. FA, fatty acid; LysoPC, lysophosphatidyl choline; LysoPE, lysophosphatidyl ethanolamine; PC, phosphatidyl
choline; PE, phosphatidyl ethanolamine; TG, triacylglycerol; SM, sphingomyelin. CF, control fat group; HMFS1, human milk fat substitute 1 group; HMFS2, human milk fat substitute 2
group; HMFS3, human milk fat substitute 3 group.
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To further clarify the relationship between these differential lipids (Table 2) and serum
lipid indicators (TC, TAG, HDL-c, and LDL-c) measured in our previous study [8], the
association analysis was also performed (Figure 4B). As shown in Figure 4B, significant
positive correlations between serum lysoPCs and TC or LDL-c were observed. A previous
study correlated well with our observations, which also showed that there was a significant
positive correlation between the TC level and lysoPCs in the serum of hypercholesterolemia
patients, possibly due to the fact that lysoPC could promote cholesterol-related small-
molecular lipids and lipoprotein accumulation [33]. Meanwhile, lysoPC is also known
as the hydrolyzed product of LDL-c, so it is reasonable that the significantly positive
correlations between serum lysoPCs and LDL-c are observed [34]. Moreover, there were
obvious positive correlations between serum TG species and TC or TAG, and negative
correlations between serum TG species and HDL-c. These correlation results were also
consistent with some previously published studies that serum TG species had a strong
positive correlation with TC or TAG, and a negative correlation with HDL-c [35,36].

4. Conclusions

In conclusion, an integrated strategy combining metabolomics and lipidomics was
used to explore the influence of sn-2 palmitic TAGs and OPL to OPO ratio on metabolic
alternation in rats. The metabolic pathway showed that increasing the sn-2 palmitic TAGs
and ratio of OPL to OPO in HMFS could significantly up-regulate glycine, serine and
threonine metabolism, bile acid biosynthesis and taurine and hypotaurine metabolism,
and down-regulate glycerophospholipid metabolism, glycerolipid metabolism and sphin-
golipid metabolism, which are mainly involved in lipid, bile acid and energy metabolism
in rats. Meanwhile, both the metabolic profiling analysis and biochemical factors measure-
ment suggested that increasing the sn-2 palmitic TAGs and OPL to OPO ratio in HMFS
could reduce the inflammatory response and oxidative stress, and improve the immunity
function of rats mainly by regulating glycerophospholipid metabolism, purine metabolism,
tryptophan metabolism, cysteine and methionine metabolism, and taurine and hypotaurine
metabolism. These results will help to improve our understanding of the regulatory effect
of TAG structure and composition in HMFS on the nutritional functions of the host, which
could further allow us to design infant formula for improving the overall health of infants.
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