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Abstract: Recently, the realization of electromagnetic wave signal transmission and reception has been
achieved through the utilization of the magnetoelectric effect, enabling the development of compact
and portable low-frequency communication systems. In this paper, we present a miniaturized low-
frequency communication system including a transmitter device and a receiver device, which operates
at a frequency of 44.75 kHz, and the bandwidth is 1.1 kHz. The transmitter device employs a Terfenol-
D (80 mm × 10 mm × 0.2 mm)/PZT (30 mm × 10 mm × 0.2 mm)/Terfenol-D glued composite
heterojunction magnetoelectric antenna and the strongest radiation in the length direction, while
the receiver device utilizes a manually crafted coil maximum size of 82 mm, yielding a minimum
induced electromagnetic field of 1 pT at 44.75 kHz. With an input voltage of 150 V, the system
effectively communicates over a distance of 16 m in air and achieves reception of electromagnetic
wave signals within 1 m in simulated seawater with a salinity level of 35% at 25 ◦C. The miniaturized
low-frequency communication system possesses wireless transmission capabilities, a compact size,
and a rapid response, rendering it suitable for applications in mining communication, underwater
communication, underwater wireless energy transmission, and underwater wireless sensor networks.

Keywords: low-frequency communication system; miniaturization; magnetoelectric antenna;
underwater communication

1. Introduction

Wireless communication technologies have significantly enhanced industrial produc-
tion efficiency and greatly improved the quality of daily life. In modern society, radio
frequency (RF) technology-based wireless communication, particularly Bluetooth [1,2]
communication in the ISM (Industrial, Scientific, Medical) band and millimeter wave
communication exemplified by WiFi [3] and 5G [4,5] plays a crucial role. High-frequency
electromagnetic waves carry dense information, but they are prone to interference and
quickly attenuate in highly conductive media. Conversely, low-frequency electromagnetic
waves (30–300 kHz) exhibit strong resistance to interference, possess a large skin depth,
and demonstrate excellent penetration capabilities in highly conductive media, particularly
in underwater communication and ground-penetrating communication, thus showcasing
promising applications [6,7]. However, low-frequency electrical antennas are hindered by
the matching relation between the physical size and wavelength, resulting in their substan-
tial dimensions, and shrinking the antenna size reduces its gain [8,9], significantly limiting
the portability of low-frequency communication systems. Consequently, urgent research is
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needed to develop miniaturized, lightweight, and low-power low-frequency communica-
tion systems through innovative approaches. In the ISM band, the metamaterial [10,11]
and metasurfaces [12,13] are important methods to improve the performance parameters
of antenna devices and to design an antenna in a compact footprint area. However, a key
method to reduce the size of low-frequency antennas is replacing electrical antennas with
mechanical antennas [14]. Unlike conventional electrical antennas that rely on electrons
generating oscillating currents in circuits to radiate electromagnetic waves, mechanical
antennas employ mechanical energy to drive the motion of electric charges or magnetic
dipoles, thus generating a radiation field. This approach enables the utilization of near-field
energy, which is challenging to harness in conventional electrical antennas, in antenna
radiation and facilitates the miniaturization of low-frequency communication devices with-
out requiring extensive impedance matching networks [15]. Mechanical antennas can be
categorized into four types: electret type [16,17], permanent magnet type [18], piezoelectric
type [19], and magnetoelectric type [20–22]. Among these, magnetoelectric mechanical
antennas have gained popularity in recent years due to their low power consumption, light
weight, and rapid response.

Magnetoelectric heterojunctions have found applications in tunable inductors [23],
tunable filters [24], magnetoelectric memories [25], energy harvesting devices [26], and
magnetic sensors [27]. In 2017, Nan et al. designed an acoustically actuated nanomechanical
magnetoelectric (ME) antenna operating at a frequency of 60.7 MHz, based on the magne-
toelectric effect [28], and experimentally verified the feasibility of using magnetoelectric
heterojunctions in antennas. This study demonstrated that the magnetoelectric structure
enables the transformation of electromagnetic fields and oscillating currents without being
limited by the resonance of the antenna size and specific electromagnetic wave wavelengths.
Consequently, the limitation imposed by the electromagnetic wave wavelength on antenna
size can be overcome. Dong et al. reduced the operating frequency of the magnetoelec-
tric (ME) antenna to 23.95 kHz [29]. They successfully achieved signal transmission and
reception using ME antennas and found that the radiation pattern of the ME antenna
conformed to the standard magnetic dipole radiation equation. The ME antenna operates
on the principle that, as a transmitting antenna, an alternating power source stimulates the
piezoelectric layer to generate vibrations. These vibrations are then transmitted through
the heterojunction to the magnetostrictive layer, causing magnetization oscillation that
radiate electromagnetic waves. As a receiving antenna, the magnetostrictive layer senses
spatial electromagnetic waves and strains, which are conveyed by the heterojunction to the
piezoelectric layer. The piezoelectric layer outputs a voltage signal as a result of the inverse
piezoelectric effect.

Xu et al. conducted simulations and confirmed that the near-field coupling between
the ME antenna and the coil depends on mutual inductance rather than electromagnetic
radiation [30]. Hu et al. discovered that the resonant frequency of the ME antenna can
be adjusted by modifying the constraint [31]. Furthermore, for multilayer thin sheet
composite heterojunctions, optimizing the interlayer bonding can effectively enhance the
magnetoelectric coupling coefficient [32], and the application of a DC bias magnetic field
can improve the energy conversion efficiency between magnetostrictive and piezoelectric
materials [33]. Taking it a step further, Niu et al. utilized small permanent magnets instead
of Helmholtz coils to provide a DC bias magnetic field for ME antennas, resulting in
improved energy conversion efficiency while maintaining a compact size [34,35].

This paper presents the design of a low-frequency miniaturized magnetoelectric
communication system (i.e., MMCS) including transmitter device and receiver device,
where the transmitting device is a ME antenna and the receiving device is a manually crafted
coil. In this paper, we first describe the design and manufacture of transmitter device and
receiver device of MMCS and then the building of a low-frequency electromagnetic wave
test platform to complete the parameter characterization of MMCS and analysis test results.
The transmitting ME antenna was constructed as a Terfenol-D/PZT/Terfenol-D three-layer
magnetoelectric structure with dimensions of 80 mm × 10 mm × 3 mm. To enhance the
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transmitting signal strength, three layers of 30 mm × 10 mm × 2 mm NdFeB magnets
were integrated to improve the stress transfer efficiency between the heterojunction layers
and the strongest radiation in the length direction. The receiving coil was wound with
0.3 mm copper enameled wire, featuring an inner diameter of 46 mm, an outer diameter of
82 mm, an axial length of 40 mm, and a minimum resolution of 1 pT. The MMCS operated
at a frequency of 44.75 kHz that carried on the binary code element transmission, and
the experimental results indicated an effective communication distance of 16 m in an air
medium. Compared with similar research literature [36,37], this device was able to detect
smaller magnetic fields due to the resonant frequency at which the receiver coil operates,
which helps to improve the actual test communication distance. In a simulated 35% salinity
seawater medium, the receiving coil located 1 m away from the transmitting antenna
successfully captured discernible electromagnetic waves. The MMCS exhibits a wide range
of potential applications in underwater communication, underwater energy harvesting,
and mining communication.

2. MMCS Design and Manufacturing

Figure 1a shows the schematic diagram of the transmitting ME antenna, operating in
the L-T vibration mode [38], scilicet, the piezoelectric material, is polarized longitudinally,
and the magnetostrictive material is magnetized transversely. The AC power supply
excites the transmitting ME antenna, applying the excitation to the piezoelectric layer (i.e.,
PZT), whose components are lead–zirconate–titanate piezoelectric ceramics. The inverse
piezoelectric effect in the PZT generates periodic vibrations, which are transmitted to
the magnetostrictive material layer (i.e., Terfenol-D). The periodic vibration of Terfenol-D
produces an electromagnetic wave signal at the excitation frequency, enabling the radiation
of electromagnetic waves.
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Figure 1. (a) Schematic of the MMCS transmitting ME antenna. (b) Prototype of the MMCS transmit-
ting ME antenna. (c) MMCS receiving coil.

The ME antenna has a sandwich structure of Terfenol-D/PZT/Terfenol-D. The Terfenol-
D layer (80 mm × 10 mm × 0.2 mm) was sourced from Shijiazhuang Saining Electronic
Technology Co. (Shijiazhuang, China), and the PZT layer (30 mm × 10 mm × 0.2 mm) was
sourced from the Zhejiang Shenlei Ultrasonic Material Factory. The fabrication process of
the transmitting ME antenna involved several steps. First, a c-axis polarized PZT piezo-
electric sheet measuring 30 mm × 10 mm × 0.2 mm was cut, along with two Terfenol-D
magnetostrictive sheets measuring 80 mm × 10 mm × 0.2 mm. Next, a pair of PI (i.e.,
Polyimide) substrate electrodes with a total width of 10mm and a length of 30 mm, printed
with purple copper electrodes of 20 um thickness, were prepared. The PI substrate was
positioned between the piezoelectric and magnetostrictive sheets, with the printed elec-
trode surface facing the piezoelectric material. Devcon14250 epoxy resin adhesive was used
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for interlayer bonding, and the antenna was subjected to 0.1 MPa pressure on a bonding
machine for proper adhesion. Afterward, the antenna was left to cure for 24 h. The positive
and negative inputs were connected to the upper and lower copper electrodes, respectively,
to interface with the excitation source. The final ME antenna, shown in Figure 1b, measured
80 mm × 10 mm × 3 mm. To enhance its radiation performance, three layers of small
NdFeB magnets measuring 30 mm × 10 mm × 2 mm were integrated to improve the
energy transfer efficiency.

The receiving device consists of a manually crafted coil wound with 0.3 mm cop-
per enameled wire, comprising 800 turns. The coil has an inner diameter of 46 mm, an
outer diameter of 58 mm, and an effective axial length of 12 mm. Figure 1c illustrates
the 3D-printed carbon fiber reinforced polyester frame of the receiving coil, measuring
Φ82 mm × 40 mm in total volume. The output voltage is led out through a bayonet nut
connector (BNC) connector.

3. Experimental Platform

The principle of the MMCS receiving coil characterization platform is illustrated in
Figure 2. To minimize the impact of environmental noise, the calibration experiment for
the receiving coil was conducted inside an electromagnetic field shielding cylinder, which
remained closed throughout the test. A precision current source (Keithley-6221) was used
to supply input current to the Helmholtz coil, generating the electromagnetic field. The
receiving coil was connected to a lock-in amplifier (Stanford Research Systems SR830),
which measures the induced voltage output from the receiving coil. The electromagnetic
field intensity at the center of the Helmholtz coil was measured using a low-frequency elec-
tromagnetic signal analyzer (NF-5035) manufactured by Aaronia AG, Euscheid, Germany.
By plotting the relationship between the spatial electromagnetic field and the receiving
coil’s output voltage, we analyzed the performance of the receiving coil.
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Figure 2. Characterization platform schematic of the receiving coil.

The test setup for the MMCS is depicted in Figure 3. A waveform generator (Tektronix
AFG3022C) generates a sine wave signal that serves as the excitation source. The excitation
signal was amplified by a power amplifier (Aigtek ATA-3080). The amplified signal was
then applied to the transmitting ME antenna, which emits electromagnetic waves at the
same frequency as the excitation signal. The receiving coil captured the electromagnetic
waves, inducing an output voltage signal. This voltage signal was either fed into the lock-in
amplifier or the oscilloscope (Rigol-DS2102) for signal analysis.
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4. Results
4.1. Receiving Coil Characterization

The characterization platform for the MMCS receiving coil is illustrated in Figure 4a.
The resonant frequency of the MMCS receiving coil was 44.75 kHz, as depicted in Figure 4b.
At this resonant frequency, the receiving coil exhibited the strongest signal, leading to
improved detection resolution and enhanced communication distance for the MMCS. And
the bandwidth of the receiving coil was 1.1 kHz; it needs to be clarified that the difference
between the two frequencies corresponding to the value of the resonant peak falling

√
2/2

times its maximum value is defined as the bandwidth.
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Figure 4. (a) Characterization platform of the MMCS receiving coil. (b) The receiving coil resonance
frequency is 44.75 kHz, and the signal strength at the resonance frequency is improved significantly.
(c) For the receiving coil, a 1nT electromagnetic field strength corresponds to a 86.446 mV induced
voltage at 44.75 kHz. (d) The receiving coil resonance frequency detecting an AC electromagnetic
field of minimum 1 pT.

Figure 4 shows the receiving coil operating frequency at 44.75 kHz; within the effective
measurement range, an electromagnetic field strength of 1 nT corresponds to an output
voltage of 86.446 mV. The receiving coil was capable of detecting AC electromagnetic fields
as low as 1 pT. Signals below 1 pT were submerged in the noise, as shown in Figure 4d.

4.2. Transmitting ME Antenna Experiment

Figure 5 illustrates the relationship between the radiated electromagnetic wave in-
tensity of the transmitting ME antenna and the peak of the input voltage. It is worth
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emphasizing that the voltages mentioned in this paper represent only the amplitude of
the sine wave. The transmitting ME antenna requires a starting voltage, and when the
excitation voltage is below 3 V, the vibration of the PZT sheet is weak, resulting in a weaker
radiated signal compared to ambient noise. As the input voltage exceeds 3 V, the signal
from the transmitting ME antenna grows significantly with the voltage. However, this
growth is not limitless. Beyond a voltage of 200 V, the vibration of the piezoelectric sheet
reaches saturation, and further increasing the excitation voltage does not produce a stronger
output electromagnetic wave signal. It is important to note that the starting and saturation
voltages may vary depending on the size, shape, structure, and material components of the
piezoelectric layer [31,35].
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Figure 6 presents the impact of the integrated small NdFeB magnets on the radia-
tion signal of the transmitting ME antenna. Each individual magnet has a volume of
30 mm × 10 mm × 2 mm. The test results demonstrated that the integration of small Nd-
FeB magnets helped to enhance the antenna’s radiation strength. This enhancement is
attributed to the pressure effect and DC bias magnetic field because the application of
pressure improves the stress transfer between the heterojunction layers, and Terfenol-D is
effectively polarized by the DC bias magnetic fields, both leading to more efficient energy
conversion. Additionally, it is important to mention that although the near-field radia-
tion intensity of the ME antenna was significantly enhanced as the number of magnets
increased, this radiation intensity decayed rapidly with increasing distance. This is because
the attenuation of electromagnetic waves in the near field is inversely proportional to the
cube of the distance [39].

The radiation pattern of the ME is helpful to grasp the magnetic field intensity distri-
bution around the ME antenna and provide guidance for the placement of the ME antenna.
Firstly, we define the coordinate system of the ME antenna, as shown in Figure 7a, the
length direction, width direction, and thickness direction of ME antenna are defined as the
x-axis, y-axis, and z-axis, respectively. The x-axis direction is defined as 0◦, and the y-axis
direction is defined as 90◦. Since the experiment described in this paper was carried out
on the x-y plane, it mainly characterizes the radiation pattern of the x-y plane of the ME
antenna. In order to reduce the influence of the power supply line on the test results, the
receiving device was 0.1 m away from the ME antenna. The experimental results of the
normalization processing are shown in Figure 7b. The radiation intensity was the highest
in the directions of 0◦ and 180◦, and the radiation intensity was the lowest in the directions
of 90◦ and 270◦. That is to say, in the x-y plane, the radiation in the length direction was
the strongest, and the radiation in the width direction was the weakest. In the experiments
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described below, it was necessary to ensure that the length direction of the ME antenna
was aligned with the receiving device.
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4.3. MMCS Communication Performance Test

When the waveform generator generated a standard sine wave at 44.75 kHz, which is
the resonant frequency of the MMCS, the amplified excitation signal was applied to the
transmitting ME antenna. As a result, the antenna radiated an electromagnetic wave into
the surrounding space. Simultaneously, the receiving coil captured the electromagnetic
wave and produced an output voltage that remained a sine wave at 44.75 kHz, as depicted
in Figure 8. This output signal from the receiving coil was consistent with the radiation of
the transmitting ME antenna.

As a communication system, it is necessary for the MMCS to carry out binary code
element transmission experiments. The distance between the transmitting device and
the receiving device was 3 m, and the AM modulation signal was transmitted. The car-
rier frequency was 44.75 kHz, the modulation signal was a 200 Hz sine wave, and the
modulation depth was 100%. The modulation waveform and the resolution of the mod-
ulation information are shown in Figure 9, which indicates that MMCS has the potential
for communication.
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The MMCS operates in the low-frequency band within the near-field region (r << λ),
where r represents the distance between the transmitting ME antenna and the receiving
coil, and λ denotes the wavelength of the electromagnetic wave. As shown in Figure 10, an
experimental platform was built to verify the signal transmission capability of the MMCS
system in an air medium.

The results of the test, presented in Figure 11, indicate that the signal attenuated
rapidly as the distance increased within 1m. However, beyond a communication distance
of 4 m, the signal stabilized with a strength of 2pT, which was greater than the limit of
detection as shown in Figure 4d, excluded the interference of a system error, confirming that
the received signal was the original signal radiated by the transmitting ME antenna. The
MMCS achieved successful signal transmission and reception tests up to a distance of 16 m,
and the observed attenuation patterns aligned with the outcomes of similar studies [30,34].

It is necessary to emphasize that although the ME antenna will have a significant
signal enhancement at the resonant peak, the resonant frequency of the ME antenna is high,
which is not favorable for underwater communication; so, the resonant frequency of the
receiver coil was selected as the operating frequency of the MMCS.
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4.4. Packaging and Underwater Experiment

The packaging structure of the transmitting ME antenna was made using a 3D print-
ing process with a double-deck cylindrical PETG-CF (Polyethylene Terephthalate Glycol-
Modified Carbon Fiber) material. The gap between the inner and outer layers of the
structure were filled with epoxy resin potting adhesive to ensure waterproofing and corro-
sion resistance. The final packaged transmitting ME antenna is depicted in Figure 12a. In
order to assess the performance of the MMCS in a marine environment, both the transmit-
ting ME antenna and the receiving coil were completely submerged in a simulated seawater
solution with 35% salinity at 25 ◦C, as shown in Figure 12b. When the transmitting ME
antenna emitted a 44.75 kHz sine wave signal, the receiving coil, located 1m away from
the transmitting ME antenna, detected the electromagnetic wave, and showed the output
voltage waveform by oscilloscope, as illustrated in Figure 12c.

When the electromagnetic wave propagated through the simulated saltwater medium,
the frequency information experienced minimal shifting. However, compared to the signal
received in an air medium, the uniformity of the signal amplitude was poorer. This
phenomenon could be attributed to the inadequate uniformity of the simulated seawater
solution or the interference of electromagnetic waves from different propagation paths.
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5. Conclusions

The proposed MMCS operates at a frequency of 44.75 kHz. The system is capable of
detecting an electromagnetic field as weak as 1pT and carrying on the binary code element
transmission. The MMCS has an input voltage range of 3 V to 200 V, and increasing the
input voltage within this range leads to a noticeable improvement in the communication
signal strength. By integrating small NdFeB magnets into the transmitting ME antenna,
there is a significant enhancement in the communication signal at close distances. In
an air medium, the MMCS demonstrates the ability to transmit and receive 44.75 kHz
sinusoidal electromagnetic waves over a distance of 16 m. When tested in a simulated
seawater medium with 35% salinity at 25 ◦C, the receiving coil located 1 m away from the
transmitting ME antenna successfully receives the electromagnetic wave.

However, the 16 m air communication distance may not be sufficient for certain
low-frequency communication applications, and underwater communication distance is
expected to reach 30 m. To overcome this limitation, in the future we will focus on more
efficient magnetoelectric heterojunction materials, the design of highly sensitive miniatur-
ized receiver devices, and ensure that the transmitting and receiving devices operate at
the same resonant frequency. By incorporating these advancements, the communication
distance of unit miniaturized communication systems can be improved. At the same time,
future work will be devoted to an array of unit miniaturized communication systems to
improve the communication distance. Therefore, the MMCS holds significant potential
for applications in underground, underwater, and earth–ionosphere waveguide medium
communication, as well as energy supply applications.
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