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Abstract: In this paper, a compact and simplified geometry monopole antenna with high gain and
wideband is introduced. The presented antenna incorporates a microstrip feedline and a circular
patch with two circular rings of stubs, which are inserted into the reference circular patch antenna
to enhance the bandwidth and return loss. Roger RT/Duroid 6002 is used as the material for the
antenna, and has overall dimensions of WS × LS = 12 mm × 9 mm. Three designs of two-port
MIMO configurations are derived from the reference unit element antenna. In the first design, the
antenna element is placed parallel to the reference antenna, while in the second design, the element is
placed orthogonal to the reference element of the antenna. In the third design, the antenna elements
are adjusted to be opposite each other. In this study, we analyze the isolation between the MIMO
elements with different arrangements of the elements. The MIMO configurations have dimensions
of 15 mm × 26 mm for two of the cases and 15 mm × 28.75 mm for the third case. All three MIMO
antennas are made using similar materials and have the same specifications as the single element
antenna. Other significant MIMO parameters, including the envelope correlation coefficient (ECC),
diversity gain (DG), channel capacity loss (CCL), and mean effective gain (MEG), are also researched.
Additionally, the paper includes a table summarizing the assessment of this work in comparison to
relevant literature. The results of this study indicate that the proposed antenna is well-suited for
future millimeter wave applications operating at 28 GHz.

Keywords: MIMO antenna; unit element; isolation; ECC; 28 GHz; 5G

1. Introduction

The recent advancements in communication systems (shifting from 4G to 5G, and cur-
rently from 5G to 6G) have brought about numerous changes and revisions. These changes
have been made to meet the requirements, which are a basic necessity for operating over
future wireless communication spectrum [1,2]. These requirements are aimed at achieving
a high data rate, increasing the throughput and data capacity, as well at creating low-cost
compact devices. Due to changes in designing communication models, the requirements for
changing the communication entities have also changed [3–5]. One of the most important
parts of communication models is the antenna, and due to the aforementioned requirements
and changes, the requirements for antennas have also changed [6,7].

High gain and wideband antenna have gained increasing attention in recent years
due to the evolving demands in communication systems [8,9]. Devices that offer high data
rates and cater to a sea of users, while being small and portable, are in in high demand.
Antennas with features such as high gain, wideband, and compact, low-profile designs,
have become crucial components in communication devices [10–14].

The implementation of multiple-input multiple-out (MIMO) antenna technology in-
creases the capacity and reduces interference [15,16]. Some examples of usage of MIMO
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antenna system in future communication is given in Figure 1. By applying MIMO anten-
nas, one can fulfil the requirements of present-day communication systems, as various
techniques are used to improve the parameters [17]. In the literature, various antennas
designs have been presented, many of which incorporate elements such as parasitic patches,
Electronic Band Gaps (EBGs), metamaterials, Frequency Selective Surfaces (FSS) layers,
and Dielectric Resonator Antenna (DRA) to improve antenna isolation [18–20]. Numerous
MIMO antennas are self-decoupled, do not contain any structure or layer, and operate
under a desired range of isolation [21,22].

Micromachines 2023, 14, x FOR PEER REVIEW 2 of 14 
 

The implementation of multiple-input multiple-out (MIMO) antenna technology in-
creases the capacity and reduces interference [15,16]. Some examples of usage of MIMO 
antenna system in future communication is given in Figure 1. By applying MIMO anten-
nas, one can fulfil the requirements of present-day communication systems, as various 
techniques are used to improve the parameters [17]. In the literature, various antennas 
designs have been presented, many of which incorporate elements such as parasitic 
patches, Electronic Band Gaps (EBGs), metamaterials, Frequency Selective Surfaces (FSS) 
layers, and Dielectric Resonator Antenna (DRA) to improve antenna isolation [18–20]. Nu-
merous MIMO antennas are self-decoupled, do not contain any structure or layer, and 
operate under a desired range of isolation [21,22]. 

 
Figure 1. Practical applications of the MIMO antenna in the different domains of future communi-
cation systems. 

It is mentioned in [23] that a two-port MIMO antenna with a modest overall size of 
12 mm × 24 mm × 0.79 mm was developed. The antenna has a wide band coverage of 28.2 
to 30.7 and an Envelop Correlation coefficient (ECC) of 0.001. The investigation of signif-
icant MIMO properties such isolation, Diversity Gain (DG), Mean Effective Gain (MEG), 
and gain constitutes the exclusive focus of this paper. [24] investigated an additional tiny 
15 mm × 25 mm two-port MIMO antenna. The antenna covers the 26.5 to 29.5 wideband 
frequency range and has a peak gain of 5.8 dBi. An array MIMO antenna with four ports 
and a size of 17.2 mm × 62 mm is presented in Ref. [25]. The antenna offers high gain due 
to array technology (around 13.6 dBi) and offers a wideband capability of 26.6–30.2 GHz. 
The antenna is large in size due to placing antenna element in parallel. 

Etching slots from the ground plane can also increase an antenna’s bandwidth and 
gain if it has a defective ground structure (DGS) [26]. In [27], a wideband antenna with a 
gain of 5.42 GHz and an operational band width of 26–32 GHz is examined. The antenna 
provides an isolation of 35 dB and an ECC of about 0.005. The DGS ground plane enhances 
the bandwidth characteristics of the antenna. Another DGS ground plane antenna with a 
bandwidth of 26.2–30 GHz and overall dimensions of 30 mm × 35 mm × 0.76 mm is pre-
sented in [28]. The antenna’s strong gain of 8.3 dBi is a result of both the array’s structure 
and DGS.  

A compact sized 24 mm × 20 mm, wideband 33–44 GHz, and transparent antenna is 
reported in [29]. The antenna recorded a relative permittivity of 2.3 on the transparent 
substrate Plexiglass. The antenna is small and broad, but its ECC and isolation values are 
poor (0.1 and 1.6 dB, respectively). Ref. [30] present an antenna that provides good isola-
tion at a cost of about 45 dB. The antenna is 47.4 mm × 32.5 mm and has a broad frequency 

Figure 1. Practical applications of the MIMO antenna in the different domains of future communica-
tion systems.

It is mentioned in [23] that a two-port MIMO antenna with a modest overall size of
12 mm × 24 mm × 0.79 mm was developed. The antenna has a wide band coverage of
28.2 to 30.7 and an Envelop Correlation coefficient (ECC) of 0.001. The investigation of
significant MIMO properties such isolation, Diversity Gain (DG), Mean Effective Gain
(MEG), and gain constitutes the exclusive focus of this paper. Ref. [24] investigated an
additional tiny 15 mm × 25 mm two-port MIMO antenna. The antenna covers the 26.5 to
29.5 wideband frequency range and has a peak gain of 5.8 dBi. An array MIMO antenna
with four ports and a size of 17.2 mm × 62 mm is presented in Ref. [25]. The antenna offers
high gain due to array technology (around 13.6 dBi) and offers a wideband capability of
26.6–30.2 GHz. The antenna is large in size due to placing antenna element in parallel.

Etching slots from the ground plane can also increase an antenna’s bandwidth and
gain if it has a defective ground structure (DGS) [26]. In [27], a wideband antenna with a
gain of 5.42 GHz and an operational band width of 26–32 GHz is examined. The antenna
provides an isolation of 35 dB and an ECC of about 0.005. The DGS ground plane enhances
the bandwidth characteristics of the antenna. Another DGS ground plane antenna with
a bandwidth of 26.2–30 GHz and overall dimensions of 30 mm × 35 mm × 0.76 mm is
presented in [28]. The antenna’s strong gain of 8.3 dBi is a result of both the array’s structure
and DGS.

A compact sized 24 mm × 20 mm, wideband 33–44 GHz, and transparent antenna
is reported in [29]. The antenna recorded a relative permittivity of 2.3 on the transparent
substrate Plexiglass. The antenna is small and broad, but its ECC and isolation values
are poor (0.1 and 1.6 dB, respectively). Ref. [30] present an antenna that provides good
isolation at a cost of about 45 dB. The antenna is 47.4 mm × 32.5 mm and has a broad
frequency range of 36.8 to 40 GHz. The antenna structure is zigzag with large dimensions,
which cannot be fixed in any communication model for practical applications. The MIMO
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antenna for mobile communication is presented in [31]. The antenna’s enormous size of
158 mm by 77.8 mm and bandwidth of 25 to 40 GHz are also advantageous. The antenna’s
gain is 7.2 dBi; however, its ECC and isolation values of 0.5 and 17 dB, respectively, are
not sufficient.

For 28 GHz applications, a two-port MIMO antenna is suggested in [32]. The antenna
is 20.5 mm by 12 mm overall, operates between 26.5 and 30 GHz, and has a peak gain
of 8.75 dBi. Table 1 contain the comparison of proposed antenna along with state of the
art. The performance of the antenna is studied after placing the MIMO element of the
antenna in various orientations and this found that the MIMO antenna offers good results
when two elements are orthogonal to each other. The limitation of this work is that only
the transmission and reflection coefficient is studied. This study and discussion focus
on the performance of two-port MIMO antennas in terms of transmission and reflection
coefficients (ECC, Channel Capacity Loss (CLL), DG, and MEG).

Table 1. Comparison between the proposed work and existing work in the literature.

Ref. Antenna Size
(mm ×mm ×mm)

Bandwidth
(GHz)

Peak Gain
(dBi) ECC Isolation

(dB)
Efficiency

(%)

[23] 12 × 24 × 1.79 28–30.7 - 0.001 - Not given
[24] 15 × 25 × 0.203 26.5–29.5 5.8 0.005 30 >87
[25] 17.2 × 62 × 0.8 26.6–30.2 13.6 0.001 35 Not given
[26] 30 × 15 × 0.25 26–30 5.42 0.005 35 >85
[28] 30 × 35 × 0.76 26.2–30 8.3 0.01 45 >82
[29] 24 × 20 × 1.85 33–44 - 0.1 16 >81
[30] 47.4 × 32.5 × 0.51 36.8–40 6.5 0.001 45 >79
[31] 158 × 77.8 × 0.381 25–40 7.2 0.5 17 >86
[32] 20.5 × 12 × 0.79 26.5–30 8.75 - 38 >89

This Work
15 × 26 × 1.52
15 × 26 × 1.52

15 × 28.75 × 1.52
26–34.25 11.25 <0.001 <38 >91

Three sections make up the remaining portion of this study. The unit element of an
antenna is examined in the second section, along with its findings. The three scenarios of the
recommended MIMO antenna are examined in Section 3, along with a hardware prototype
and comparison chart. This work is concluded with references in Section 4. Furthermore,
the following improvements and developments are obtained from the proposed design:

• Compact design with low structural complexity;
• Analysis of the MIMO antenna under various element orientation;
• Low mutual coupling and ECC from all three MIMO designs;
• High gain antenna without using additional layers.

2. Design and Results of the Unit Element of the Antenna

The suggested antenna’s layout is illustrated in Figure 2. In this design, a substrate made
of Rogers RT/Duroid 6002 with a loss tangent of 0.0012 and a relative permittivity of 2.94 is
employed. The antenna measures 12 mm × 9 mm × 1.52 mm overall (LS ×WS × H). It is
clear that the antenna geometry has a straightforward design with a monopole antenna, a
microstrip feedline, and a circular patch with several circular rings. The antenna is filled with
numerous circular rings to maximize bandwidth and reduce return loss. The antenna’s reverse
side has a full ground plane with a 0.035 mm copper sheet. The High Frequency Structural
Simulator (HFSS v 19) software application is used to study the results of the presented work.
Below are the optimized parameters:
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Figure 2. Structural layout of the recommended circular patch antenna. (a) Front view; (b) side view.
LS = 12; WS = 9; LF = 7.5; R0 =2; R1 = 2.5; R2 = 3; R3 = 3.5; R4 = 4.5; WF = 0.75; A = 1.5; H = 0.79 (units
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2.1. Designing Steps

The three steps of the design evaluation for the antenna are illustrated in Figure 3.
Using the equation provided in [33–35], a circular patch antenna for 28 GHz is built in the
first stage. At 27.8 GHz, the antenna is in use. Then, a circular ring with an outside radius
of 3 mm and an inner radius of 2.5 mm is put into the antenna. The antenna’s performance
improved in terms of bandwidth and return. The figures show that there has been an
improvement in return loss from−12 dB to−22 dB. In the third stage of the design, another
circular ring is inserted into the antenna, which has an inner and outer radius of R3 and
R4. This procedure significantly reduced the antenna’s return loss, enabling wideband
operation. The resulting antenna, shown in Figure 3, has a wideband of 8.5 GHz and a
return loss of −28 dB.
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2.2. Outcomes of the Unit Element

The comparison between the predicted and tested S11 parameter of the recommended
antenna single element is given in Figure 4. It is shown in the figure that the antenna oper-
ates over a ultrawide band with an impedance bandwidth of 26–34.25 GHz
(S11 < −10 dB). The proposed design offers two resonant frequencies around 28 GHz
and 31.75 GHz with a return loss of 28 dB. From the figure it can also be seen that the
S11 plot generated from the software and tested is quite similar with minor distortions.
Additionally, Figure 4 also includes the hardware prototype created to test the results of
the simulation.
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The suggested antenna’s radiation pattern at specific frequencies of 28 GHz and
32 GHz is shown in Figure 5. For both resonating frequencies, the recommended antenna
provides a broad side radiation pattern in the theoretical H-plane and a slightly distorted
radiation pattern in the E-plane. The manipulation in E–plane is perhaps due to multiple
circular ring stub loading. Moreover, the measured radiation pattern shows similarity with
the simulated pattern, which can be seen in the figure below.

Micromachines 2023, 14, x FOR PEER REVIEW 5 of 14 
 

The suggested antenna’s radiation pattern at specific frequencies of 28 GHz and 32 
GHz is shown in Figure 5. For both resonating frequencies, the recommended antenna 
provides a broad side radiation pattern in the theoretical H-plane and a slightly distorted 
radiation pattern in the E-plane. The manipulation in E–plane is perhaps due to multiple 
circular ring stub loading. Moreover, the measured radiation pattern shows similarity 
with the simulated pattern, which can be seen in the figure below. 

 
Figure 4. Predicted and tested S11 results of the proposed design along with antenna prototype and 
measurement setup. 

The gain vs. frequency plot of this design is provided in Figure 6. It can be seen from 
the figure that the antenna gives a high gain of more than 11 dBi through the operational 
region of 26–32.75 GHz. The peak value of gain is noticed at 27.85 GHz and 31.75 GHz 
with the value of 11.5 dBi and 11.75 dBi, respectively. Moreover, the tested value of gain 
is also added to this figure to provide a comparison with simulated results. Additionally, 
Figure 5 also provides information on the antenna’s radiation efficiency. It can be shown 
that antennas use the operating spectrum to provide a radiation efficiency of over 93%. A 
high value of radiation efficiency of around 94% and 96% is observed at resonance fre-
quencies of 27.85 GHz and 31.75 GHz. 

 
Figure 5. Predicted and tested radiation pattern of the proposed design at (a) 28 GHz and (b) 32 
GHz. 
Figure 5. Predicted and tested radiation pattern of the proposed design at (a) 28 GHz and (b) 32 GHz.

The gain vs. frequency plot of this design is provided in Figure 6. It can be seen from
the figure that the antenna gives a high gain of more than 11 dBi through the operational
region of 26–32.75 GHz. The peak value of gain is noticed at 27.85 GHz and 31.75 GHz
with the value of 11.5 dBi and 11.75 dBi, respectively. Moreover, the tested value of gain
is also added to this figure to provide a comparison with simulated results. Additionally,
Figure 5 also provides information on the antenna’s radiation efficiency. It can be shown
that antennas use the operating spectrum to provide a radiation efficiency of over 93%.
A high value of radiation efficiency of around 94% and 96% is observed at resonance
frequencies of 27.85 GHz and 31.75 GHz.
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3. Two-Port MIMO Antenna

This section studies and discusses the idea for the antenna’s two-port MIMO archi-
tecture. In order to analyze the MIMO characteristics of closely spaced elements, three
separate scenarios are used. In the first scenario, both parts are positioned side by side.
One MIMO antenna component is orthogonal to the other in the second scenario. The
element is parallel but positioned on the opposite side in the third instance. The hardware
prototypes are fabricated and tested for all aforementioned cases.

To measure the reflection and transmission coefficient of the antenna, a vector network
analyzer (VNA), 220 ZVA by Rohde & Schwarz, is used. To measure the far field, the
antenna is placed in a newly designed shielded millimeter-wave anechoic chamber and we
utilize a multi probe array technique, which provides accurate result for a spanning angle
of 180◦ [36].

3.1. Case 1: Parallel Placed MIMO Elements

In Figure 7, a two-port MIMO antenna’s structural geometry and hardware prototype
is shown. As can be observed, there is a space of S1 = 4.75 mm between the second
element and the reference element. The entire size of the MIMO antenna in this instance is
MXI × MY1 = 15 mm × 26 mm. The same substrates and other design criteria were
employed for one element only. To validate the simulated results of the antenna, the
hardware prototype is created.
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Figure 7. Geometry and structure of two-port MIMO antenna case 1 along with the prototype.

In Figure 8, the measured and predicted S-parameter of a two-port MIMO antenna with
both elements parallel is given. The figure shows that the antenna provides a bandwidth
of 26.2–34.5 GHz (S11 < −10 dB). In this instance, a two-port MIMO antenna with a
return loss of less than 28 dB was developed to be resonant on 28 GHz and 31.5 GHz.
Furthermore, the transmission coefficient is also examined and provided in Figure 8 in
order to evaluate mutual interaction between MIMO antenna elements. The provided
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antenna performs at less than the desired level of isolation (−20 dB). It is clear that the
antenna provides isolation of about 25 dB across the operational bandwidth, with peak
values of 35 dB at 28 GHz and 30 GHz. Furthermore, the proposed antenna is suited for
emerging millimeter wave applications due to the remarkable agreement between the
measured and simulated findings.
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Our study uses the MIMO parameters, including the ECC, DG, CCL, and MEG. To
examine the performance of single unit element in MIMO configuration, ECC is studied.
DG is the study of losses in the form of transmission, and CCL is the examination of
correlation losses in MIMO systems. The MEG is analyzed to study the power received in a
fading area. The mathematical equations below, which are used to calculate these MIMO
parameters, are well explained in [37–40].

ECC = ρeij =

∣∣Sii ∗ Sij + Sji ∗ Sjj
∣∣2(

1− |Sii|2 − Sij
2
)(

1−
∣∣Sji
∣∣2 − Sjj

2
) (1)

DG = 10
√

1−|ρij|2 (2)

MEGi = 0.5

(
1−

N

∑
i=1
|Sij|

)
(3)

CCL = −log2det
∣∣∣ψR

∣∣∣ (4)

where ψR refers to the below matrix for receiving antenna correlation.

ψR =


ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

 (5)

The ECC and DG of the suggested parallel element placed design are shown in
Figure 9a. It can be seen from the figure that the antenna offers ECC < 0.0015 throughout
the operational region. In an ideal case, the ECC should be equal to zero, but in the
proposed design the value of ECC is approaching zero. In the same figure, the DG is also
given. The antenna offers DG > 9.8 dB over all operational bandwidth of 26.2–34.5 GHz.
The MIMO antenna studied in this paper offers CCL < 0.025 bits/Hz/s, which is under the
acceptable range. The MEG is also provided in Figure 9b, and it is observed that the antenna
offers MEG around −6.3 dB. Moreover, the tested results are also added, which shows
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strong agreement with the simulated results. The results prove that the proposed dual port
antenna can be considered as a good applicant for future millimeter wave application.
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3.2. Case 2: Orthogonally Placed MIMO Elements

Figure 10 shows the structural geometry and hardware prototype for a two-port
MIMO antenna. As can be seen, the second antenna element is positioned 90 degrees apart
from the reference element in an orthogonal position. Two elements must be separated
by a predetermined distance of S2 = 4 mm. The entire size of the MIMO antenna in this
instance is MX2 ×MY2 = 15 mm × 28.75 mm. The same substrates and other design criteria
were employed for one element only. To validate the simulated results of the antenna, the
hardware prototype is created.
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In Figure 11, the measured and predicted S-parameter of two-port MIMO antenna
with both elements placed orthogonally is given. Figure illustrates that a two-port MIMO
antenna can transmit data at a bandwidth of 26–34.75 GHz (S11 −10 dB). In this particular
case, a two-port MIMO antenna with a return loss of less than 30 dB was developed to
be resonant on 28 GHz and 31.5 GHz. Furthermore, the transmission coefficient is also
examined and provided in Figure 10 in order to evaluate mutual interaction between the
MIMO antenna elements. The provided antenna performs at less than the desired level of
isolation (20 dB). With peak values of 42 dB at 28 GHz and 30 GHz, the antenna delivers
isolation of 32 dB over the operational bandwidth. Furthermore, the proposed antenna
is suited for upcoming millimeter wave applications due to the remarkable agreement
between the measured and simulated findings.
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Figure 11. Predicted and tested S-parameter of the proposed MIMO antenna by placing the ele-
ment orthogonal.

Similarly to the above antenna presented in Section 3.1, we also study the important
MIMO parameters for this antenna. In Figure 12a, ECC and DG are given, and in Figure 12b,
CCL and DG are given. It is notable that the proposed orthogonal placed antenna element
design offers ECC < 0.0001 throughout the operational region. The antenna offers DG
around 9.99 dB over an operating bandwidth of 26–34.75 GHz. The MIMO antenna studied
in this section offers CCL < 0.001 bits/Hz/sec, which is under the acceptable range. A
further significant variable is the mean effective gain (MEG), which is shown in Figure 12b.
It has been found that the antenna provides MEG at 6.25 dB. The tested results are also
included, which exhibit excellent agreement with the predicted results. The outcome
shows that the suggested two-port antenna qualifies as a strong candidate for upcoming
millimeter wave applications.
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3.3. Case 3: Parallel Placed Opposite to Each Other MIMO Elements

Figure 13 shows the two-port MIMO antenna’s organizational layout and hardware
prototype. As can be seen, the second antenna element in this instance is positioned parallel
to the reference element—but on the opposite side. The distance between the MIMO
antenna’s two elements is S3 = 5.2 mm. The MIMO antenna in this example has the same
overall size as the antenna in the previous scenario, which is MX3 ×MY3 = 15 mm× 26 mm.
The location of the antenna with the reference antenna is the only distinction between
cases 3 and 1. To validate the simulated results of the antenna, the hardware prototype
is created.
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Figure 13. Geometry and structure of two-port MIMO antenna case 3 along with prototype.

In Figure 14, the measured and predicted S-parameter of two-port MIMO antenna with
both elements parallel is given. The figure shows that the antenna provides a bandwidth
of 26.5–34.5 GHz (S11 −10 dB). The two-port MIMO antenna in this instance has a return
loss of less than 28 dB with resonances at 27.9 GHz and 31.75 GHz. Furthermore, the
transmission coefficient is also examined and provided in Figure 14 in order to evaluate
mutual interaction between MIMO antenna elements. The provided antenna performs
at less than the desired level of isolation (20 dB). With peak values of 38 dB at 27.9 GHz
and 31.75 GHz, the antenna delivers isolation of 28 dB over the operational bandwidth.
Furthermore, the proposed antenna is suitable for upcoming millimeter wave applications
due to the remarkable agreement between the measured and simulated findings.

Micromachines 2023, 14, x FOR PEER REVIEW 10 of 14 
 

cases 3 and 1. To validate the simulated results of the antenna, the hardware prototype is 
created.  

 
Figure 13. Geometry and structure of two-port MIMO antenna case 3 along with prototype. 

In Figure 14, the measured and predicted S-parameter of two-port MIMO antenna 
with both elements parallel is given. The figure shows that the antenna provides a band-
width of 26.5–34.5 GHz (S11 −10 dB). The two-port MIMO antenna in this instance has a 
return loss of less than 28 dB with resonances at 27.9 GHz and 31.75 GHz. Furthermore, 
the transmission coefficient is also examined and provided in Figure 14 in order to evalu-
ate mutual interaction between MIMO antenna elements. The provided antenna performs 
at less than the desired level of isolation (20 dB). With peak values of 38 dB at 27.9 GHz 
and 31.75 GHz, the antenna delivers isolation of 28 dB over the operational bandwidth. 
Furthermore, the proposed antenna is suitable for upcoming millimeter wave applications 
due to the remarkable agreement between the measured and simulated findings. 

 
Figure 14. Predicted and tested S-parameter of the proposed MIMO antenna by placing the element 
parallel but on opposite side. 

As in the previous two designs, the important MIMO parameters of this antenna are 
also analyzed. In Figure 15a,b the ECC, DG, CCL, and MEG of the proposed parallel ele-
ment placed design is given. The figure shows that the antenna provides ECC < 0.0015 in 
the operating frequency band. Over an operational bandwidth of 26.2–34.5 GHz, the an-
tenna provides DG > 9.78 dB. The most crucial MIMO parameter is the channel capacity 
loss. The CCL of the MIMO antenna investigated in this research, which is under an ac-
ceptable range, is 0.035 bits/Hz/sec. Figure 15b also shows the mean effective gain (MEG), 
which shows that the antenna provides MEG at a level of about −6.38 dB. Moreover, the 
tested results are also added, which shows strong agreement with the simulated results. 

Figure 14. Predicted and tested S-parameter of the proposed MIMO antenna by placing the element
parallel but on opposite side.

As in the previous two designs, the important MIMO parameters of this antenna are
also analyzed. In Figure 15a,b the ECC, DG, CCL, and MEG of the proposed parallel element
placed design is given. The figure shows that the antenna provides ECC < 0.0015 in the
operating frequency band. Over an operational bandwidth of 26.2–34.5 GHz, the antenna
provides DG > 9.78 dB. The most crucial MIMO parameter is the channel capacity loss.
The CCL of the MIMO antenna investigated in this research, which is under an acceptable
range, is 0.035 bits/Hz/sec. Figure 15b also shows the mean effective gain (MEG), which
shows that the antenna provides MEG at a level of about −6.38 dB. Moreover, the tested
results are also added, which shows strong agreement with the simulated results. The
results prove that the proposed dual port antenna can be considered as a good applicant
for future millimeter wave applications.
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Figure 16 presents the surface current distribution of the various cases of the MIMO
antenna. It can be seen that in all configurations there is a low amount of current induced
in element-2 when element-1 is excited, which results in low coupling among MIMO
elements. Moreover, it can be seen from Figure 16b that the minimum amount of current is
induced in case 2, thus the surface current analysis also verifies the results presented in
previous sections. Table 2 summarizes the comparison among various parameters of all
three configurations.
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Table 2. Comparison between outcomes of the recommended MIMO antenna discussed in vari-
ous cases.

Antenna Type
Minimum
Isolation

(dB)

Envelope Correlation
Coefficient

Channel Capacity Loss
Bits/Hz/s

Mean Effective
Gain
(dB)

Diversity Gain
(dB)

Case 1 −25 0.0015 0.025 −6.3 9.90
Case 2 −30 0.0010 0.001 −6.25 9.99
Case 3 −28 0.0015 0.035 −6.38 9.8

4. Conclusions

For 5G applications, a wideband, small, simple, high gain, and high radiation efficiency
antenna is suggested in this research. For 28 GHz applications, a circular patch antenna
was first developed. Later, to acquire the wideband, circular rings are placed into the
antenna. The antenna provides a high gain of 11.25 dBi and a wide band of 8.25 GHz.
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Afterward, three MIMO antenna were adopted from initial reference antenna. The aim
when designing a MIMO antenna under various arrangements of elements is to analyze
and study the performance of the antenna. It is studied and concluded from the results that
the antenna offers wideband and acceptable value of isolation in all three cases. The results
in terms of MIMO parameters are also acceptable values, as the antenna offers ECC around
0.001, DG 9.9 dB, CCL 0.001 bits/Hz/sec, and MEG around 6.38 dB. The performance of
MIMO antenna defined in three cases is concluded in Table 2, where it can be seen that
case 2 provides better minimum isolation of −30 dB, with ECC of 0.001 and DG of 9.99 dB.
All the three cases offer values within the acceptable range, but case 2 offers better value
compared to case 1 and case 3. Furthermore, the results and comparisons with existing
literature demonstrate that our proposed work is the most suitable for future high gain and
compact devices operating at millimeter wave frequencies.
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