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Abstract: Background: Snakebite envenomation (SBE) causes diverse toxic effects in humans, in-
cluding disability and death. Current antivenom therapies effectively prevent death but fail to
block local tissue damage, leading to an increase in the severity of envenomation; thus, seeking
alternative treatments is crucial. Methods: This study analyzed the potential of two fucoidan sulfated
polysaccharides extracted from brown seaweeds Fucus vesiculosus (FVF) and Undaria pinnatifida (UPF)
against the fibrinogen or plasma coagulation, proteolytic, and phospholipase A2 (PLA2) activities of
Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. The toxicity of FVF and UPF was assessed
by the hemocompatibility test. Results: FVF and UPF did not lyse human red blood cells. FVF and
UPF inhibited the proteolytic activity of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom by
approximately 25%, 50%, and 75%, respectively, while all venoms led to a 20% inhibition of PLA2

activity. UPF and FVF delayed plasma coagulation caused by the venoms of B. jararaca and B. neuwiedi
but did not affect the activity of B. jararacussu venom. FVF and UPF blocked the coagulation of
fibrinogen induced by all these Bothropic venoms. Conclusion: FVF and UPF may be of importance
as adjuvants for SBE caused by species of Bothrops, which are the most medically relevant snakebite
incidents in South America, especially Brazil.

Keywords: brown seaweed; snake venom; Bothrops; fucoidan; Undaria pinnatifida; Fucus vesiculosus;
antivenom

Key Contribution: Use of fucoidan from seaweed to block toxicity effects of the venom of three
species of Bothrops.

1. Introduction

Snake venom is a complex mixture of organic and inorganic compounds, of which
90–95% are active proteins and peptides that produce diverse toxic effects in humans.
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) recognized by the
World Health Organization (WHO) since 2017, mainly to allow funds for the development
of strategies to reduce mortality or morbidity by 50% by 2030 [1,2]. SBE occurs worldwide
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with 2.7 million incidents, 138,000 deaths, and 400,000 amputations or deformities annually.
It is a serious medical problem mainly affecting impoverished, tropical, and subtropical
developing regions and a common occupational injury for farmers and agricultural workers,
as well as children [3–5]. Epidemiological studies of SBE are scarce, which makes it
difficult for governments to develop strategies to improve treatments to prevent deaths
or morbidities [1,3]. In Brazil, pit vipers of the genus Bothrops are responsible for 87% of
the registered incidents, followed by the genus Crotalus (rattlesnakes, 7.8%) and Lachesis
(Bushmasters, 2%). The genus Bothrops is the largest among vipers, with around 47 species,
and among them, B. jararaca, B. jararacussu, and B. neuwiedi are of medical interest since they
cause the highest numbers of severe envenomation incidents [6]. The symptoms of SBE
inflicted by these pit vipers share some clinical effects, including pain, inflammation, edema,
muscle damage around the affected limb, and drastic systemic disturbances in hemostasis
(hemorrhage and coagulopathies), as well as the failure of the kidneys and respiratory and
circulatory systems, hypotension, and death [7]. B. jararaca, B. jararacussu, and B. neuwiedi
are endemic to South America (mainly Brazil, Paraguay, Bolivia, and Argentina) and are
nocturnal and terrestrial [8]. The species of B. jararaca and B. neuwiedi reach around 120
and 60 cm in length, respectively, while B. jararacussu is the largest (160–220 cm). In
general, the venoms of Bothrops are a mixture of protein/peptide families, such as the snake
venom metalloproteases (SVMPs), snake venom serine proteinases (SVSPs), phospholipase
A2 (PLA2) enzymes, L-amino acid oxidases (LAAOs), hyaluronidases, and bradykinin
potentiators, which are responsible for the venom toxicity [7,9].

The WHO and Brazilian Ministry of Health, as well as other countries, recommend
antivenoms as the only available treatment for SBE [10–13]. In Brazil, the mono- or poly-
clonal antivenoms are produced at the Institute Butantan (São Paulo, São Paulo, Brazil),
Institute Vital Brazil (Niterói, Rio de Janeiro, Brazil), Immunological Production and Re-
search Center (Piraquara, Paraná, Brazil), and Ezequiel Dias Foundation (Belo Horizonte,
Minas Gerais, Brazil) through the hyperimmunization of equines, and the antivenoms are
intravenously administered to patients after envenomation. Although antivenoms prevent
the death of victims, they have some disadvantages, such as inducing allergic reactions
(anaphylaxis) and fever and high costs of production, and they are ineffective in preventing
tissue necrosis, thus leading to complications, such as amputation or deformity of the
affected limb [13,14]. Furthermore, the delay in administering antivenoms may increase
the mortality and morbidity of SBE [14]. Given the complexity of SBE and the limitations
of antivenoms, seeking alternative or complementary treatments is of great importance.
Plants have been used as herbal medicines to treat SBE since ancient times. Currently,
the literature reports many species of plants used in whole or in part with antivenom
effects [15–18]. On the other hand, research testing antivenom molecules derived from
marine environments is rare. Seaweed belongs to the Kingdom Protista and is classified into
three groups: Chlorophyceae (green algae), Rhodophyceae (red algae), and Phaeophyceae
(brown algae). There are approximately 1500 species of brown algae; however, some species
of the class Phaeophyceae, such as Ecklonia, Laminaria, Undaria, Fucus, Ascophyllum, and
Himanthalia, are perhaps the most studied due to the high content of bioactive compounds,
including alkaloids, terpenoids, phytosterols, carotenoids, polyphenols, sterols, proteins,
and sulfated polysaccharides [19,20]. These compounds have a wide range of pharma-
cological properties, including anticoagulant, antioxidant, antiviral, anti-inflammatory,
anticancer, antifungal, antibacterial [21–23], and antivenom [24–27] activities, as well as
ecological functions [28]. Indeed, seaweed has been used by the pharmaceutical and nu-
traceutical industries to promote human health or treat diseases [20,29]. Thus, the successful
applicability of seaweeds makes them good candidates for drug development to treat a
wide range of diseases, including SBE. The literature has described the antagonist effects
of polysaccharides from red algae Laurencia dendroidea [24], Palisada flagellifera [25], and
Chondrus crispus [26] and green alga Gayralia oxysperma [27] against the toxic activities of
the pit vipers Lachesis muta, B. jararaca, and B. jararacussu. However, less is known about the
inhibitory properties of fucoidans from brown algae. Although data are limited, two studies
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found that fucoidan from F. vesiculosus neutralized necrosis of tissue muscle caused by
crude venom and purified myotoxic PLA2 from Bothrops asper and other crotaline venoms,
including Cerrophidion godmani, Atropoides mummifer, and Bothriechis schlegelii [30,31].

Fucoidans are sulfated polysaccharides and have structural backbones primarily
composed of sulfated fucose groups. The polysaccharides may also contain galactose,
xylose, and arabinose in significant proportions, while other compounds may also be
present in extracts, including uronic acid and the monosaccharides glucose, mannose,
and rhamnose, in different ratios, depending on the species [20]. The pharmacological
properties are reported to be dependent on the molecular weight, chemical structure, sugar
composition, and the position of the sulfate group [20].

Building on the current knowledge of fucoidans in SBE, this study assessed high
molecular weight fucoidan extracts derived from two different species, F. vesiculosus (FVF)
and U. pinnatifida (UPF), against proteolytic, plasma, or fibrinogen coagulation, and PLA2
activities induced by B. jararaca, B. jararacussu, and B. neuwiedi venom.

2. Results
2.1. Toxicity of FVF and UPF

The in vitro toxicity of FVF and UPF was assayed using the hemocompatibility test.
Treating red blood cells (RBCs) with water led to 100% lysis, while treatment with saline
produced no lysis. The incubation of FVF and UPF (1500 µg/mL) lysed around 2% of RBC.
According to the literature [32], values of hemolysis below 10% mean that the compound is
non-toxic, and thus FVF and UPF can be classified as non-hemotoxic molecules.

2.2. Inhibitory Effect of FVF and UPF against the Proteolytic Activity of the Venom of B. jararaca,
B. jararacussu, and B. neuwiedi

B. jararaca, B. jararacussu, and B. neuwiedi venoms (10–50 µg/mL) hydrolyzed the
substrate azocasein in a concentration-dependent manner. One effective concentration (EC)
of each venom (30 µg/mL) was incubated for 5 min at 37 ◦C with saline (positive group)
or with 300 µg/mL FVF or UPF. As seen in Figure 1, the proteolytic activity of B. jararaca
(Figure 1A) and B. jararacussu (Figure 1B) venom was diminished by approximately 25%
and 50% by FVF and UPF, respectively. FVF or UPF inhibited the proteolytic activity of
B. neuwiedi venom by 75% (Figure 1C). FVF or UPF alone, in the absence of venom, did not
hydrolyze azocasein.
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Figure 1. Inhibitory effect of FVF or UPF on the proteolytic activity of B. jararaca, B. jararacussu, and 
B. neuwiedi venom. A total of 30 µg/mL of B. jararaca (A), B. jararacussu (B), and B. neuwiedi (C) 
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Figure 1. Inhibitory effect of FVF or UPF on the proteolytic activity of B. jararaca, B. jararacussu,
and B. neuwiedi venom. A total of 30 µg/mL of B. jararaca (A), B. jararacussu (B), and B. neuwiedi
(C) venoms were incubated with saline or 300 µg/mL FVF or UPF for 5 min at 37 ◦C. An aliquot
of each mixture was then added to the reaction, and the proteolytic activity was determined. A
total of 100% proteolytic activity was obtained with venom plus saline. Results are expressed as
means ± SEM (n = 6). * p < 0.05 when compared to each venom plus saline.
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2.3. Inhibitory Effect of FVF and UPF on the Coagulant Activity of the Venom of B. jararaca,
B. jararacussu, and B. neuwiedi

B. jararaca, B. jararacussu, and B. neuwiedi venom induces plasma and fibrinogen
coagulation in a concentration-dependent manner, and the amount of venom able to clot
plasma or fibrinogen at 60 s was determined as the minimum coagulating concentration
(MCC). One unit of the MCC of B. jararaca (30 µg/mL), B. jararacussu (60 µg/mL), and
B. neuwiedi (30 µg/mL) venom was incubated with FVF or UPF for 5 min at 37 ◦C. An
aliquot of each mixture was then added to the plasma. As seen in Figure 2A,C (white
columns), B. jararaca and B. neuwiedi venom (30 µg/mL) mixed with saline (positive groups)
clotted plasma at around 60–70 s. However, in the presence of 300 µg/mL FVF or UPF, the
coagulation of plasma occurred at 95 s (Figure 2A,C—white columns). In experiments using
fibrinogen (Figure 2A–C, black columns), the coagulation caused by 10 µg/mL B. jararaca
or B. neuwiedi venom in the presence of FVF and UPF (100 µg/mL) did not occur until
600 s, which was the maximum period of observation. The fibrinogen coagulation caused
by B. jararacussu venom (20 µg/mL) was inhibited by 200 µg/mL FVP or UPF (Figure 2B,
black columns). The coagulation of plasma caused by B. jararacussu venom (60 µg/mL)
was not inhibited by FVP or UPF (600 µg/mL). FVF or UPF alone did not clot plasma
or fibrinogen.
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30 min was around 20%, regardless of the venom tested (Figure 3). There were no statisti-
cally significant differences among the groups containing fucoidans. PLA2 activity of ven-
oms treated with 20 mM of EDTA vanished, and FVF or UPF in the absence of venom did 
not have PLA2 activity. 

Figure 2. Inhibitory effect of FVF and UPF on the coagulant activity of B. jararaca, B. jararacussu, and
B. neuwiedi venom. B. jararaca (A), B. jararacussu (B), and B. neuwiedi (C) venom was incubated for
5 min at 37 ◦C with saline or with FVF or UPF at a 1:10 ratio of venom to polysaccharide. After
incubation, an aliquot was added to plasma (white columns) or fibrinogen (black columns), and
the coagulation time was monitored in seconds (s). Results are expressed as means ± SEM (n = 8).
# means that plasma or fibrinogen did not clot by 600 s of monitoring. * p < 0.05 when compared to
each venom plus saline.

2.4. Inhibitory Effect of FVF and UPF on the PLA2 Activity of the Venom of B. jararaca,
B. jararacussu, and B. neuwiedi

B. jararaca, B. jararacussu, and B. neuwiedi venom was incubated with saline, and reads
of 0.7–0.8 at the absorbance of 740 nm were considered 100% PLA2 activity. Each venom
(50 µg/mL) was incubated with 25 µg/mL FVF or UPF. The inhibition of PLA2 activity
after 30 min was around 20%, regardless of the venom tested (Figure 3). There were no
statistically significant differences among the groups containing fucoidans. PLA2 activity
of venoms treated with 20 mM of EDTA vanished, and FVF or UPF in the absence of venom
did not have PLA2 activity.
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or UPF. A total of 50 µg/mL B. jararaca, B. jararacussu, or B. neuwiedi venom was incubated with
25 µg/mL FVF or UPF for 5 min at 37 ◦C. An aliquot of each mixture was then added to the reaction,
and PLA2 activity was measured. A total of 100% PLA2 activity was achieved by incubating each
venom (V) with saline (S) in the absence of FVF or UPF. Results are expressed as mean ± SEM of
n = 6, considering * p < 0.05 when compared to the positive group (V + S).

3. Discussion

This study provides evidence that two fucoidan extracts derived from F. vesiculosus and
U. pinnatifida, namely FVF and UPF, respectively, inhibited proteolytic, plasma, or fibrinogen
coagulant and the PLA2 activity of B. jararaca, B. jararacussu, and B. neuwiedi venom but
with different profiles. These activities are directly involved in local tissue damage and
systemic hemotoxicity in SBE. The proteolytic, hemorrhagic, and coagulating activities are
caused by the SVMP and SVSP families of enzymes [7,33,34], while edema, inflammation,
and muscle damage effects are mainly due to PLA2 enzymes [35,36]. Nevertheless, SVMP,
SVSP, and PLA2 are considered the most important and the major group of active proteins
of viper venoms and are thus responsible for producing the most serious symptoms in
SBE [34,35]. Therefore, inhibition of the toxic effects due to such a family of enzymes by
FVF and UPF is of great importance. In the literature, there are differences in the toxicity of
venoms between species of Bothrops. The venom of B. jararaca is highly hemorrhagic due
to the presence of SVMPs, e.g., jararhagin [37] and bothropasin [38]. On the other hand,
B. jararacussu venom is highly myotoxic due to the activity of two molecules with a PLA2
structure: the enzymatically inactive bothropstoxin I (Bthtx-I) and the enzymatically active
bothropstoxin II (Bthtx-II) [39,40]. B. neuwiedi venom has high coagulant, hemorrhagic, and
myotoxic activities [41].

Antivenoms do not neutralize such toxic activities caused by Bothropic venoms [41]
or other vipers [42] and may even induce hypersensitive reactions in patients [14]. Thus,
molecules able to neutralize the toxic activities of snake venoms are required to improve
the recovery of victims of SBE or to prevent sequelae. The SVMP and SVSP families
include many enzymes with chemically unique features and intriguing mechanisms of
action [33,34]. Therefore, blocking these venom enzymes, which have multiple and com-
plex actions, using a single molecule is a challenge. The sulfated polysaccharide fucoidans
derived from seaweed may be a good choice due to their safety and efficacy in humans
and attractive physical and chemical properties [43]. Moreover, the ease of development of
pharmaceutical forms using fucoidans means that they are good candidates for developing
medicines [43,44]. Because conventional antivenoms have limitations [14], Fuly et al. [26]
developed a gel containing a galactan polysaccharide from the red alga Chrondus crispus that
protected mice from hemorrhaging caused by the venom of B. jararaca and B. jararacussu
when the gel was applied topically before or after the injection of venom. The literature
also describes the use of an ointment or cream containing fucoidan from the brown algae
F. vesiculosus and U. pinnatifida to treat inflammatory skin diseases, thrombosis, wounds,
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and burns [45]. These authors also studied the pharmacokinetics of fucoidan after topical
application of such formulations and showed that fucoidan penetrated the skin efficiently
and had a long half-life in plasma, striated muscle, and skin, with no accumulation in
plasma even after the repeated application of fucoidan for five days [45]. SBE is an inflam-
matory illness, producing serious local toxic effects in humans, and is thus a transdermal
formulation using fucoidan is a good strategy to aid commercial antivenoms. Our group
has developed a gel using carrageenan from C. crispus [26], and the development of this
type of formulation using FVF or UPF is a promising pathway for treating the local toxic
effects of SBE. Fucoidans of different molecular weights have been investigated to discover
how they are metabolized in the processes of absorption, distribution, metabolism, and
excretion from marine sponge-, fungal-, and algal-derived compounds [46]. Moreover,
fucoidans have high chemical and physical stability, biocompatibility, and biodegradability
and show no side effects in humans [47]. On the other hand, a disadvantage of fucoidans
is the lack of gelation ability, but this limitation can be overcome by combining fucoidans
with polymers, such as chitosan, which may provide them with a positive charge.

The effect of FVF and UPF against the proteolytic, coagulant, and PLA2 activities
of B. jararaca, B. jararacussu, and B. neuwiedi venom may be due to the presence and
quantity of sulfate groups within their structure. They have a negatively charged structure,
allowing them to bind to the positively charged active regions of the SVMPs, SVSPs, and
PLA2 enzymes of Bothrops venom. The toxic activities of PLA2 enzymes of snake venoms
depend on the cofactor Ca2+, as well as some specific basic amino acid residues of their
active site, such as histidine at position 48 and others located at the C-terminal region of
PLA2 enzymes [35,36]. On the other hand, SVMPs are the dominant components of these
venoms and contain Zn2+ in the active site. SVSPs affect the coagulation cascade due to
the action of thrombin-like enzymes (TLEs) that have fibrinogenolytic activity, leading to
fibrin formation through the cleavage of fibrinogen [34,48]. However, other approaches
to inhibit SVSPs have been investigated, such as murine monoclonal antibodies (mAbs)
and synthetic peptides based on the sequence of their substrates or natural inhibitors [41].
However, mAbs failed to neutralize the toxins of B. alternatus and B. neuwiedi venoms [41].
Da Silva et al. [49] designed two synthetic peptides that inhibited SVSPs of B. jararaca crude
venom and the purified serine protease Batroxobin, but not human trypsin, which is a
serine protease. Undoubtedly, such peptides are a promising therapeutic tool for improving
the treatment of SBE caused by Bothrops species.

The sulfate groups attached to the structure of FVF and UPF are crucial for fucoidans
to inhibit the plasma coagulation caused by the venoms of B. jararaca, B. jararacussu, and
B. neuwiedi. The negatively charged structure of fucoidans may allow them to bind to the
metals Ca2+ and Zn2+ within the active site of enzymes. Some commercial compounds
able to chelate divalent metals, such as EDTA and O-phenanthroline, inhibit the toxic
effects of SVMPs. Other reagents, such as p-bromophenacyl bromide (p-BPB) and EDTA,
react irreversibly with PLA2 enzymes, thus inhibiting the toxic effects dependent on the
catalytic activity of PLA2, i.e., myotoxicity, hemolysis, and ADP- or collagen-induced
platelet aggregation [50,51]. Nonetheless, such commercial inhibitors are considered toxic
to humans or, in some cases, aquatic environments. In this manuscript, the PLA2 activity of
B. jararaca, B. jararacussu, and B. neuwiedi venoms was inhibited by EDTA. Therefore, FVF
and UPF may share the inhibitory mechanism with such commercial reagents, without
producing toxicity to humans or animals.

The molecular weight of FVF and UPF may be an important feature in the blocking of
snake venom enzymes. It is reasonable to postulate that larger chains of polysaccharides
would have a higher quantity of sulfate groups and, thus, the ability of FVF and UPF to bind
venom enzymes would be higher. Overall, the mechanism of inhibition of compounds FVF
and UPF against SVMPs, SVSPs, and PLA2 enzymes appears to occur through the binding
to divalent metals, and, thus, this information should be considered when developing
compounds with antivenom effects. A synthetic inhibitor of PLA2 enzymes, Varespladib,
was considered in 2019 by the U.S. Food and Drug Administration (FDA) as a drug for
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SBE [52]. Varespladib is able to bind the hydrophobic channel of enzymatically or non-
enzymatically active PLA2 enzymes, leading to the inhibition of myotoxicity, hemorrhage,
and edema caused by such enzymes [53,54]. Thus, a combination of some compounds with
FVF and UPF may be a good strategy to enhance the efficacy of neutralization of symptoms
of SBE.

Thus, the chelating action of FVF and UPF fucoidans and the size of their chains are
relevant to their antivenom activity. However, the exact mechanism of inhibition by FVF
and UPF was not addressed in this work because the experiments were performed using
crude venom instead of purified enzymes. Future experiments will explore the mechanism
of action of FVF and UPF using purified SVMP, SVSP, and PLA2 enzymes.

In this work, 1500 µg/mL FVF or UPF lysed around 2% of RBCs, which is an accept-
able value for a candidate molecule [32]. The biotechnology company Marinova provides
fucoidans to markets, such as food, medical, and pharmaceutical research, and thus a
meticulous quality assurance protocol is performed to ensure the purity and safety for
human consumption. FVF and UPF are produced in Marinova’s International Organization
for Standardization 9001 (ISO9001) accredited analytical laboratory and chemically charac-
terized using the carbohydrate content and linkage analysis methods that are described by
the FDA.

FVF and UPF have been approved by the FDA as being in the “Generally Recognized
As Safe” (GRAS) category of food ingredients [55]. Moreover, in some European countries,
such as Austria, Belgium, France, Poland, Spain, and the United Kingdom, preparations
containing F. vesiculosus are also allowed [56]. A fucoidan from the alga Cladosiphon okamu-
ranus was given orally to humans and showed no toxicity at doses of 4 g per day for two
weeks. Moreover, other administration routes of fucoidan, such as subcutaneous injection,
were also assayed and did not have any negative impact on homeostasis [56].

4. Conclusions

This manuscript evidenced the inhibitory effect of FVF and UPF against proteolytic,
plasma, or fibrinogen clotting and PLA2 activities caused by B. jararaca, B. jararacussu, and
B. neuwiedi venoms. Despite inhibiting such toxic activities with similar efficacy, FVF and
UPF inhibited toxic activities caused by B. neuwiedi venom more efficiently. Research using
fucoidan has demonstrated potential antivenom activities; however, existing data were
limited, warranting further research and, hence, the present study. The utilization of FVF
and UPF as an antivenom involves many challenges, such as differences in the growth
conditions of algae and pollution of the marine environment, as well as a wide range of
species that contribute to the heterogeneity of their properties. Nevertheless, FVF and UPF
may contribute to the manufacture and development of new active topical compounds
against the toxic effects of venoms and aid commercial antivenoms in treating SBE caused
by Bothrops species.

5. Materials and Methods
5.1. Reagents and Venoms

The lyophilized venoms of B. jararaca, B. jararacussu, and B. neuwiedi were provided
by the serpentarium of the Ezequiel Dias Foundation (FUNED), Belo Horizonte, Minas
Gerais, Brazil. The venom was diluted in saline and stored at −20 ◦C until it was assayed.
Snake venom collection was conducted under the authorization of the Brazilian National
System for Genetic Heritage Management and Associated Traditional Knowledge (SISGEN),
process number A39CTRI 04E. Human fibrinogen, ethylenediaminetetraacetic acid (EDTA),
trichloracetic acid, taurocholic acid sodium salt, and azocasein were purchased from Sigma
Chemical Co. (St. Louis, MO, USA). All the other reagents or solvents were research grade.

5.2. Toxicity of FVP and UPF

The toxicity of FVP and UPF was assessed by the in vitro hemocompatibility test, as
described previously [32]. The fucoidan (1500 µg/mL) and saline solutions were incu-
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bated with a 13% (v/v) suspension of RBC for 3 h at 37 ◦C. Samples were centrifuged for
3 min at 1800× g, and the lysis of RBC was measured by the release of hemoglobin at an
absorbance (A) of 578 nm using a microplate reader (VersaMax, Molecular Devices, CA,
USA). Hemolysis rates of 100% and 0% were obtained by adding distilled water or saline
to RBC, respectively.

5.3. Fucoidan Material

Fucus vesiculosus fucoidan (FVF, batch No. DPFVF2021001) and Undaria pinnatifida
fucoidan (UPF; batch No. DPGFS2019537) were provided by Marinova (Cambridge, TAS,
Australia). The materials were extracted using a proprietary aqueous extraction process.
The fucoidan purity of both samples was >95% (dry weight). The fucoidan component and
compositional profile for each material can be found in Table 1. The calculation of fucoidan
purity requires several inputs that are determined using a range of spectrophotometric
assays. The total carbohydrate content of a hydrolyzed sample was assessed using the
phenol–sulfuric technique developed by [57], while the uronic acid concentration was
determined in the presence of 3-phenylphenol, based on the method by [58]. Sulfate content
was analyzed using a BaSO4 precipitation method [59]. UPF and FVF were dissolved in
saline solution to perform the assays.

Table 1. Absolute mass percentages of the components of FVF and UPF.

Components FVF UPF

Fucoidan 96.1 97

Total carbohydrates 71.7 60.5

Fucose 49.5 28.2

Galactose 2.7 25.6

Uronic acid 3.8 0.8

Polyphenol <2 <2

Sulfate 30.7 30.4

Cations ~5 6.8

5.4. Effect of FVF and UPF on the Proteolytic Activity of B. jararaca, B. jararacussu, and
B. neuwiedi Venom

The proteolytic activity of B. jararaca, B. jararacussu, and B. neuwiedi venom was
performed according to [60]. Different concentrations of each venom (10–50 µg/mL) were
incubated with 400 µL azocasein (0.2% w/v dissolved in 20 mM Tris-HCl, 8 mM CaCl2,
pH 8.8) for 90 min at 37 ◦C in a final volume of 800 µL. After 90 min, 400 µL of trichloracetic
acid (10%) was added to the medium to stop the reaction. The tubes were centrifuged at
12,000 rpm for 3 min. A total of 1.0 mL of the supernatant was removed and transferred to
tubes containing 0.5 mL NaOH 2N. The tubes were read in a spectrophotometer at 420 nm.
The amount of venom (µg/mL) able to produce reads of 0.2 (i.e., 70–80% of the maximal
activity) was determined as an arbitrary unit, i.e., the effective concentration (EC). One
EC of each venom was incubated with FVF or UPF or saline (positive groups) for 5 min at
37 ◦C at a 1:10 ratio (w/w) of venom to polysaccharide. After incubation, an aliquot was
removed and added to the reaction, and the proteolytic activity was measured, as described
above. Negative controls were performed by adding saline or fucoidan to the medium in
the absence of venom.

5.5. Effect of FVF and UPF on the Coagulant Activity of B. jararaca, B. jararacussu, and
B. neuwiedi Venom

The coagulant activity of B. jararaca, B. jararacussu, and B. neuwiedi venom was de-
termined using a digital Amelung coagulometer, model KC4A (Labcon, Heppenheim,
Germany). A total of 200 µL of a pool of citrated human plasma from the blood bank of
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the Hospital Universitário Antônio Pedro of the Federal Fluminense University (HUAP-
UFF), under the authorization of the Committee for Ethical in Experimentation (CEP-UFF,
CAAE: 28941314.0.0000.5243), or commercial fibrinogen (2 mg/mL) were kept for 1 min at
37 ◦C Then, different concentrations of B. jararaca, B. jararacussu, and B. neuwiedi venom
(2–100 µg/mL) were added to plasma or fibrinogen, and the coagulation time was moni-
tored in seconds in the coagulometer. The amount of venom (µg/mL) able to clot plasma
or fibrinogen at 60 s was determined as an arbitrary unit, i.e., the minimum coagulant
concentration (MCC). Then, one MCC of each venom was incubated for 5 min at 37 ◦C with
saline (positive group) or UPF or FVF at a 1:10 ratio of venom to polysaccharide (w/w). An
aliquot of each mixture was added to plasma or fibrinogen, and coagulation was monitored
as described above. The negative control groups contained solely saline or FVF or UPF in
the reaction in the absence of any venom.

5.6. Effect of FVF and UPF on the Phospholipase A2 Activity of B. jararaca, B. jararacussu, and
B. neuwiedi Venom

The PLA2 activity of B. jararaca, B. jararacussu, and B. neuwiedi venom was measured
as in [61]. Fresh egg yolk obtained from a local supermarket was filtered and diluted in
saline to a final volume of 100 mL. One volume of this solution was diluted in nine parts
saline. The medium reaction contained 580 µL saline, 25 µL sodium taurocholate 0.4%,
25 µL Tris-HCl (200 mM), pH 7.5, 20 µL CaCl2 (0.5 M), and 50 µL of each venom in the
presence or absence of FVF or UPF. The enzymatic reaction was initiated by adding 300 µL
of the egg yolk substrate solution, and the tubes were read at 740 nm after 30 min. A total
of 100% PLA2 activity of venoms was achieved by incubating venom with saline, in the
absence of FVF or UPF, while 0% PLA2 activity was determined in a solution containing
solely saline or FVF or UPF in the absence of venom. A total of 20 mM of EDTA (final
concentration) was added to the reaction in the presence of B. jararaca, B. jararacussu, and
B. neuwiedi venom and in the absence of FVF or UPF, followed by the PLA2 activity.

5.7. Statistical Analyses

Results are expressed as means ± standard error of the mean (SEM) obtained with
the number of experiments indicated in each result using the GraphPad Prism® pro-
gram. The statistical significance of differences among experimental groups was evalu-
ated using Student’s t-test or the Mann–Whitney test. p-values < 0.05 were considered
statistically significant.
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