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Abstract: Electroluminescence (EL) imaging is a widely adopted method in quality assurance of the
photovoltaic (PV) manufacturing industry. With the growing demand for high-quality PV products,
automatic inspection methods based on machine vision have become an emerging area concern to
replace manual inspectors. Therefore, this paper presents an automatic defect-inspection method
for multi-cell monocrystalline PV modules with EL images. A processing routine is designed to
extract the defect features of the PV module, eliminating the influence of the intrinsic structural
features. Spectrum domain analysis is applied to effectively reconstruct an improved PV layout from a
defective one by spectrum filtering in a certain direction. The reconstructed image is used to segment
the PV module into cells and slices. Based on the segmentation, defect detection is carried out on
individual cells or slices to detect cracks, breaks, and speckles. Robust performance has been achieved
from experiments on many samples with varying illumination conditions and defect shapes/sizes,
which shows the proposed method can efficiently distinguish intrinsic structural features from the
defect features, enabling precise and speedy defect detections on multi-cell PV modules.

Keywords: defect detection; computer vision; spectrum analysis; photovoltaic module; electrolumi-
nescence image

1. Introduction
1.1. Background

The world has shown considerable progress in solar energy harvesting utilizing
photovoltaic (PV) technology [1,2]. The conversion efficiency and durability of PV modules
are major concerns in the PV manufacturing process, which can be massively impacted
by local defects on modules, such as cracks and breaks [3,4]. Therefore, an efficient defect
detection method for PV products is very important for the practical use of solar energy.

A PV module is composed of many PV cells arranged in a grid layout with busbars
connecting them. There are three main types of PV material: monocrystalline, polycrys-
talline, and thin-film technology [5–7]. In our case, the PV module is manufactured using a
monocrystalline cell, which is made of a single pure silicon ingot. Some large defects, such
as breaks, can be directly visible from the surface, while many small cracks are intrinsic,
and hence cannot be captured by ordinary CCD cameras. Various non-destructive inspec-
tion techniques have been proposed to locate both extrinsic and intrinsic defects of PV
modules [7], e.g., thermography (LIT) [8,9] and photoluminescence (PL) [10,11]. Among
these methods, electroluminescence (EL) [12–15] imaging is one of the most adopted tech-
niques, which has the advantages of a higher resolution and more accurate localization of
microcracks and printing problems.
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The EL image of a PV module involves the conversion of electrical energy into emitted
near-infrared light. Current is fed into a PV module in the dark and light emission is
captured by infrared-sensitive camera. Areas with no defects have a higher conversion
efficiency and appear brighter in the resulting image. Deficiencies like cracks, breaks, and
speckles reduce current passage, leading to dark spots or lines in the image. With an EL
imaging system, PV modules are characterized as grayscale images, which can be inspected
visually. To increase efficiency and reliability, and reduce cost, the industry needs automated
defect detection with computer vision to replace labor-intensive manual examination.

1.2. Related Work

A great deal of research has been dedicated to automated defect detection, localization,
and/or classification of PV modules [15]. Schuss et al. [16] used thermographic techniques
to characterize defect regions. Wang et al. [17] used an image processing pipeline and
adaptive thresholding using both adaptive color threshold and window size. This method
works on a single PV cell that is rectangular shaped of varying sizes. Deitsch et al. [18]
managed to segment a large PV module into multiple PV cells. Curve estimation with
subpixel precision is utilized on local ridge information to extract dividing grids. This
method could break a large-scale detection problem into smaller ones within a standardized
PV cell. Akram et al. [19] proposed a light CNN architecture trained on the labeled dataset
from Deitsch’s work. This is a supervised learning method, which is highly dependent on
an adequate amount of labeled data. Moreover, the trained model cannot trivially transfer
to another product that has different shapes and structures. Dhimish el al. [20] used Fourier
transformation and band filtering to remove noise, but the method could not distinguish
intrinsic layout features from defect features. Our work is most similar to the research of
Tsai et al. [21]. They used Fourier transformation to remove the influence of inhomogeneous
texture in the background. This method has an assumption of the defect shape, and hence
is able to detect some specified defects. Tsai’s work aimed to remove the defects to produce
a reference image, while in this paper, the aim is to remove all features other than the
defects. In addition, Tsai’s method was designed on a polycrystalline cell, which contains
an inhomogeneous background texture, while in our case, the monocrystalline cell is nearly
homogeneous within one silicon slice.

1.3. Problem Description

The research target is a PV module composed of multiple PV cells (usually 10–12 cells)
aligned in a row. The PV cell in this study was a printed silicon wafer soldered along
9 busbars. The PV module outputs 200 W of power in optimal conditions, with 21.4 V of
open circuit voltage. Figure 1a shows the original product captured by an ordinary CCD
camera. The PV module under study is supplied with 24 V DC power, which is slightly
higher than the rated voltage, to activate the electroluminescence effect, where infrared
light is emitted from the PV module. The light was then captured using an EL sensor,
producing a grayscale image, as shown in Figure 1a. Defects, such as cracks, breaks, and
speckles, are characterized as dark areas with different shapes, as shown in Figure 1c–f.
Cracks appear as thin lines or groups of lines, but do not divide PV cells completely, such
as in Figure 1d. Breaks appear as shape of polygons, which are usually insulated cell parts.
Speckles are circle or spot-like areas, which usually result from polluted silicon. The aim
was to design a system to locate all specified defect types in a whole EL of a PV module.
There are several challenges that need be resolved in our method. Firstly, the illumination
of the EL image is not across the whole image. As a result, some PV cells may appear
darker or brighter than others in the same image, which makes it impossible to find a global
threshold. Secondly, the PV module is not aligned perfectly, so the image may appear
slightly translated or rotated, which makes it harder to generate a self-reference template
with a fixed positional boundary. Thirdly, though the basic shapes and layouts of the PV
modules are identical, individual variations may appear for many reasons.
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Figure 1. (a) The EL imaging system of a PV module inspection pipeline, which activates the EL effect
on each module and converts infrared light into grayscale images; (b) the spectrum domain analysis-
based method to exploit the periodic features and locate the defects; (c) normal PV cell in a defect-free
module; (d) PV cell with cracks; (e) PV cell with cracks and breaks; (f) PV cell with speckles.

2. Proposed Method

Fourier transformation is a very effective tool to analyze periodic features. PV cells can
be regarded as repetitive signals along the horizontal direction. Within a PV cell, busbars
can be seen as repetitive signals along the vertical direction. From prior knowledge about
the structure of PV modules, the frequency can be determined by counting the occurrence of
repetitive patterns. Repetitive signals will have concentrated energy on the major frequency
and its harmonics in the spectrum domain; however, the defect features are, most times,
sparse in the image, which will be scattered across the spectrum. In our proposed method,
a two-stage Fourier analysis is carried out. First, vertical dividing lines are reconstructed
from the filtered Fourier spectrum of the threshold binary image of the whole EL image
to segment the PV modules into PV cells. Second, the PV cell is reconstructed with only
the busbars through vertical filtering of the Fourier spectrum. The defects can hence be
extracted by eliminating reconstructed features from all features. Preprocessing is required
to extract an ideal impulsive 2D signal of the dividing lines and busbars so that Fourier
transform could produce a clearer spectrum.
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2.1. Global Feature Extraction

The input image as shown in Figure 1a is 3000 × 500 pixels in size, with silicon wafers
appearing as brighter gray rectangles. Spaces between cells, busbars, and defects appears
as darker areas. A binarization process could extract all interesting features according to
the characteristics of the defects. However, PV cells are not perfectly identical to each other,
so light emission can vary. The energy distribution within one slice is not homogeneous,
with centers usually brighter and two ends darker. In addition, the captured gray level can
be affected by the environment, camera settings, and other influences.

In this study, an adaptive threshold is applied, in which a threshold is selected for
each window. For each pixel Pi, j, a K × K window is selected around the pixel, the mean
value of the window is calculated as Equation (1):

meani,j =
1

K2 ∑
m,n

pm, n (1)

where m, n represents a pixel within the window. Constant C is selected so that:

Bi,j =

{
1, if Pi,j < meani,j −C

0, elsewise
(2)

Window size K is selected as the minimal square to contain a local feature. In this
study, K = 21 is selected so that 21 × 21 windows are considered locally homogeneous in
normal areas. Constant C is selected according to the requirement of detection. The larger
the C value, the more features are extracted, and with higher noise. The resulting image
will have all features of interest in white, and the remaining areas in black. In our case,
C = 15 was selected so that most defect features can be extracted with minimal noise. It
was noticeable that some edge features were obscured, especially at the two ends of the PV
module. This is a result of the unstable electroluminescence effect close to the electrode.
However, in the following Fourier analysis, the slight erosion of the edge features could be
robustly reconstructed, with little effect on the detection performance.

2.2. Fourier Spectrum Filtering

The Fourier theorem states that any signal can be decomposed as the sum of sinusoid
functions with different amplitudes and frequencies. An image is a two-dimensional
function of pixel value according to space coordinate. Let the function of an image be
f(x, y), which represents the pixel value at position (x, y) in the image. The two-dimensional
discrete Fourier transform is defined as:

G(m, n) =
1

MN

M−1

∑
x=0

N−1

∑
y=0

f(x, y)e−j2π(xm/M+yn/N) (3)

where M, N is the width and height of the image. With the spectrum, the original signal
can be recovered by simply summing the sinusoids given by G(m, n). However, the goal
is to filter the spectrum so that only the desired frequencies are remained to reconstruct
the image in the spatial domain. In our case, the extracted feature image contains both
structural layout edges and defects. The Fourier analysis is adopted to form an ideal feature
image without defects. There are two characteristics being utilized to filter the spectrum.
First, the layout features are repetitive in (almost) vertical and horizontal directions; second
the defects are sparse in the image. With the approximate prior knowledge of the structure
which is the number of times the pattern is repeated and the direction, the proposed
method can easily select the desired spectrum. The magnitude of repetitive patterns will
concentrate on the frequencies equaling to the number of repeating and its harmonics.
Moreover, the defect features which are not periodic will have its magnitude scattered
across the spectrum. In the rest part of this chapter, the proposed method will be illustrated
with theoretic analysis, simulations and actual testing in real PV module images.
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2.2.1. Theoretic Analysis

In the general equation of discrete Fourier transformation shown in Equation (3), the
complex exponential is a periodic component. Given enough periods, the sum of this
factor is close to zero unless the exponent is zero. Let the original function f(x, y) also
be a 2D sinusoid function which can be written as complex exponentials according to
Euler equation.

f(x, y) = ∑
A
2
[e−j2π( px

M +
qy
N ) + ej2π( px

M +
qy
N )] (4)

where A is the amplitude of frequency p, q. The discrete Fourier transformation of a 2D
sinusoid is:

F{f(x, y)} = G(m, n) = 1
MN

M−1
∑

x=0

N−1
∑

y=0
f(x, y)e−j2π( xm

M +
yn
N )

= A
2MN

M−1
∑

x=0

N−1
∑

y=0
[e−j2π( px

M +
qy
N ) + ej2π( px

M +
qy
N )]

·e−j2π( xm
M +

yn
N )

= A
2MN

M−1
∑

x=0

N−1
∑

y=0
[e−j2π( (p+m)x

M +
(q+n)y

N )

+ej2π( (p−m)x
M +

(q−n)y
N )]

(5)

In Equation (5), the first complex exponential term always has a non-zero exponent,
hence it always sums to a near zero value. The exponent that might be zero is (p−m)x +
(q− n)y. Only when m == p and n == q, does the magnitude have a non-zero value in the
Fourier transformation results. This is how Fourier transform detects a sinusoid frequency.
However, the image is often not a straightforward sinusoid-like signal. Most times, images
are not even periodic. In this study, the layout edges are periodic, just like a 2-D rectangular
wave; the defects are non-periodic. The Fourier transform of a non-periodic function is
the transformation of the periodic extension of that function, supposing that the signal is
repeated only once in the sample.

An image can be seen as the sum of many feature images. Using Fourier theory, the
Fourier transform of the sum of two functions is the sum of the Fourier transform of each.
This can be proved through the definition of Fourier transform (Equation (6)):

F{g(t) + h(t)} =
∫ ∞
−∞ g(t)e−i2πftdt +

∫ ∞
−∞ h(t)e−i2πftdt

= G(f) + H(f)
(6)

In the proposed method, the image is regarded as the sum of periodic features and
non-periodic features. A periodic function that is not a sinusoid, such as the layout edges
in the PV module image, can be regarded as the sum of many sinusoid functions. The
component with the same frequency as the function has the highest magnitude, while other
frequencies have a smaller magnitude. If only the frequency with the maximum magnitude,
which is just the frequency of the original function, and its harmonics are selected, the
original function can be reconstructed with very little difference. This is the theoretic basis
that can be used to reconstruct the main layout edge features via Fourier analysis of the
PV module. The non-periodic features in the image are extended as a periodic function
that repeats once in the sample. From Equation (3), a sparse nonperiodic feature that has a
non-zero value in only a few points, will sum up to a much smaller value compared to a
periodic feature. Moreover, the magnitude distribution will concentrate at a frequency of
around 1 Hz.

One important thing to explain is why the proposed method has to use Fourier
transform compared to inverse transformation since the repeating time of the desired
feature must be known in advance. With known frequencies, an image can indeed be built
by just summing a few sinusoids; however, the image of the PV module often has stochastic
translation and rotation, so the phase information must be obtained to precisely reconstruct
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the image. The Fourier transform reflects the phase of the function by imaginary parts,
while the frequency and magnitude remain unchanged no matter the phase. This can be
proved in Equation (7):

F{g(t + θ)} =
∫ ∞
−∞ g(t + θ)e−i2πftdt =

∫ ∞
−∞ g(u)e−i2πf(u−θ)du

= e−i2πfθ
∫ ∞
−∞ g(u)e−i2πfudu = e−i2πfθG(f)

(7)

2.2.2. Simulations

In this section, several synthetic images are used to demonstrate the proposed method.
The base image is a 512 × 512 empty image with regular stripes. The stripes repeat in
the horizontal direction 16 times. The Fourier transform of the image is a few dots that
are placed with a fixed gap, horizontally, as shown in Figure 2a. The center point of the
spectrum reflects the overall energy of the original image, which should be maintained in
the filtering process. Other points in the spectrum reflect the frequency and magnitude
of the features. A high value in the spectrum indicates that a periodic feature of that
frequency is in the original image. From the spectrum, it can be observed that the first peak
is 16 units always from the center point, which is the frequency of the stripes. There are a
few harmonics with a gradually lower magnitude, which are the sinusoids to approximate
the non-sinusoid function. Figure 2b shows a synthetic defect, which is a stripe apart from
the periodic ones. The Fourier spectrum shows that the magnitudes are scattered, with
decentralized energy. Then, the regular stripes and the defect stripe are added together,
and the spectrum is also the sum of the two spectra, as shown in Figure 2c. The proposed
method filters only the center magnitude spectrum, the frequencies of the feature in a
certain direction are selected to reconstruct the original image. The result shows that, by
filtering the spectrum this way, the defect feature in the reconstructed image is substantially
suppressed. Figure 2d–g shows more examples with different shapes of defects and
directions. It is noticeable that, in Figure 2e, simulation of the horizontal repeating stripes,
the defect feature in the reconstructed image, is more apparent. This is because the defect
stretches over a large proportion in the horizontal direction; the spectrum of the feature has
more magnitude than the smaller defects. In our scenario, however, the defects are always
within one PV cell, and adjacent defects can hardly combine to become large enough to
affect the performance; the features in different directions should thus be considered, as the
features in the PV module are grids rather than stripes. The solution is to keep only one
line in the spectrum. If horizontal stripes are required, then only the center column with a
specific frequency is selected. Figure 2g shows the improvements in defect suppression
using this technique.
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Figure 2. Simulation of the proposed method. Fourier transform spectrum magnitude and recon-
structed image after spectrum filtering of (a) normal stripe feature, the spectrum is concentrated
values along the horizontal axis; (b) only defect feature, the spectrum energy is scattered along the
horizontal axis; (c) normal feature and defect combined, the spectrum is the sum of first two; (d) small
speckle defect; (e) large area defect; (f) multiple defects; (g) defects on horizontal stripes, filtered with
only vertical frequencies; defects can hardly be seen in the reconstructed image although the original
defect size is big.

2.3. PV Module Defect Detection

Defects can be easily extracted by subtracting the reconstructed image from the feature
map after preprocessing. The process has two stages, as shown in Figure 1b. First, the
vertical dividing lines are reconstructed by filtering the spectrum horizontally. Then the
dividing lines can be used to segment the PV module into 12 cells. After segmentation, the
spectrum is filtered within each PV cell vertically to reconstruct the horizontal busbars. The
selection of the spectrum is based on prior knowledge of the number of PV cells and the
number of busbars. Since there are 12 PV cells in a PV module, and 10 slices in one PV cell,
the spectrum is filtered by maintaining the column index, which is a multiple of 12 in the
center row, and the all-row index, which is multiple of 10 in the center column.
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The proposed method combines adaptive thresholding and the Fourier analysis
method from the sections above, along with some other techniques, to achieve the goal
of detecting cracks, breaks, and speckles. In this section, detailed implementation of the
method is described with real EL image demonstrations.

2.3.1. Preprocessing

Adaptive thresholding is used in the preprocessing step to extract all features, includ-
ing the dividing edges, busbars in the cell, contours, and defects. Notice that, in our work,
the grid electrode features are eliminated in preprocessing, as they are quite small relative
to the scale of the entire PV module. A local threshold constant, C, is needed in this step to
decide to which extent the features are kept. A higher C value will generate more features,
but will harm the precision of defect detection. A lower C value will keep fewer features,
but will promote precision and harm the recall rate. Figure 3a shows the defect pixels
detected under different C values. In our design, the C value was chosen by calculating the
f1-score as a trade-off between precision and recall. A training set with known defect pixel
positions was used to select the C value. Different C values were used to preprocess the
training set to generate the defect predictions. Therefore, the precision and recall rate of
detection is calculated as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP is the detected pixels that are indeed defects; TP + FP are all detected pixels; TP +
FN are all ground truth defect pixels. Then, the f1-score is derived as:

F1 =
Precision× recall
precision + recall
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Figure 3. (a) detected defect pixels under different values of C. Some false detections are highlighted
with red a circle. With a higher C value, true defects are eroded. (b) Precision, recall and f1-score
change according to C value upon a training set of 20 samples.

The training set contains 20 randomly selected EL images, with defective and normal
ones, and the f1-score is calculated by setting different C values to detect defects. Figure 3b
shows the trend of the f1-score with the C value. It can be seen from the graph that when
C < 5, the proposed method cannot detect defects properly, so the precision and recall are
both very low. When C > 5, the method can effectively detect defect; a higher C value will
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give better precision, until, at some point, there are not many false alerts though the ground
truth defects begin to be obscured. It can be determined that, with C = 15, the f1-score is
the best. Hence, this value was selected for the preprocessing.

2.3.2. Reconstruction, Segmentation and Defect Locating

After preprocessing, the proposed method first rebuilds the periodic vertical dividing
lines that repeat horizontally. The sought feature is the spectrum of frequency 12 along the
horizontal direction. Figure 4 shows the spectrum of a real PV module image. The central
point, which represents the mean value of the image, has the highest value in the spectrum.
While, in the horizontal direction, there are a series of points with a high value. The first
high-energy point has the coordinate of [0, 12] in the spectrum. The rest are multiples
of 12, and have decaying energy. These frequencies are essential for reconstruction. It is
recommended to reconstruct images with all the harmonics, otherwise, the reconstructed
image will be more like a sinusoid signal, which is different from the desired feature, as
shown in Figure 4. The frequency must be carefully selected to reconstruct the correct
features, as the wrong frequency will cause problems for the result. Luckily the layout in
our case was fixed, so the frequency was constant. One may experiment with the frequency
if unsure of the value.
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The reconstructed image can be used as reference template, or the PV module can
be segmented into cells for further processing. Usually, identify which cell has defects is
required, and segmentation can be done on the reconstruction feature. However, segmenta-
tion is not trivial, though the groups are quite obvious in the reconstructed image. The aim
is to group the white pixels into 12 (or 11) vertical lines, using the given center of clusters.
Since the image may have a random shift in the horizontal direction, it is unclear whether
12 or 11 vertical lines have been reconstructed. DBSCAN is an unsupervised clustering
algorithm that does not need the number of clusters; however, its time consumption is
significant. In our implementation, we used K-means with a grid search to find the best
match of clusters. The clustering results are shown in Figure 5a.
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The clusters that were aggregated from the reconstructed image could then be used to
slice the PV module into 12 PV cells. In each cell, Fourier reconstruction was performed
again while maintaining vertical frequencies of 10 and all harmonics. The reconstructed
image will only contain the busbars, as shown in Figure 5b. The defect is all features that
do not belong to the busbars.

3. Experiments and Evaluation

The proposed method was tested on a set of PV-module EL images, including defect-
free samples and defective samples, with all the above-mentioned types. The experiments
were carried out on a laptop with an Intel(R) Core (TM) i7-8550U CPU @ 1.80 GHz 2.00 GHz
processor. The EL images were around 400 × 3000 pixels with a variation of, at most,
20 pixels in width as a result of stochastic placing and cropping. The images had an 8-bit
gray scale depth. The input of the system was the original-sized EL image. The system
output the pixels of the cracks, breaks, and speckles. The average processing time for one
400 × 3000 EL image was about 0.13 ms, which was sufficiently fast for online detection.
Figure 6a shows a set of defect-free PV cells with varying illumination conditions. No
pixels are detected as defects in these images. Figure 6b shows a few samples with different
shapes of cracks, breaks and speckles.

The entire experiment comprised 1000 EL images, 600 of which were defect-free
samples, the rest included all three kinds of defects. The images were first manually
examined and labeled. Defective samples included 254 samples with cracks, 174 samples
with breaks, and 145 samples with speckles. Many samples had multiple defect types.
The proposed method, with the adaptive thresholding parameter (C) set to 15, horizontal
frequency set to 12, and vertical frequency set to 10, identified all the labeled defects with
no misses. The method yielded 14 cases of false alarms, which were further affirmed as
missed defects by humans. The proposed method outperforms human inspectors in terms
of both accuracy and speed.
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4. Discussion

The evaluation results show that the proposed method can find defect features re-
gardless of layout interference. The brightness variation is solved by adaptive threshold
preprocessing. This method relies on the periodic feature of layouts and the sparse feature
of the defects. Since defects exist within one PV cell, a sparse characteristic is usually
guaranteed from an entire PV module perspective. While it is possible that defects in
multiple PV cells appear in same shape and location, which will break the sparse-defect
hypothesis, this situation was never the case in our collected dataset. The method shows
satisfying detection precision, and is suitable for PV-module defect detection in situations
where no descent labeled training set is available. The method can also be applied in
other applications, where a regular texture exists in the image. The detected defects in this
method also formed a high-quality labeled dataset, which may serve as a training set for
supervised learning studies. In future works, the results of the proposed method can be
utilized as a PV defect dataset.

5. Conclusions

In this paper, a defect detection method based on the Fourier reconstruction of periodic
features is proposed. The proposed method is capable of detecting cracks, breaks, and
speckles in the PV module EL image. The EL image can expose intrinsic defects that are not
visible from the appearance. The periodic characteristic of the layout feature is exploited
to distinguish defects from the normal edges. An adaptive thresholding step is adopted,
which can robustly extract all features, despite the inhomogeneous illumination condition
of the PV cells. The thresholding parameter is statistically generated with a few labeled
samples, so no hand-engineered magic number is required. Based on the reconstructed
features, as a reference template and segmentation result, defect pixels can be located.

The experimental results show that the proposed method can detect required defects
in real-time, with good precision. The method is used in real PV-module testing pipelines.
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