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Abstract: By leveraging the advantages of the uniform transmission line, this manuscript presents a
broadband high-selectivity filter range starting from 2.5 GHz to 16.8 GHz, utilizing a simple uniform
transmission line structure loaded with three-quarter-wavelength stubs. The proposed UWB filter
is studied using the ABCD network parameter method. After that, a shorted T-shaped stub-loaded
resonator is coupled with the transmission line of the UWB filter to obtain dual-notch features at
4.4 GHz (for long distance wireless ISPs (WISPs), 4G/5G operator for LTE backhaul) and 7.5 GHz
(for X-band downlink communication). The overall footprint is specified as 22.5 mm × 12 mm or
1.12 λg × 0.6 λg, where λg represents the wavelength at the central frequency. The operating principle
of such a filter is explained, and its controllable broadband response, as well as controllable stopband
frequencies, are optimized to show some of the attractive features of the new scheme, such as a super
wideband response of about a 148.18% fractional bandwidth; an out-of-band performance up to
25 GHz; five single-resonator transmission poles filtering behaviour at different frequencies, with
highly reduced radiation losses greater than 10 dB; a simple topology; a flat group delay; a low
insertion loss of 0.4 dB; and high selectivity. Additionally, the filter is fabricated and evaluated, and
the results show a good match for experimental validation purposes.

Keywords: wideband filter; wireless communication; dual stopband filter; low insertion loss; uniform
transmission line; high selectivity

1. Introduction

Bandpass filters are the main elements used in communication systems for signal re-
ceiving and processing. Bandpass filters were initially designed using a common operating
mechanism, involving cascading HP or LP filters using MMRs with central frequencies
equal to quarter or full wavelengths. However, with these techniques, the design topology
becomes pricey and complex. The construction of a planar microstrip transmission line
may be able to circumvent the aforementioned mechanisms because of its simple design,
low cost, and easy fabrication process. Wide pass-band filters are becoming increasingly
recommended due to their compatibility with integration into various circuits and anten-
nas, which helps to enhance the performance of radio systems [1–3]. Over the past few
decades, microwave researchers have adopted a few approaches for designing wideband
filters [4–14]. Funnel-type ASIRs and DGSs (defected ground structures) were used to
design wideband bandpass filters (BPFs) with upper wide stopband responses [4–7]. In [8],
a filter based on a circular quadruple/quintuple-mode resonator with fractional band-
widths (FBWs) of 60% and 62% was created using parallel-coupled microstrip lines. These
topologies, however, showed a high IL. By employing interdigital strip lines and grating
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arrays to attain a respectable FBW of roughly 177%, a wideband filter with a frequency
range of 0.29 GHz to 4.82 GHz was designed by the authors of [9]. While this design
offered a wide bandwidth, it had a complex geometry, which may introduce challenges in
practical implementation. The authors of [10] use interdigital lines and DGSs to develop
and construct a wideband BPF on the back of the Rogers RO-4350 substrate that operates
between 2.2 GHz and 7.6 GHz, with improved upper-frequency band suppression. The
filter’s upper stopband suppression was greatly improved up to 32 GHz by achieving
four transmission zeros (TZs) in its passband. The given filter, however, makes use of an
intricate design that can lead to manufacturing measurements being costly. In [11], the
authors constructed a filter with a fractional bandwidth of 62.3% using a staircase resonator.
In a recent study [12], a new H-type sandwich topology was utilized to achieve a broad
bandwidth filter response with a fractional bandwidth (FBW) of approximately 132%. The
addition of source-to-load coupling improved the filter’s selectivity, but it also increased
the insertion loss (IL) in the passband. The overall footprint of the structure covered an
area of around 32 × 15 mm. Another research work [13] implemented a high-selectivity
UWB filter based on a tapered transmission line resonator (TTR). The design employed a
sophisticated geometry to achieve IL < 1 dB and RL > 17 dB. Despite reducing the circuit
size and achieving good control over the bandwidth, there is still potential for improvement
in the passband performance of the TTR-based UWB filter. In [14], a filter with a good
passband was created by combining a low- and high-pass filter. The topology developed
an acceptable return loss and a good insertion loss of 0.4 dB. The FBW, however, was
only 107%, which was not particularly high. One of the advantages of this prototype is
to block unwanted signals up to 20 GHz. Now, to ensure compliance with FCC UWB
range regulations and mitigate interference from other frequency bands, the authors of the
references [15–21] have proposed various methods to achieve UWB filters with stopband
characteristics such as SIRs, ASIRs, and DGSs, respectively. It is interesting to note that
several studies have also been conducted to realize UWB filters with low insertion loss
and stopband characteristics. For example, in [22–24], UWB filters with low insertion loss
were achieved by cascading low-pass and high-pass filter sections. This approach allows
for effective filtering across a wide frequency range. UWB filters based on stub-loaded
multimode resonators were implemented in [25–32]. These resonators utilize stubs to
introduce additional resonant modes, enabling the design of compact filters with desirable
UWB characteristics. The stopband characteristics of UWB filters have been studied using
techniques such as step impedance resonators (SIRs) [33,34] and multimode resonators
(MMRs) [35]. However, some of the reported designs have larger circuit dimensions, which
may pose challenges in practical implementations. To address the circuit dimension prob-
lem, UWB notch filters based on defected ground structures (DGSs) and defected microstrip
structures (DMSs) were proposed in [36–39]. However, achieving both sharp selectivity
and a wide bandwidth simultaneously proved difficult with these techniques.

Overall, it remains a challenging task for microwave researchers to design UWB
bandpass filters with notch bands that have simple topologies and wideband characteristics
while maintaining good selectivity. It is worth noting that the techniques mentioned in the
literature provide valuable insights into the development of UWB filters, but researchers
continue to explore new approaches to overcome the challenges and achieve the desired
filter performance. In this regard, a SWB-BPF (super wideband bandpass filter) with a range
of 2.5 GHz to 16.8 GHz and five transmission poles using a simple UTL has been developed
in this study. Later, a quarter-wavelength resonator with a T-shaped structure is coupled
to the SWB filter to suppress unwanted signals for 4G/5G operators for LTE backhaul
and X-band downlink satellite communication applications. The proposed wideband filter
topology also covered the basic requirement of the ultra-wideband BPF defined by the
Federal Communication Commission (FCC), i.e., 3.1 GHz to 10.6 GHz. The filter footprint
is about 22.5 × 12 mm, with an absolute bandwidth of 14.3 GHz. Finally, the presented
filter was designed and analysed in a 3D EM software, HFSS-15 (High-Frequency Simulator
Software) [40], then fabricated on a low-loss PCB. After optimization, the design verifies
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its attractive features, such as controllable bandwidths and stopbands, a flat group delay,
multiple transmission poles, a good return loss, a good roll-off rate, and a wide passband
response.

2. Methodology of the Proposed SWB-BPF

Figure 1 depicts the SWB-BPF architectural layout. It is made up of a UTL that has
three-quarter wavelength stubs loaded onto it; one of these stubs is attached to the upper
portion of the UTL, and the other two are positioned symmetrically on the lower portion.
The SWB-BPF has been investigated by considering a lossless transmission line, and ignores
the effect of inductance and capacitance at short-circuited stubs and at the edges of the
junctions, which appears due to the step discontinuities. The equivalent configuration
of the initial prototype is shown in Figure 2. Z1, Z2, and Z3 represent the characteristic
impedances of the shorted stubs with electrical length of θs, separated with connecting lines
of electrical lengths of θc = 2θs. All impedances (Z1 = Z2 = Z3) should be equal for design
simplicity. The following steps are used to achieve the extreme broadband response. At
first, the resonator with open- or short-circuited stubs, as shown in Figure 3a,b, is connected
in the middle of the UTL.
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Figure 3. (a) Open-stub configuration connected to UTL; (b) short-circuited stub connected to UTL.
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The input admittance (Yin) can be found by using the ABCD matrix method to obtain
the network resonance condition, assuming no losses in the transmission line [41,42].

Yin =
1

Z11
=

C
A

= 0 (1)

where Z11 shows the input impedance of the resonator. In Equation (1), when elements C
and A in the transfer matrix have different zeros and A does not have poles that are different
from those in C, this condition ensures the resonance requirement for the resonators in this
context.

C = 0 (2)

when C = 0, then Yout also becomes zero. Therefore,

Yout =
1

Z22
=

C
D

= 0 (3)

The generalized equation for the left portion of Figure 3a in terms of the matrix
elements A′, B′, C′, D′ is as below [43].(

A B
C D

)
=

(
1 + 2B′C′ 2A′B′

2C′D′ 1 + 2B′C′

)
(4)

The resonance conditions in Equation (4) are same as in Equation (2), and fulfil the
following two criteria:

C′ = 0 (5)

D′ = 0 (6)

The above criteria are easier to analyse as compared to the conventional method, such
as Yin = 0. Now, formulate the resonance equations (A′B′C′D′) for Figure 3a,b, which is
equal to the input admittance (Ys) of the stub and the transfer matrix (abcd) of the left
section of the TL segment [44,45]:(

A′ B′

C′ D′

)
=

(
a b
c d

)(
1 0
Ys
2 1

)
=

(
a + bYs

2 b
c + d Ys

2 d

)
(7)

Here, the matrix (abcd) denotes a portion of a non-uniform segment. Using Equation
(3), the above equation becomes

d = 0

Ys =
−2c

d
When a segment with a uniform TL is used, its θ and Zo become(

a b
c d

)
=

(
cos θ

2 jZo sin θ
2

Zo
−1 j sin θ

2 cos θ
2

)
(8)

By applying resonance conditions, it becomes

cos
θ

2
where θn = π, 3π, 5π (9)

Ys = −j2Zo
−1 tan

θ

2
(10)
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Equation (10) determines the resonant electrical lengths (θ) for the other component,
which relies on the stub parameters. The same analysis can also be used for Figure 3b. In
this case, Equation (9) remains unchanged, while Equation (10) becomes

−Zs
−1 cot θs = −2Zo

−1 tan
θ

2

The stubs depicted in Figure 3a,b have been substituted with the stubs illustrated in
Figure 4a,b. Initially, a conventional stub, as depicted in Figure 4a, was positioned at the
centre of the UTL using matrix Equation (11) [45]. The given configuration generates a
wideband response with poor selectivity, with one TP observed at 12 GHz, as depicted in
Figure 5a.

[A] =

(
1 0

j 1
Zs

tan θ 1

)
(11)
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Figure 5. S-parameter responses: (a) response of the wideband filter loaded using a single conven-
tional stub; (b) response of the proposed broadband filter.

To increase the design flexibility, the stub in Figure 4a is replaced with a stub shown
in Figure 4b. Furthermore, two more identical stubs are placed on the opposite side of
the transmission line. This adjustment leads to a modified configuration, as depicted in
Figure 1. The corresponding equation of Figure 4b is given below.

[A] =

(
1 0

−j 1
Zs

cot θ 1

)
(12)

The way the stubs are arranged significantly enhances the filter’s performance, as
demonstrated in Figure 5b. The filter exhibits a wide and flat passband, excellent IL, and
sharp rejection levels at the lower and upper stopband, with good out of band suppression
up to 25 GHz, respectively.
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In Figure 1, when the source and load impedances (Zo) are well matched, then the
relation of the reflection coefficient, |S11|, and power transmission coefficient, |S21|, can
be obtained, and are given below:

S11 =
A + (B/Zo)− CZo − D
A + (B/Zo) + CZo + D

(13)

S21 =
2

A + (B/Zc) + CZc + D
(14)

3. Mathematical Modelling of the Dual-Notch Filter

In this section, the dual-notch characteristics using a short-circuited, T-shaped, dual-
mode resonator are achieved. A symmetrical quarter-wavelength resonator is used instead
of a half-wavelength resonator to make the structure compact, as shown in Figure 6.
To analyse the behaviour of the structure, the design utilizes a classical method called
even–odd mode analysis. This involves separating the circuit into its even and odd modes
and analysing each mode separately. This method helps to predict the controllable operating
bands of the filter. The even mode will have a symmetric current distribution and can be
represented by even terms in the analysis, as shown in Figure 6b, while the odd mode
will have an anti-symmetric current distribution and can be represented by odd terms, as
shown in Figure 6c, respectively. By applying this analysis and using the basic concept
of microwave transmission lines, the equations of the characteristic input admittance of
each resonator can be derived, taking into account the lengths of the half-wavelength line
(Y1, L1) and quarter-wavelength line (Y2, L2), with a load admittance (YL) [46,47].

Yin = Y0
YL + jY0 tan θ

Y0 + jYL tan θ
(15)

Here, θ = βL, so the above equation becomes

Yin = Y0
YL + jY0 tan βL
Y0 + jYL tan βL

(16)
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The next discussion is about how the stopbands are formed. Using the mathematical
analysis discussed above, the theoretical resonant frequencies for each stopband are calcu-
lated. The first stopband, formed through the fundamental even mode and its resonance
frequency, are calculated using the parameters provided in the Equation (19) denominator.
Substituting the relevant length values from Figure 7 into Equation (19) and referencing
Figure 6b yields a theoretical frequency of 4.18 GHz for the even mode, while the simulation
shows 4.4 GHz. The second stopband is generated through the fundamental odd mode,
and its resonance frequency is calculated by inserting the parameter values from Equation
(21). Substituting the corresponding length values from Figure 7 into Equation (21) and
referencing Figure 6c yields a theoretical frequency of 6.9 GHz for the second stopband,
while the simulation shows 7.5 GHz. The slight deviations between the theoretical and
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simulated frequencies stem from the magnetic coupling between the resonators, which are
adjusted for specific band applications through parametric analysis in the HFSS software.
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Now, for the even mode, the input admittance can be calculated by making the stub
short-circuit due to already being present; thus, YL = α and Y0 = (Y6

2 ). Now, the equation
above can be rewritten as

Yin-shorted = −j(
Y6

2
) cot θ6 (17)

Putting Equation (17) in (15), Yin-even can be obtained in the following equation:

Yin,even = −jY1
Y6 − 2Y1 tan(θ5 + θ7) tan(θ6)

2Y1 tan(θ6) + Y6 tan(θ5 + θ7)
(18)

At resonance, Yin-even = 0, so the first stopband frequency (feven) equation is obtained
using Figure 6a.

feven =
(2n− 1)c

4(L5 + L6 + L7)
√

εe f f
(19)

In the above equation, c = 3 × 108 m/s, and n is the integer, which is 1, 2, 3, ........ in
this case, and εe f f is the PCB permittivity with the corresponding width (w) and height (h)
which is

εe f f =
1 + εr

2
+

εr − 1
2
× 1√

1 + 12 h
w

Similarly, in the case of the odd mode, the stub L1 is short-circuited at AA′. The input
admittance, Yin-odd, is obtained as follows by putting Y0 = Y1 and YL = ∞ in Equation (4):

Yin,odd =
Y1

j tan(θ5 + θ7)
(20)

The following equation of the second stopband is obtained by putting the resonance
condition Yin-odd = 0 in the above equation.

fodd =
(2n− 1)c

4(L5 + L7)
√

εe f f
(21)

4. Proposed Filter Architecture

A filter with stopband features with a circuit area of 1.12 λg × 0.6 λg has been designed
and simulated in HFSS version 15. The structure is fabricated on a low-cost dielectric
substrate, and a ZNB-20 vector network analyser (VNA) was used for testing the simulated
results. The SUWB-BPF is made up of a UTL that has three-quarter-wavelength stubs
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loaded onto it; one of these stubs is placed on one upper side of the UTL, and the other
is positioned symmetrically on the other side, while the filter with stopbands is designed
using a shorted T-shaped resonator, coupled with the basic UWB structure. Figure 7 shows
the layout of the proposed architecture with the dual-notch response, with dimensions in
millimetres.

5. Hardware and Software Simulation Implementation

In this study, the SWB BPF with stopband characteristics was designed and imple-
mented. The SUWB-BPF is made up of a UTL that has three-quarter-wavelength stubs
loaded onto it; one of these stubs is placed on one upper side of the UTL and the other is
positioned symmetrically on the other side to achieve high sharpness in the filter and a
flat passband response. A Rogers RO-4350 dielectric substrate with a low tangent loss of
0.0003, h = 1.5 mm, and εr = 3.6 was selected for the fabrication of the prototype to make
the passband IL as low as possible, i.e., less than 0.4 dB, which leads to a flat group delay
without ripples appearing in the passband. The structure was studied by considering a
lossless transmission line and was investigated through the ABCD matrix. The replacement
of conventional stubs with three new folded shunt stubs with pads enhances the filter’s
performance in terms of its wide bandwidth, high selectivity, and multiple TPs. In the
second step, two notches were created using a shorted, T-shaped resonator, coupled with
the initial wideband filter, and analysed using a method called even–odd mode analysis.
Two controllable stopbands were achieved for the application of long-distance wireless
ISPs (WISPs), centred at 4.4 GHz, and X-band communication centred at 7.5 GHz. The first
4.4 GHz stopband was created due to the equivalent circuit shown in Figure 6b, while the
second 7.5 GHz stopband was achieved due to the equivalent circuit shown in Figure 6c.
The simulated response of the dual stopband filter is depicted in Figure 8.
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It has the advantage that both stopbands can be controlled by the users, according
to their application, based on the stubs’ length. For example, as shown in Figure 9a,
the first stopband can be controlled using the central shorted stub with dimensions of
L6 = 3 mm, and by changing the dimension, only the first stopband moves down, while
the second band is stable. Similarly, from Figure 9b, the second stopband can be controlled
by the outer half-wavelength stubs with dimensions of L5 = 4.2 mm, and by changing the
dimension, only the second stopband changes while the first band is stable. So, this makes
the proposed filter capable of stopping any frequency, according to the user’s applications.
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Another important phenomenon that needs to be discussed is the coupling coefficient
(k) that appears when two or more resonators come in close contact [48]. As shown
in Figure 7, the coupling phenomena originate based on the gap (G), which is given in
Equation (22). As depicted in Figure 10, the “K” drops when the gap is increased from
0.08 mm to 0.2 mm, or vice versa.

k =
f2

2 − f1
2

f22 +f1
2 (22)

where f1 and f2 represent the lower and upper stopband frequency.
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In the design of wideband filters or antennas, it is important to discuss the parameter
group delay (τd) and phase velocity (ϕ), which should be constant throughout the passband
to avoid any frequency distortions, and can be expressed as [48]
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Γd =
dϕ21(ω)

−dω
(23)

ϕ21(ω) = argS21(ω) (24)

The terms ϕ21 and τd in the equations above stand for the parameter phase and group
delay, relative to the magnitude (S21). As shown in Figure 11a, the group delay is practically
flat across the full passband, ensuring that all current flows with the same velocity and
phase, resulting in the minimum amount of frequency dispersion possible. Also shown in
Figure 11b is the suggested UWB filter’s phase response.
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Figure 11. (a) Frequency vs. group delay response. (b) Frequency vs. phase response of the SWB filter.

The distribution of currents in the passband, which is utilized to confirm the resonant
behaviour of the ultra-wideband filter, is another important hypothesis that should be
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explained. The simulated current distributions at a centre frequency of 9.65 GHz are shown
in Figure 12. As discussed, the wideband filter is constructed on the UTL with three folded
λ/4 shunt stubs, as shown in Figure 1; therefore, it is expected that most of the current
energy will be absorbed by this portion of the filter. This absorption of current energy by
the UTL and stubs contributes to the creation of the passband in the filter.
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The simple architecture to decrease costs and the configurable bandwidth for user end
selection are stated to be innovative in this work. As seen in Figure 13, the wideband filter’s
bandwidth changes by varying the uniform transmission line’s width. To evaluate the
performance of the proposed structure, a comparison is made with the recently published
filters in the literature. The comparison is based on various parameters tabulated in Table 1.
By presenting this comparison, the authors highlight the advantages of their proposed
structure and demonstrate its competitiveness in terms of key performance metrics. This
provides further support for the novelty and effectiveness of the research work. Moreover,
the S-parameter plots with photographs of the proposed SWB filter and the SWB filter
with dual-notched bands are shown in Figure 14a,b, respectively. The small discrepancy
between the experimental and manufactured findings is caused by measurement errors
made by humans that are unavoidable, as well as the effect of soldering, losses in the
substrate material, and the SMA connectors.
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Table 1. Comparisons with other reported work.

Ref. No. Passband (GHz) FBW (%) IL/RL (dB) C.F/BW (GHz)

[11] 1.8–3.1 62.5 0.5/20 2.45/1.3

[12] 2.7–8.23 132% 2.5/10 5.46/5.53

[14] 2.92–10.95 107 0.49/>12 6.93/8.03

[49] 3.21–10.77 109.4 0.8/15 8.6/7

[50] 1.44–2.66 60 0.6/20 2.05/1.22

[51] 1.64–2.47 40 0.8/20 2.05/0.83

[52] 2.3–4.08 50.3 1.2/12 6.38/1.78

[53] 2.4–7.2 83 0.5/14 6/4.8

[54] 2.94–10.39 111.6 0.5 6.66/7.45

[55] 3.1–10.6 109 <0.5 6.85/7.5

[56] 3.1–10.6 119 0.35 6.85/7.5

[57] 3.7–9.6 106.2 <1 6.65/3.2

[58] 3.6–10.4 103.9 >0.5 7/6.8

[59] 2.2–2.53 4 2.5/>20 2.3/0.33

[60] 1–3 135 0.1/>20 2/2

[61] 2.95–10.75 113.9 0.6/14 6.85/7.8

[62] 3.05–10.62 100.9 1.5/13 6.83/7.57

[63] 9.5–10.5 8.5 1.8/>10 10/1

This work 2.5–16.8 148.18 >0.4/>10 9.65/13.9
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6. Conclusions

In this study, a SWB BPF with dual stopband features at 4.4 GHz and 7.5 GHz has been
designed using a UTL loaded with three-λ/4 stubs and a coupled T-shaped resonator. The
operating principle of such a filter was explained in detail, and its controllable broadband
response with notch band features was successfully achieved to show some attractive
features, such as a wide bandwidth of about 14.3 GHz, a simple topology, a flat group delay,
a low insertion loss of 0.4 dB, a high return loss of greater than 10 dB, and sharp rejection
at the lower and upper cut-off frequencies, with good out-of-band performance up to



Micromachines 2023, 14, 1986 13 of 15

25 GHz, respectively. These characteristics enable the integration of the proposed filter into
upcoming wireless communication systems.
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