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Abstract: This paper presents a miniaturized broadband Bi-Yagi antenna array that covers a band-
width from 1.79 GHz to 2.56 GHz. The proposed antenna achieves a tradeoff between maximizing
bandwidth, effective area, and gain while minimizing physical dimensions. The antenna design
considers the coupling between the radiator and director elements, resulting in increased bandwidth
as the resonating modes shift apart. Additionally, the proposed design optimizes element spacing and
dimensions to achieve high gain, wide bandwidth, efficient radiation, and a minimum aperture size.
The proposed antenna, with physical dimensions of 138.6 mm × 47.7 mm × 1.57 mm, demonstrates
gains ranging from 6.2 dBi to 9.34 dBi across the frequency range, with a total efficiency between 88%
and 98%. The proposed design is experimentally validated by measuring the reflection coefficients,
input impedance, gain, and normalized radiation pattern. These features make the antenna well
suited for capturing and harvesting electromagnetic waves in mobile wireless and Wi-Fi applications.

Keywords: energy harvesting; broadband antenna; miniaturized antenna; Bi-Yagi antenna array

1. Introduction

The field of electromagnetic energy harvesting has gained significant recognition as a
promising technology, aiming to offer sustainable and dependable power sources across a
wide range of IoT applications [1–5]. The exceptional versatility of RF energy harvesting
has facilitated its successful integration into wireless sensor networks, Internet of Things
(IoT) devices [3], and wearable electronics [4], thereby significantly extending the lifespan
and enhancing the functionality of these devices. However, many challenges should be
considered to improve the performance of the rectenna since the extremely low ambient
EM waves of different RF sources operate in various frequency ranges. Some of these
challenges are related to the antenna used in the RF energy harvesting system. For instance,
the gain and bandwidth should be designed to capture energy effectively across a wide
frequency band to maximize RF energy harvesting. Moreover, the antenna size should be as
small as possible to fit specific IoT applications. Furthermore, the complexity of the antenna
structure should be considered for economic purposes. Review studies and comparative
analyses of antenna designs for RF energy harvesting are presented in [5–7]. The gain,
bandwidth, size, and complexity are considered as the main features for comparisons.
Unfortunately, improving one of these features results in the deterioration of others [8].
Therefore, some researchers focus on minimizing the antenna structure, as in [9–11]. The
main drawback of such a structure is the low gain and narrow bandwidth. However,
these antennas can be used for applications of wireless power transfer where an intended
source is used for transmitting RF power from a near distance, or for applications that
have critical size and weight limitations. On the other hand, some researchers have tried to
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use wide bandwidth antennas to harvest energy from different ambient sources. Multiple
bands or wide bands antennas have been developed, as in [12–16]. For instance, in [16], an
array of 64- broadband elements is used for ambient energy harvesting with DC-combining
techniques. However, these efforts are usually achieved by sacrificing antenna element gain.

Considerable efforts have been made to improve antenna gain since the ambient
incident signal is too low to drive the rectifier circuitry [17–19]. Similar effort goes into
maximizing antenna gain using metasurfaces. For instance, metasurfaces are employed as
superstrates to enhance antenna gain [20,21]. In [22–27], periodic structures with small res-
onators compared to the operating frequency are connected to load resistances or rectifiers.
However, the large number of ports on the metasurfaces can lead to high costs and power
losses. To overcome this challenge, only the center cell/supercell is utilized for power
harvesting while treating the other cells as parasitic [28,29]. Furthermore, investigations
have been conducted on the use of one-port or two-port metasurfaces in electromagnetic
energy harvesting, studying their performance in both transmitting and receiving scenar-
ios [23,30–32]. However, the large size and limited bandwidth of such structures make this
category less effective for some IoT applications. Similarly, in [33], a two-port grid-array
antenna is used to provide a rectenna with different beam angles and beamwidths to
overcome direction problem.

Furthermore, extensive research efforts have been dedicated to the pursuit of inte-
grating multiple features within a single structure. This approach frequently involves
incorporating two or three elements or utilizing multiple ports, with the intention of im-
proving not only gain, directionality, and bandwidth, but also the overall performance
of the system [34–36]. In [17], a Yagi array is presented which has great gain, and the
bandwidth covers the extended GSM 1800 and UMTS 2100 bands. However, the relative
bandwidth is only 18%, which does not include the ISM Wi-Fi band, and the size is not
perfectly minimized. In [18], a compact collinear quasi-Yagi array is presented. The array
has good gain and size, but the relative bandwidth is only 13% and does not include
the extended GSM band. For RF energy harvesting, it is good to have an antenna struc-
ture that has a wide bandwidth to include most possible ambient sources. Therefore, a
tradeoff between bandwidth, gain, and size needs to be carefully considered in RF energy
harvesting design.

This paper introduces a miniaturized broadband Bi-Yagi antenna array design that
effectively operates within a wide frequency range from 1.79 GHz to 2.56 GHz to be used
for electromagnetic energy harvesting. The proposed design is experimentally validated by
measuring the reflection coefficients, input impedance, and normalized radiation pattern.
The antenna design achieves a well-balanced tradeoff between maximizing bandwidth,
effective area, and gain, and minimizing the physical dimensions. By considering the
coupling effects between the radiator and director elements, the antenna’s bandwidth
is significantly enhanced as the resonating modes experience distinct separation. Ad-
ditionally, through a careful optimization of the element spacing and dimensions, the
antenna demonstrates impressive performance characteristics, including high gain, wide
bandwidth, efficient radiation, and a compact aperture size.

2. Antenna Design and Analysis

When evaluating electromagnetic energy harvesting antennas, several parameters are
crucial for assessing their performance. The effective area, which determines the power
received by the antenna, is a fundamental consideration. It is directly proportional to the
power density of the incident electromagnetic wave and can be enhanced by optimizing
the antenna dimensions, polarization, radiation pattern, and impedance matching. Gain
plays a vital role in amplifying the received signal, enabling the antenna to capture more
energy from the ambient electromagnetic field. Efficiency is equally significant, represent-
ing the ability to convert the captured energy into usable electrical power with minimal
losses. Maximizing these parameters collectively leads to improved energy harvesting
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capabilities and overall system performance. The receiving antenna’s effective area Ae f f
can be calculated using antenna transmitting parameters as in Equation (1) [37]

Ae f f =
2G
4π

(1)

where λ is the wavelength of the incident wave, and G is the antenna gain. Working at
low frequencies and increasing the antenna gain will increase the effective area of the
receiving antenna, assuming perfect matching with load and polarization. On the other
hand, integrating this power at a different frequency will increase the amount of harvested
power. Thus, the another important parameter is the bandwidth. Both are related to the
structure size and radiation technique. A microstrip antenna is commonly used in energy
harvesting systems due to its profile advantages. The substrate of the microstrip antenna
should be chosen wisely to improve radiation and matching characteristics [37–39]. In
particular, a low-loss tangent (δ) substrate enhances efficiency and gain whereas a higher
loss tangent broadens the bandwidth [38]. However, bandwidth can be increased using
different ways while it is difficult to compensate loss, especially in RF energy harvesting.
On the other hand, it is better for the dielectric-constant (εr) to be low to improve band-
width. However, a higher εr substrate will be good for the minimization of the resonance
length of the antenna. Another important parameter to consider in antenna design is the
substrate height. Increasing the substrate height enhances efficiency (ignoring surface
wave effects) and antenna bandwidth. However, increasing the substrate height can lead
to the emergence of undesired surface waves, particularly for substrates with dielectric
constants greater than unity. These surface waves propagate within the substrate and
experience scattering at bends and surface irregularities, such as dielectric and ground
truncations. As a result, this scattering process negatively impacts the antenna’s pattern and
polarization properties, leading to degradation [38,39]. Therefore, minimizing tangential
loss is crucial for increasing radiation efficiency. The substrate should be made as thick
as possible, considering the emergence of surface waves and spurious radiation that may
impact polarization purity. Additionally, a small dielectric constant improves antenna
bandwidth. Therefore, a substrate with a thickness of 1.57 mm, a dielectric constant εr
of 2.2, and a loss tangent (δ) of 0.0009 is selected for the proposed structure. This choice
minimizes surface waves, reduces power losses, enhances polarization purity (i.e., low
cross-polarization), and increases bandwidth.

2.1. Three-Element Yagi Antenna Geometry Development

The structure of the three-element printed Yagi antenna and its main important pa-
rameters are shown in Figure 1. It is etched on a 138.6 mm × 47.7 mm Roger RT/duroid
5880 dielectric of 1.57 mm thickness. One arm of the dipole radiator is printed on the
front side, while the other arm is printed on the back side of the dielectric substrate. The
twin-lead transmission line is used to feed this radiator, as depicted in Figure 1. Moreover,
the reflector and director are also printed on the back side of the dielectric substrate.

The presence of the substrate causes a detuning effect on the dipole, reflector, and
director, resulting in shorter lengths compared to their counterparts in free space. The
guided wavelength used to calculate the preliminary lengths is given by Equation (2) and
fed by a microstrip line of width W = 4.9 mm to have 50 Ω matching [37].

λg =
λ0√
εre f f

(2)

where λ0 is the free space wavelength and εreff is the effective dielectric constant given by
Equation (3)

εre f f =
εr + 1

2
+

εr − 1
2

[
1 + 12

h
w

]− 1
2

(3)

where εr is the dielectric constant and h is the substrate thickness.
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Figure 1. Three-element printed Yagi antenna.

The resulting effective dielectric constant is approximately 1.87, and at a frequency of
2 GHz, the guided wavelength (λg) measures 109.6 mm. First, a two-element Yagi antenna
is examined using a full-wave simulator. The dimensions of the derived radiator (dipole)
and reflector are approximately set to 0.5λg, with a width of 4.9 mm and a spacing of
around 0.2λg between them. Subsequently, a parametric sweep is conducted to investigate
the width and spacing of the printed Yagi elements. Increasing the width of the radiator
and reflector, along with their spacing, causes a slight leftward shift (i.e., decrease) in the
resonant frequency, while also affecting the matching level and directivity. A tradeoff is
chosen to develop a three-element Yagi antenna, where an additional parasitic element
(i.e., director) is added to enhance antenna gain and bandwidth. The dimensions of the
radiator (dipole), reflector, and director elements are 0.52λg, 0.63λg, and 0.43λg, respectively,
with a spacing of around 0.2λg between them. The length of the reflector is chosen after
parametric sweep to prevent backside radiation, avoiding unnecessary size increase in
the design. The initial widths of the derived radiator, reflector, and director elements are
set to approximately 0.093λg, 0.082λg, and 0.036λg, respectively, while the width of the
feeding line is 0.045λg. To explore tradeoff improvements between antenna size, gain, and
bandwidth, five stages are presented, each with distinct design parameter values chosen
after parametric sweep, as illustrated in Table 1. The corresponding results of these antenna
stages, including S11 and realized gain, are depicted in Figure 2a,b.

Table 1. Antenna design parameters in mm.

L1 W1 L2 W2 L3 W3 L4 W4 d1 d2 d3

Stage#1 4.9 43.81 70 9.8 29.3 10.25 48.2 4.08 22 23.73 71.55

Stage#2 4.9 33.25 70 9.8 29.3 10.25 48.2 2.7 11 13.2 57.7

Stage#3 4.9 41.97 70 9.8 29.3 10.25 48.2 0.4 11 21.92 57.7

Stage#4 4.9 41.97 70 9.8 29.3 10.25 48.2 0.4 11 21.92 57.7

Stage#5 4.9 33.25 70 9.8 29.3 10.25 48.2 0.51 11 13.2 47.7
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The S11 results in Figure 2a show that the resonant frequencies of the director and
radiator are degenerated together for the first stage. However, in the second stage, as
the width of the director and the spacing between the radiator and both the reflector
and director are reduced, the two resonating modes become separated. Thus, the second
stage demonstrates a smaller size and wider bandwidth due to increased coupling, which
generates a new resonant mode at a higher frequency. However, the realized gain of the
antenna decreases due to the reduced aperture length as shown in Figure 2b.

In the third stage, the width of the director is minimized significantly to enhance the
coupling effect between the radiator and director, thereby increasing the current density
of the second resonating mode (i.e., it is maximum on the director surface at the second
resonance 2.34 GHz). The resulting coupling causes the two resonating modes to shift
apart, thereby expanding the bandwidth.

In the fourth stage, two square notches with dimensions of approximately 3 mm × 3 mm
are implemented on the upper-outer and lower-inner corners of the dipole arms. This
stage highlights the substantial improvement in antenna matching achieved through these
notches, while preserving gain and bandwidth, ultimately enhancing the overall efficiency.
In the final stage, the spacing between the reflector and radiator elements is further reduced,
contributing to size minimization. The coupling effect with the reflector influences the band-
width, but the size is approximately 20% smaller than in Stage#4. Further improvements in
this stage is explored in the Bi-Yagi array design.

2.2. Bi-Yagi Array Development

Using the previously developed three-element Yagi antenna, an optimal design of a
Bi-Yagi antenna array is presented. Figure 3 illustrates the optimal antenna parameters
and shows the front and back sides of the proposed prototype. The selection and optimiza-
tion of these parameters aim to minimize the size of the antenna array while improving
the bandwidth and gain. The antenna is etched on a rectangular substrate, measuring
138.6 mm × 47.7 mm, composed of Roger RT5880 material with a dielectric constant of 2.2
and an electric tangent loss of 0.0009, which enhances radiation efficiency. The antenna
demonstrates excellent performance within the desired bandwidth of 1.79 GHz to 2.56 GHz,
with a bandwidth of 770 MHz centered at 2.15 GHz. The decrease in distance between
the two array elements increases the matching. The close spacing between the anten-
nas enhances their mutual coupling, contributing to the constructive modification of the
combined RF signal through the feeding network. This leads to an improved bandwidth.
Additionally, the array achieves a compact size while maintaining satisfactory performance,
which is discussed in the “Results and Discussion” section.
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3. Results and Discussion

The antenna port is excited by a Gaussian pulse with a 50 Ω coaxial feeding port.
The EM wave polarized along the y-axis and propagating along the +z-axis, as shown in
Figure 3a. The design of the proposed antenna was supported by electromagnetic full-wave
simulations conducted using the finite integration technique (FIT) solver in Computer
Simulation Technology (CST). This full wave simulator facilitated a thorough examination
of crucial parameters such as the reflection coefficient, impedance matching, gain, and
radiation patterns. To validate the simulation results, a vector network analyzer (VNA)
system and the Geozondas time-domain measurement setup were utilized.

The utilization of the VNA system played a critical role in accurately measuring the
antenna’s reflection coefficients and impedance matching. Figure 4 illustrates the vector
network analyzer system that was utilized to measure the reflection coefficients and input
impedance (Z11) of the fabricated antenna.
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Figure 5 depicts the Geozondas time-domain antenna measurement setup utilized
for measuring the gain and radiation pattern of the designed antenna in the time domain.
This setup incorporates several components, including a pulsed signal generator, a digital
sampling converter, a transmitting antenna, a receiving antenna, and an oscilloscope. One
notable advantage of this system is its ability to operate independently of a specialized
environment such as a chamber room. The measurement is achieved by capturing the
first line-of-sight pulsed signal and effectively eliminating other reflected pulsed signals
originating from various surfaces through the adjustment of the time window. The pulsed
signal generator generates short-duration pulses that are transmitted to the transmitting
antenna, which subsequently radiates them into space with the main lobe directed toward
the receiving antenna. The receiving antenna, which represents the antenna under test,
captures the radiated signal, which is then subjected to analysis. To measure the radiation
pattern, the antenna under test is positioned on a 1-axis positioner, which is controlled by
the main program and permits 360-degree movement. At each selected degree, the received
signal is transformed into the frequency domain using a built-in algorithm. By comparing
the received signal in the frequency domain to the transmitting signal, it becomes possible
to calculate the gain and radiation pattern.
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Figure 6a,b shows the impressive reflection coefficient and input impedance. It is
noteworthy that the antenna exhibited excellent matching within the specified bandwidth
of 770 MHz, with a central frequency of 2.175 GHz. Throughout this bandwidth, the
reflection coefficients remained below −10 dB. Additionally, the real wave impedance
remained consistently near 50 Ω at this frequency, while the imaginary part of the wave
impedance approached zero. These results confirm the antenna’s good matching with
the 50 Ω coaxial feeding port. The comparison between these measured values and the
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simulated results established a robust validation process, affirming the accuracy of the
simulation model.
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Figure 7a illustrates the simulated peak realized gain and simulated realized gain
at θ = 0◦ and φ = 90◦, which is validated by the measured realized gain at θ ≈ 0◦ and
φ ≈ 90◦. The proposed antenna demonstrates a peak realized gain ranging from 6.2 dBi
to 9.34 dBi across the entire frequency range. Within the selected band, the peak realized
gain coincides with the gain at θ = 0◦ and φ = 90◦ for most frequencies. The measured
realized gain at θ ≈ 0◦ and φ ≈ 90◦ is approximately similar to the simulated gain, with
slight differences potentially arising from nonalignment.
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Figure 7. (a) The simulated realized gain, and (b) the simulated radiation and total efficiency.

Figure 7b illustrates the radiation efficiency and total efficiency of the antenna, high-
lighting its potential for electromagnetic energy harvesting. The radiation efficiency main-
tains a high level of around 97% across the entire bandwidth. Moreover, the total efficiency
of the antenna falls within the notable range of 88% to 98% across the desired bandwidth.
These remarkable performance metrics emphasize the antenna’s effectiveness in convert-
ing input power into useful radiated energy, establishing it as a promising choice for
electromagnetics energy harvesting applications.

Figure 8 presents the 3D gain radiation pattern of the proposed Bi-Yagi antenna
array. This radiation pattern illustrates the spatial distribution of radiated energy in three
dimensions, specifically at the frequencies of 1.8 GHz, 2.15 GHz, 2.45 GHz, and 2.55 GHz.
The red color is employed to represent the highest level of radiated energy. It is worth



Micromachines 2023, 14, 2181 9 of 14

emphasizing that the main lobe directions consistently remain unchanged towards the
z-direction across all these 3D patterns. This consistency highlights the antenna’s capability
to deliver continuous and stable radiation in this particular direction.
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Figure 8. The 3D gain patterns of the proposed antenna at various frequencies: (a) 1.8 GHz,
(b) 2.15 GHz, (c) 2.45 GHz, and (d) 2.55 GHz.

Figure 9 depicts the gain radiation patterns at 2.45 GHz in both the E-plane and
H-plane for both co-polarization and cross-polarization. In the context of this figure, the
E-plane corresponds to the zy-plane, as depicted in Figure 7, which is perpendicular to
the x-axis. Likewise, the H-plane corresponds to the zx-plane, which is perpendicular to
the y-axis. It is observed that the difference between the co-polarized and cross-polarized
radiation patterns in both the E-plane and H-plane is greater than around 20 dBi. This
difference indicates a high level of linear polarization purity along the y-axis, implying that
the antenna is effectively radiating in the desired polarization and minimizing radiation in
unwanted orthogonal polarizations. Furthermore, it is notable that the difference between
the measured and simulated data is more pronounced in the case of cross-polarization
compared to co-polarization. This variation can be primarily attributed to measurement
errors, for small-level signals. Cross-polarization signals are generally weaker compared
to co-polarization signals, making them more susceptible to measurement inaccuracies
and noise.
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Figures 10–13 illustrate the simulated (dashed line) and measured (solid line) 2D
normalized polar radiation patterns for both the E and H planes at specific frequencies:
1.8 GHz, 2.15 GHz, 2.45 GHz, and 2.55 GHz, respectively. These patterns provide valuable
information about the antenna’s performance characteristics. It is evident that the radiation
in the H plane exhibits a broad beamwidth, whereas in the E plane, it demonstrates a
narrow beamwidth.
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The measured co-polarized polar gain radiation patterns closely aligns with the simu-
lated results, confirming the antenna’s consistent performance. Additionally, the antenna
exhibits a favorable linear polarization pattern, enabling the efficient reception of co-
polarized signals. The slight differences between the simulated and measured results in the
backlobe can be attributed to the effects of the transmission line of the coaxial feeding port.

This rigorous approach, combining simulation and experimental tools, ensures a
robust assessment of the antenna’s performance, accuracy, reliability, and suitability for
practical applications.

Table 2 presents a performance comparison between the proposed antenna and var-
ious published works, highlighting the distinctive advantages of the proposed design.
Specifically, the proposed antenna excels in achieving a balance between maximizing band-
width, effective area, and gain, while minimizing physical dimensions, surpassing the
performance of the other listed works. The design of the antenna takes into consideration
element spacing and dimensions to achieve remarkable features, including high gain, wide
bandwidth, and efficient radiation.

Table 2. Comparison of antenna performance with the literature.

Ref. Freq. (GHz)
Relative
Bandwidth
(S11 < −10)

Maximum
Gain (dBi)

Dimensions
(mm×mm ×mm) Aeff (m2)

[13] 1.8~2.5 32% 2.5~4 70 × 70 × 13.2 2.87 × 10−3

[16] 1.8~2.2 18.10% 7.8~10.2 190 × 100 × 1.6 1.55 × 10−2

[17] 2.3~2.63 13.40% 8.04~8.73 190.5 × 26 × 1.5 7.73 × 10−3

[40] 2~3.1 66% 2~3.6 35 × 50 × 1.6 1.70 × 10−3

This work 1.79~2.56 35.40% 6.2~9.34 138.6 × 47.7 × 1.57 9.34 × 10−3

It is worth noting that the effective areas are calculated at the upper frequencies
within the working bandwidth, utilizing Equation (1). The physical dimensions of the
antenna aperture measure 138.6 mm × 47.7 mm × 1.57 mm. The antenna demonstrates an
impressive gain range, starting from 6.2 dBi at the lower frequency of 1.79 GHz and reaching
an impressive 9.34 dBi at 2.56 GHz. Notably, the effective area of the proposed antenna is
specifically measured at 9.34 × 10−3 m2 at 2.56 GHz, further highlighting its exceptional
capabilities and reinforcing its potential for efficient electromagnetic energy harvesting.
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4. Conclusions

In this paper, a miniaturized broadband Bi-Yagi antenna array is proposed to cover a
frequency range from 1.79 GHz to 2.56 GHz. The design of the antenna aims to strike a
balance between maximizing bandwidth, effective area, and gain, and minimizing physical
dimensions. Various factors are taken into consideration, including the coupling effect
between the radiator and director elements, which enhances the current density of the
second resonating mode. This coupling significantly enhances the current density of the
second resonating mode, resulting in a notable expansion of the overall bandwidth.

Furthermore, the proposed antenna design considers the selection of element spacing
and dimensions, enabling the attainment of impressive features such as high gain, wide
bandwidth, efficient radiation, and a compact aperture size. The physical dimensions of
the antenna aperture are 138.6 mm × 47.7 mm × 1.57 mm. The antenna exhibits a gain
range starting from 6.2 dBi at the lower end of the bandwidth (1.79 GHz) and reaching
9.34 dBi at 2.56 GHz. Furthermore, the total efficiency of the antenna falls within the range
of 88% to 98% across the desired bandwidth. The effective area of the proposed antenna is
9.34× 10−3 m2 at 2.56 GHz. The proposed design is experimentally validated by measuring
the reflection coefficients, input impedance, and realized gain at θ ≈ 0◦ and φ ≈ 90◦ and
normalized radiation pattern. The antenna’s characteristics make it highly suitable for
the efficient capturing and harvesting of electromagnetic waves in various applications,
including mobile wireless and Wi-Fi systems.
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