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Abstract: Chronic migraine is a disease with a high burden on patients from both a working and
quality of life point of view. The pathophysiology of this subtype of migraine is due to several factors,
such as medication overuse. Nevertheless, the detrimental recurring of headache attacks with central
and peripheral sensitization plays a central role and explains some additional symptoms complained
about by these patients even in the interictal phase. OnabotulinumtoxinA is a therapy indicated for
chronic migraine since it has proven to reduce peripheral sensitization, showing even efficacy on
central symptoms. The aim of this narrative review is to present the current evidence regarding the
effect of OnabotulinumtoxinA on sensitization and interictal symptoms.

Keywords: migraine; chronic migraine; onabotulinumtoxinA; central sensitization; interictal burden;
interictal symptoms

Key Contribution: OnabotulinumtoxinA therapy goes beyond migraine prevention reducing
interictal symptoms.

1. Introduction

Chronic migraine (CM) represents a subclassification of migraine due to its deterio-
ration and is defined as the presence of at least 15 headache days per month, of which at
least 8 show migraine characteristics (or lead to anti-migraine acute drug intake) for at
least 3 consecutive months [1]. The chronification (i.e., the increase in headache frequency
leading to CM) of migraine, besides pain, leads to other consequences, such as an increased
burden from associated symptoms, (e.g., nausea, photophobia, and phonophobia) and a
greater incidence of comorbidities (e.g., cognitive symptoms, anxious and/or depressive
symptoms, and medication overuse), which may cause disability even in migraine-free days
(i.e., interictal phase) [2–4]. The increased incidence of such symptoms in CM compared
to episodic migraine (EM) is reputed as an effect of central sensitization mechanisms [5].
Recently, the burden of migraine in interictal periods has been investigated more and more
as it greatly affects the quality of life (QoL), especially in patients affected by CM, and
it can even be modified by therapeutic interventions. OnabotulinumtoxinaA (BoNT-A)
is a therapy specifically thought to counteract the peripheral sensitization in CM and
may play a role even in the resolution of central sensitization symptoms. In the present
work, we review the available evidence about the effect of BoNT-A on migraine beyond
pain resolution.
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2. Epidemiology and Burden of Chronic Migraine
2.1. Impact of Associated Symptoms

CM is a primary headache that affects approximately 2% of the population worldwide
and shows significant associated morbidity. The disorder occurs more commonly in women
than in men and presents the highest prevalence between 18 and 50 years of age. Worsening
QoL, CM has a significant socioeconomic cost, with loss of working days and productivity
both in paid and unpaid work (e.g., housekeeping activities) [6,7].

When considering the impact of chronic migraine, headache frequency and intensity
are not the only relevant variables to take into account; associated symptoms, such as
nausea, vomiting, photophobia, phonophobia, dizziness, vertigo, rhinorrhea, lacrimation,
and osmophobia also contribute to the disabling nature of migraine. To value the severity
of associated symptoms, gender must be taken into consideration since women reported
greater severity of symptoms than men, namely pain intensity, nausea, photophobia,
and phonophobia [8,9].

The impact of migraine characteristics on disability/QoL (Fn/QoL) often focuses on
pain, while the impacts of associated symptoms, such as phonophobia and photophobia,
have rarely been assessed thoroughly. Therefore, there is less information available about
the impact of migraine-associated symptoms (nausea, vomiting, photophobia, and phono-
phobia) on Fn/QoL compared to the data on migraine frequency and severity of headache
pain associated with impairments in Fn/QoL in several studies [8].

Furthermore, the relationship between pain and other associated symptoms has not
been systematically evaluated in migraine attacks. However, in some studies, this rela-
tionship has been experimentally evaluated in migraine patients and controls. Drum-
mond et al. in 2005 demonstrated that the painful stimulation of the temple induces
nausea in migraineurs but not in healthy controls; moreover, after inducing nausea
through optokinetic stimulation, pain perception increased. Given the strict relationship
between nausea and pain intensity, it can be conjectured that migraine symptoms influ-
ence each other, producing a multiplier effect, resulting in a more intense and prolonged
migraine attack [10].

2.2. Interictal Burden of Migraine

Migraine shows a cyclical pattern of activity: the attack, or ictal phase, can last from
4 h to 3 consecutive days; moreover, many patients experience both premonitory symp-
toms before the acute attack (i.e., prodromal phase) and residual symptoms afterwards
(i.e., postdromal phase). The period between two attacks (i.e., between a postdromal phase
and the next prodromal one), constitutes the interictal phase [11]. Thus, migraineurs go
through a premonitory phase, then they move on to the full-blown attack that includes a
severe headache, which in turn is followed by a postdromal phase of symptoms decline
and fatigue, and then back to the interictal phase [1,12]. However, studies have shown
that the interictal phase should not be considered a period of complete remission and well-
being, as both emotional and non-emotional (neurological) symptoms that characterize the
acute phase of migraine can persist and impact QoL even between attacks. These include
symptoms of hypersensitization, such as cutaneous allodynia, changes in taste and smell,
photophobia, phonophobia, osmophobia, and changes in visual perception, as well as
emotional symptoms such as depression, anxiety, fear, and worry about how a future attack
may affect planned activities [2,13,14]. All these phenomena characterize the ‘interictal
burden’. However, we must consider that the premonitory phase can occur up to 72 h
before the ictal phase, the migraine attack can last up to 72 h and the prodromal phase can
last up to about 24 h [15]. Therefore, in patients with CM, the prodromal and postdromal
phases often overlap, and, for this reason, these patients may never reach the interictal
phase (see Figure 1) [1,16].
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Figure 1. Simplification showing how, despite headaches not being present every day of the month 
in CM, the prodromal and postdromal phases often overlap and the interictal phase is hardly ever 
reached. Note that the bell curves represent just a simplification of a migraine with a 2 days prodro-
mal phase, a 2–3 days headache phase, and 2 days postdromal phase. In the real world, every phase 
may show a different duration among the different cycles. Abbreviations: CM = chronic migraine. 
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tivity have thicker cortical regions in the right lingual region, cingulate isthmus, perical-
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tivity of certain brain regions (i.e., increased activity in the inferior and superior occipital 
gyrus, pontine nuclei, and cerebellar lobules V and VI, and decreased activity in the mid-
dle frontal gyrus and cerebellar lobule VIIb) have been documented and correlated with 
motion sickness and disability scores, suggesting increased susceptibility to dizziness and 
motion sickness [16,17]. 

A recent pharmaceutical study reported that treatment with the anti-calcitonin gene-
related peptide (anti-CGRP) monoclonal antibody (mAb) galcanezumab significantly re-
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those who did not respond to treatment [20]. Therefore, migraine burden should not be 
assessed only as a product of the severity and frequency of attacks. It is necessary to con-
sider the impact of persistent symptoms that also affect the interictal phase. The Migraine 
Interictal Burden Scale (MIBS-4), was developed with the specific purpose of quantifying 
the interictal load of disability. The MIBS-4 is a self-administered questionnaire consisting 
of four items that allow for an assessment of the level of impairment in the family and 
social life of migraine patients at work or school, the presence of emotional/affective and 
cognitive distress, and the difficulty in being able to carry out plans or commitments in 
the last 4 weeks on days without headaches. When MIBS-4 was applied in a cross-sec-
tional, observational, population-based (Overcome-Japan) web survey of Japanese with 
migraine, 41.5% of respondents experienced moderate to severe interictal burden that 
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(mAb) galcanezumab significantly reduced migraine interictal burden as measured by 
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CM have elevated levels of CGRP in their blood and saliva in the interictal period. How-
ever, patients with CM who responded to BoNT-A treatment had reduced 147 blood levels 
of interictal CGRP compared to those who did not respond to treatment [21]. Therefore, 
assessment of interictal burden should be implemented not only in routine clinical prac-
tice but also in clinical trials as a measure to evaluate the efficacy of migraine medications. 
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Figure 1. Simplification showing how, despite headaches not being present every day of the month
in CM, the prodromal and postdromal phases often overlap and the interictal phase is hardly ever
reached. Note that the bell curves represent just a simplification of a migraine with a 2 days prodromal
phase, a 2–3 days headache phase, and 2 days postdromal phase. In the real world, every phase may
show a different duration among the different cycles. Abbreviations: CM = chronic migraine.

Neurophysiological and imaging studies suggest that the brain of migraineurs shows
both functional and structural peculiarities: migraine patients with interictal photosensitiv-
ity have thicker cortical regions in the right lingual region, cingulate isthmus, pericalcarine
regions, left precentral, postcentral, and supramarginal regions. Changes in the activity
of certain brain regions (i.e., increased activity in the inferior and superior occipital gyrus,
pontine nuclei, and cerebellar lobules V and VI, and decreased activity in the middle frontal
gyrus and cerebellar lobule VIIb) have been documented and correlated with motion sick-
ness and disability scores, suggesting increased susceptibility to dizziness and motion
sickness [16,17].

A recent pharmaceutical study reported that treatment with the anti-calcitonin gene-
related peptide (anti-CGRP) monoclonal antibody (mAb) galcanezumab significantly re-
duced the migraine interictal burden, as measured by specific clinical scales [18,19]. Several
studies have also shown that patients with EM or CM have elevated levels of CGRP in their
blood and saliva in the interictal period. However, patients with CM who responded to
BoNT-A treatment had reduced blood levels of interictal CGRP compared to those who
did not respond to treatment [20]. Therefore, migraine burden should not be assessed
only as a product of the severity and frequency of attacks. It is necessary to consider the
impact of persistent symptoms that also affect the interictal phase. The Migraine Inter-
ictal Burden Scale (MIBS-4), was developed with the specific purpose of quantifying the
interictal load of disability. The MIBS-4 is a self-administered questionnaire consisting
of four items that allow for an assessment of the level of impairment in the family and
social life of migraine patients at work or school, the presence of emotional/affective and
cognitive distress, and the difficulty in being able to carry out plans or commitments in the
last 4 weeks on days without headaches. When MIBS-4 was applied in a cross-sectional,
observational, population-based (Overcome-Japan) web survey of Japanese with migraine,
41.5% of respondents experienced moderate to severe interictal burden that worsened
with increasing frequency [11,21]. A recent pharmaceutical study reported that treatment
with the anti-calcitonin gene-related peptide (anti-CGRP) monoclonal antibody (mAb)
galcanezumab significantly reduced migraine interictal burden as measured by specific
clinical scales [18,19]. Several studies have also shown that patients with EM or CM have
elevated levels of CGRP in their blood and saliva in the interictal period. However, patients
with CM who responded to BoNT-A treatment had reduced 147 blood levels of interictal
CGRP compared to those who did not respond to treatment [21]. Therefore, assessment of
interictal burden should be implemented not only in routine clinical practice but also in
clinical trials as a measure to evaluate the efficacy of migraine medications. Therefore, the
assessment of interictal burden should be implemented not only in routine clinical practice
but also in clinical trials as a measure to evaluate the efficacy of migraine medications.
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3. Pathogenesis of Chronic Migraine
3.1. Central and Peripheral Sensitization

A combination of peripheral and central sensitization appears to be implicated in the
pathogenesis of migraine [22]. Central sensitization (CS) can be defined as an increased
responsiveness of central neurons to afferent inputs with a normal or sub-threshold intensity.
Peripheral sensitization (PS), on the other hand, regarding migraine, is due to an increased
sensitivity of the trigeminovascular system sensory fibers involved in the cascade of events
leading to pain [23,24]. Different diseases are related to CS: restless legs syndrome, chronic
fatigue syndrome, fibromyalgia, temporomandibular joint disorder, migraine, tension-type
headache, irritable bowel syndrome, and multiple chemical sensitivity [24]. Cutaneous
allodynia (CA), the phenomenon when non-painful stimuli applied to normal skin evocate
a pain perception, is present in 60% of patients with migraine and up to 90% with CM,
both in the cephalic and extra-cephalic regions [25,26]. More studies relate the CA to a CS
of trigeminovascular neurons, leading to a dysfunction of the trigemino–thalamo-cortical
nociceptive pathway; those wider alterations of sensory stimuli processing may explain the
phenomenon of extra-cephalic CA in CM [27]. An abnormal neuronal excitability in the
TNC (trigeminal nucleus caudalis) was related to CS in CM in an animal model, and it is
implicated in pain amplification [28,29]. On the basis of CS, there is an imbalance between
the excitatory and inhibitory neurotransmitters, Glutamate/GABA, and the disequilibrium
of monoamine neurotransmitters such as histamine and serotonin [30]. Plasma glutamate
levels, a possible marker of CS, were higher in patients with CM and EM than those in
controls [30,31]. Peripheral sensitization is also implicated in migraine chronification. In
the arterial wall of patients affected by CM, Del Fiacco et al. found a significant increase in
transient receptor potential vanilloid type-1 receptor (TRPV1), which evokes the release
of CGRP and substance P, thus constituting the basis of a higher sensitivity to algogenic
agents. BoNT-A can reduce TRPV1 in the rat trigeminal ganglion, suggesting a potential
explanation for the high efficacy of BoNT-A in CM [32,33].

3.2. Medication Overuse Headache

Medication overuse headache (MOH) is a chronic headache disorder attributed to the
frequent or regular use of acute medications in patients with a primary headache disorder.
According to the current classification of the International Headache Society (ICHD-3),
MOH is defined as a headache occurring for 15 or more days per month that develops
because of regular overuse of medication for acute or symptomatic headache (use for
>10 days per month or >15 days per month, depending on the medication) for more than
3 months, when the symptoms are not better described by another diagnosis [1].

The pathophysiology of MOH remains poorly understood but probably involves
brain network alterations involved in chronification of pain, exposure to psychologic and
socioeconomic factors, and genetic predisposition. The angiotensin converting enzyme
(ACE) insertion or deletion polymorphism, the BDNF mutation Val66Met, or polymor-
phisms in catechol-O-methyltransferase (COMT) and serotonin transporter (SLC6A4) genes
have been suggested as genetic risk factors in humans, but clear causal links are yet to
be established [34–36]. These genes were associated with serotonergic and dopaminergic
transmission, drug dependence, metabolic pathways, oxidative stress, and CGRP pathways.

Patients with migraine often show painful responses to normally innocuous sensory
stimuli (e.g., touch, sound, and light), that elicit common symptoms during migraine
attacks (i.e., allodynia, photodynia, and phonodynia). The allodynic phenomenon suggests
the presence of neural amplification processes, which are referred to as sensitization. The
overuse of acute pain-relieving medications (e.g., triptans, opioids) may induce sensitiza-
tion due to increased evoked transmitter release, temporal summation, and expansion of
receptive fields [37]. Conversely, the sudden interruption of acute medication use may lead
to withdrawal-induced headaches. A preclinical study showed that after sustained expo-
sure to morphine in rats, precipitation of withdrawal by microinjection of opioid antagonists
within the rostral ventromedial medulla led to increased activity and expression of c-Fos
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in dura-sensitive spinal trigeminal nucleus caudalis neurons, as well as in the subnucleus
reticularis dorsalis, an area linked to diffuse noxious inhibitory control [38]. States of sensi-
tization probably promote vulnerability to the typical provocative stimuli associated with
migraine attacks, such as stress and nitric oxide donors. Sumatriptan-sensitized rats also
showed a lower threshold for cortical spreading depression [38–40]. Electrophysiological in-
vestigations have shown neuronal hyperexcitability with an increased stimulation response
and a habituation deficit in patients with medication overuse headaches. These alterations
have been observed with different stimulation techniques, such as somatosensory-evoked
potentials [41,42], cold pressor tests [43], and laser CO2 evoked potentials [44], both in the
cephalic and extracephalic regions [41]. Additionally, the hyperexcitability pattern in MOH
seems to depend on the overused drug. Patients with this condition show an increased
amplitude of somatosensory-evoked potentials when stimulating the median-nerve, but
patients who overuse triptans show lower amplitudes than patients overusing NSAIDs [42].
The observed differences could reflect triptan-induced changes within the central seroton-
ergic transmission. Patients overusing analgesics have lower 5-HT levels, higher 5-HT
uptake, and higher 5-HT2A receptor density in blood platelets [45–48]. Imaging studies
with different modalities have shown structural, functional, and metabolic changes of
the brain in patients with MOH [49]. MOH patients have decreased grey matter volume
in the orbitofrontal cortex compared with those without MOH; this finding is relevant
because the orbitofrontal cortex is part of the mesocorticolimbic system implied in addictive
behaviors [50]. Becerra et al., in a functional MRI study conducted on rats treated with
sumatriptan, found differences in several resting state networks, including the default
mode, autonomic, basal ganglia, salience, and sensorimotor networks; these differences
were accompanied by cortical spreading depression-like phenomena [51]. CGRP may be
involved in the sensitization process; asensitizedbb, an anti-CGRP antibody, blocks pain-
like behaviors in rats sensitized with pain medications (sumatriptan or opioids) [51,52].
Even stress-elicited allodynia was prevented in sumatriptan-sensitized rats by blocking
signaling at kappa opioid receptors (KOR) in the central nucleus of the amygdala [51–53].
Morphine-sensitized rats showed a loss of the diffuse noxious inhibitory controls with
different stimulation modes, such as the sensory-evoked response that was restored by
KOR antagonists in the right central nucleus of the amygdala [54]. These observations,
both in humans and animal models, suggest that medications can promote sensitized states
and alter the descending pain modulatory pathways, thus leading to pain facilitation and
increased vulnerability to migraine triggers. InensitizeddIn sensitized states, enhanced
dynorphin and KOR signaling in amygdala circuits might promote pain resulting from
environmental stimuli; such evidence poses a biological basis for the mechanisms behind
headache chronification induced by medication overuse. This might suggest a possible
target for therapeutic interventions that aim to disrupt the vicious circle of medication
overuse headaches.

4. Rationale for OnabotulinumtoxinA Preventive Therapy

CM is associated with disability and has a high impact on QoL, including health, social,
and occupational functioning, so patients with CM require prophylactic treatment to pre-
vent attacks and reduce headache frequency, severity, associated disability, and medication
overuse [55]. First-line treatments include oral drugs such as beta-blockers, anticonvulsants,
calcium-channel blockers, and tricyclic antidepressants. None of these drugs are primarily
used for migraine treatment, and they all may provoke considerable side effects that can
undermine compliance with treatment; moreover, there is no conclusive evidence that
shows the superiority of one pharmacological class over the others [56]. Therefore, when
choosing a preventing therapy, it is preferable to consider the patient’s comorbidities to
reduce the risk of side effects and, when possible, to treat multiple conditions at once
(e.g., choosing an anticonvulsant in patients affected both by epilepsy and migraine).

On the other hand, second-line treatments include medications with a more targeted
effect on migraine mechanisms, such as anti-CGRP monoclonal antibodies and anti-CGRP
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small molecules, which have been specifically developed for migraine treatment, and
BoNT-A injections [56].

OnabotulinumtoxinA contains 900-kDa of botulinum neurotoxin type A (BoNT-A),
which is best known for its muscle paralysis effect, preventing the release of acetylcholine
at the neuromuscular junction. So, it is usually used for blepharospasm, dystonia, and
spasticity. In the management of migraines, onabotulinumtoxinA blocks the activation of
nociceptive pathways [57]. It is used following the PREEMPT paradigm, which consists
of 31–39 injections in some muscles of the head and neck [58], to be performed every
12 weeks. Usually at nerve terminals, small and big vesicles containing pro-inflammatory
molecules, excitatory neurotransmitters, and neuropeptides are fused to the cell membrane
through exocytosis and then recycling, or through a mechanism that includes the formation
of a protein complex called the SNARE complex (soluble N-ethylmaleimide-sensitive
fusion-attachment protein receptor), containing a protein called SNAP-25, the target of
onabotulinumtoxinA. After the injection, the neurotoxin encounters the nerve terminals of
C-fibers and thinly myelinated A-delta fibers of the trigeminal nerve and spinal cervical
nerve, which are endocytosed by its heavy chain that binds a polysialoganglioside (PSG), so
its light chain binds and cleaves SNAP-25 preventing the fusion of the big and small vesicles,
containing glutamate, substance P, and CGRP that causes the pain and also decreases the
CGRP high plasma level during the interictal phase of CM. This mechanism also decreases
the insertion of transient receptor potential cation channel subfamily V member 1 (TRPV1)
involved in propagation of the headache along the terminal nerves, confirming itself as
an effective second-line prophylaxis therapy, reducing activation along peripheral and
central pathways [57].

5. Effects on Central and Peripheral Sensitization Symptoms

Several mechanisms have been postulated to elucidate the efficacy of onabotulinum-
toxinA in CM. Pathogenetic studies have underlined the role of maladaptation of pain
modulatory systems and subsequent sensitization of the trigeminal nociceptive pathway [5].
By interfering with SNARE-mediated trafficking and cleaving synaptosomal-associated
protein-25 kDa (SNAP25), onabotulinumtoxinA may inhibit regulated exocytosis of vesi-
cles containing neurotransmitters and proteins and block receptor insertion [59], resulting
in a reduced liberation of pain mediators (e.g., substance P, CGRP, and glutamate) from
primary nociceptive neurons and a decreased sensitization (see Figure 2). Moreover, onabo-
tulinumtoxinA can reduce the membrane insertion of ion channels involved in nociception,
such as transient receptor potential cation channel subfamily V member 1 (TRPV1), under
sensitized conditions in meningeal C but not Aδ nociceptors [60,61]. All these mechanisms
may be relevant to explain the indirect effects of BONT-A on central sensitization due
to reduced pain signaling from sensory nerves (e.g., first-order sensory neurons located
in cervical dorsal root ganglia 2 and 3 and trigeminal ganglia) to the spinal trigeminal
nucleus [57]. Experimental studies have pointed out the possibility that BoNT-A can also
have direct central effects on pain nociception. In the formalin-induced pain model, cleaved
SNAP-25 was found in the trigeminal nucleus caudalis; moreover, the effects of onabo-
tulinumtoxinA were completely abolished by colchicine, supporting the hypothesis that
BoNT-A follows retrograde axonal transport and cell-to-cell transfer, or transcytosis [62].
The central antinociceptive effects of onabotulinumtoxinA can also rely on the enhance-
ment of the endogenous opioid system, though the exact mechanisms of its action have not
been cleared out yet [63]. The clinical counterpart of central sensitization is represented
by allodynia, an abnormal sensory state in which an innocuous sensory stimulus is felt
as painful and involves second-order neurons located in the caudal trigeminal nucleus.
de Tommaso et al. have already observed that BoNT-A can reduce allodynia in chronic
migraine patients after up to 2 years of treatment [64]. A more recent study by Ozarslan
et al. confirmed that onabotulinumtoxinA can decrease allodynia as assessed by the average
allodynia symptom checklist (ASC-12) but does not modify thermal thresholds evaluated
by Quantitative Sensory Testing (QST) [65]. Psychiatric comorbidities associated with
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CM can also be modulated by BoNT-A, as demonstrated by several studies observing an
improvement of anxiety and depressive symptoms after treatment. Such effects, which
appear to be independent from migraine improvement, may be due to an indirect mod-
ulation of the limbic system [66]. Effects on sleep quality are instead controversial [67].
The clinical effects of BoNT-A on central sensitization syndromes are also experienced in
other clinical conditions characterized by chronic pain. For instance, in complex regional
pain syndrome (CRPS), a reduction of myofascial pain and allodynia was achieved after
BoNT-A injections [68]; similar results have already been observed in low back pain [69]
and overactive bladder [70].
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Figure 2. Mechanism of action of BoNT-A therapy on sensitization. The toxin, by blocking the
SNARE complex protein SNAP25, reduces the release of pain mediators (e.g., CGRP, substance
P). The reduced pain signaling from first order neurons produces an indirect effect on upper pain
processing structures, which reduces central sensitization.
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6. Effects on Interictal Symptoms and Comorbidity

The impact of BoNT-A treatment on interictal symptoms and comorbidities in mi-
graineurs was extensively examined and the major studies are summarized in Table 1. The
COMPEL study, conducted on 715 patients over 108 weeks to specifically assess the effects
of BoNT-A therapy on comorbid symptoms, found a clinically significant improvement in
anxiety and depression symptoms, sleep quality, and fatigue; moreover, the improvement
increased gradually over the observation period [66]. Aydinlar et al., in a single-center
prospective study that evaluated 190 patients treated with BoNT-A over 48 weeks, found
that sleep quality improved only in patients without negative emotional states at baseline,
while patients with relevant depression and/or anxiety symptoms did not improve either
in sleep quality or negative emotional states, despite significantly decreased migraine
frequency [71]. However, a recent meta-analysis conducted on 259 studies concluded that
BoNT-A treatment improves the disease severity of both CM and major depressive disorder
in patients with both diseases [4]. The gathered evidence suggests that BoNT-A treatment
improves mood and sleep indirectly by reducing headache days; moreover, comorbid
depression and anxiety do not influence the efficacy of the therapy. Therefore, in patients
with CM and mood disorders, BoNT-A should be preferred to other medications that can
negatively affect mood (e.g., propranolol, anticonvulsants) or that perform poorly in this
specific population (e.g., anti-CGRP monoclonal antibodies) [72]. Temporomandibular
disorder (TMD) symptoms also show a higher prevalence among migraineurs compared
to the general population; BoNT-A injections have been used as a treatment for TMDs
targeting the masseter muscle and the anterior temporalis muscle, which is also treated in
the PREEMPT protocol [58,73]. To date, only one trial has investigated the effectiveness of
single and concomitant treatment of migraine and TMD in women with the comorbidity;
the investigators found a significant improvement in both conditions only in the group
that received both the migraine prophylaxis (propranolol 90 mg) and the TMD treatment
(stabilization splint) compared to the other three groups (propranolol placebo, propranolol
and non-occlusal splint, propranolol placebo and non-occlusal splint), and they concluded
that in patients with the comorbidity, only the treatment of both conditions is effective [74].
However, the possible effectiveness of the PREEMPT protocol on TMD comorbid symptoms
has not been investigated properly. In 2018, Kocaman et al. found that the presence of
TMD symptoms did not constitute a predictive factor for response to BoNT-A treatment in
a population of 30 patients with CM [74,75]. The possible mechanism of action of BoNT-A
on comorbid TMD and migraine has been investigated by Lacković et al. on an animal
model. They theorized that inflammation of the temporomandibular joint (TMJ) may cause
a trigeminal sensitization that favors the chronicization of migraine. The study showed that
CFA (complete Freund’s adjuvant)-evoked TMJ inflammation was accompanied by inflam-
matory changes in the cranial dura (plasma protein extravasation and inflammatory cell
infiltration) and increased levels of CGRP; moreover, following peripheral toxin injection,
cleaved SNAP-25 was colocalized with CGRP-expressing dural afferents, a sign of BoNT-A
activity at this level. BoNT-A prevented the CFA-evoked dural inflammation and CGRP
peptide increase in the cranial dura [76]. While far from conclusive, these studies provide
interesting clues for further investigations of BoNT-A effects on comorbid migraine and
TMD. Regarding interictal burden, a recent study conducted on 70 patients treated for three
consecutive cycles (nine months) showed a significant reduction of interictal symptoms and
cutaneous allodynia, assessed through MIBS-4 and ASC-12. Of interest, interictal burden
improvement showed no relations to the persistence of allodynia; the authors concluded
that this finding suggests a complex nature of interictal burden, which is not a simple sum
of bothersome symptoms and that requires specific instruments to be assessed [77].
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Table 1. Summary of studies that investigated the effect of BoNT-A therapy on interictal symptoms
and comorbidities.

Study Number of Patients Investigated Symptoms Main Findings

Blumenfeld et al. [66] 716 Anxiety and depression, sleep quality,
and fatigue

Significant improvement in all the
investigated symptoms

Aydinlar et al. [71] 190 Sleep quality
Improvement only in patients

without comorbid
psychiatric disorders

Kocaman et al. [75] 30 TMDs influence on efficacy of
BoNT-A migraine prophylaxis No influence on efficacy

Argyriou et al. [77] 70 Interictal symptoms and
cutaneous allodynia Both symptoms improved

TMDs: temporo-mandibular disorders.

7. Conclusions

In the era of tailored therapies, the impact on interictal burden cannot be ignored in
the choice of a preventive migraine medication; the classical drug choice method based on
patients’ comorbidities and contraindications to pharmacological classes cannot be further
considered satisfying. OnabotulinumtoxinA therapy is highly effective on pain intensity
and frequency. Moreover, response to treatment is not influenced by other comorbidities
(e.g., psychiatric disorders, fibromyalgia) or interactions with other drugs, which constitutes
a remarkable strength in comparison to other migraine prophylaxes. Moreover, BoNT-A
therapy shows promising effects on associated symptoms, typical migraine comorbidities,
and interictal symptoms. Namely, the treatment improves mood and sleep, alleviates
cutaneous allodynia, and may also influence dural inflammation in TMDs. However,
further studies that directly assess such effects are needed to better define the role of
BoNT-A treatment beyond pain resolution.
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62. Matak, I.; Bach-Rojecky, L.; Filipović, B.; Lacković, Z. Behavioral and immunohistochemical evidence for central antinociceptive
activity of botulinum toxin A. Neuroscience 2011, 186, 201–207. [CrossRef]
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