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Abstract: The rapid and sensitive detection of food contaminants is becoming increasingly important
for timely prevention and treatment of foodborne disease. In this review, we discuss recent develop-
ments of electrochemical biosensors as facile, rapid, sensitive, and user-friendly analytical devices
and their applications in food safety analysis, owing to the analytical characteristics of electrochemical
detection and to advances in the design and production of bioreceptors (antibodies, DNA, aptamers,
peptides, molecular imprinted polymers, enzymes, bacteriophages, etc.). They can offer a low limit
of detection required for food contaminants such as allergens, pesticides, antibiotic traces, toxins,
bacteria, etc. We provide an overview of a broad range of electrochemical biosensing designs and
consider future opportunities for this technology in food control.
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1. Introduction

Food safety is a major public health concern, and its control represents a priority for the
food supply chain. The World Health Organization (WHO) indicated around 200 different
types of disease caused by eating contaminated food [1]. In some cases, foodborne and
waterborne diseases cause long-term health problems and even death, especially in vul-
nerable populations such as pregnant women, newborns, and elderly people. Moreover,
approximately USD 110 billion is lost every year in productivity and medical expenses
caused by food intoxications, making food safety an important economic issue, too [2].
In particular, the low-income countries face serious problems of food safety due to the
food storage and distribution at environmental temperature, without strict hygienic con-
trol, together with inadequate surveillance systems and the lack of infrastructure for food
analysis [2–4]. In developed countries, the increased use of ready-to-eat (RTE) foods and
beverages that are consumed without any further processing significantly increases the risk
of food intoxication, which underlines the need of strict food control measures [5].

The global incidence of foodborne disease is difficult to estimate, but the European
Food Safety Authority and the European Centre for Disease Prevention and Control have
reported about 205,202 hospitalizations due to confirmed zoonoses with about 350 fatal
cases in 2021. The WHO has estimated 600 million annual deaths worldwide due to unsafe
food [6]. The real incidence of foodborne illnesses and outbreaks is underestimated because
of misdiagnosis, under-reporting, and improper examination. Figure 1a shows evolution
of the number of articles published for “food control” in the last twenty years and the
future trend. Food contaminants can be classified as biological, physical, or chemical. All
three categories are connected since a single food hazard frequently introduces other types
of contamination. In the food risk assessment, a biological hazard is a biological agent,
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as are bacteria and toxins, with the potential to cause an adverse human health effect
when present into an edible product. Among foodborne pathogens, Listeria, Salmonella,
Campylobacter spp., Norovirus, and Shiga toxin-producing Escherichia coli are responsible
for the vast majority of illnesses, hospitalizations, and deaths. Chemical hazard occurs
when chemicals are present in food at a harmful level for humans. Within the broad family
of chemical food contaminants, disinfectants, endocrine hormones disrupting chemicals,
fragrances, pesticides, fluorinated substances, and pharmaceuticals, such as antibiotics,
can be listed as synthetic chemicals that may cause ecological or human health risks. The
most common physical contaminants are micro- and nanoplastics along with different
nanoparticles from packaging or wraps, broken glasses, and dirt from unwashed fruits
and vegetables.
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(a) Values were obtained by searching “food control” and (b) “electrochemical biosensors for food
control” in Scopus (solid lines). Trends obtained by fitting a tendency curve and projecting it for the
next 4 years (dotted lines).

Conventional analytical techniques for chemical and physical contaminants are mostly
based on chromatographic techniques and mass spectrometry. These technologies are
accurate but can only be carried out by specialized labs equipped with state-of-the-art in-
strumentation, which impairs the capacity of continuous control. Moreover, these methods
suffer from drawbacks such as matrix interferences and high costs; they are based on time-
and resource-intensive analysis and require highly trained personnel. Likewise, biological
food safety analysis necessarily passes through centralized laboratory facilities, entailing
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high costs, highly experienced experts and an impracticability of an on-site monitoring.
Both currently used traditional and molecular methods for foodborne pathogen detection
suffer from some limitations. Traditional methods are culture-based and involve the growth
of bacteria on specific media for enrichment, isolation, and identification [7,8]. Although
these methods are robust, they take a long time to provide results (up to one week), have a
high risk of contamination and confirmation tests are usually required. Moreover, some
pathogens, such as Listeria, Salmonella, and Campylobacter, can remain in viable but non-
culturable (VBNC) form and cannot be detected by culture-based methods. Molecular
methods, based on the use of polymerase chain reaction (PCR) detect DNA/RNA of tar-
geted pathogens [9–11]. PCR-based methods are effective but laborious and may give false
negative results because of the sensitivity of the polymerase enzyme to food compounds,
which limits their efficiency [11]. Furthermore, molecular methods may give false positive
results when DNA of dead microorganisms is evidenced in food, which does not entail any
risk for consumers [10].

The WHO defined the criteria that should be satisfied in the development of new
analytical tools and summarized them in the acronym REASSURED (Real-time connectivity,
Ease of specimen collection, Affordable, Sensitive, Specific, User-friendly, Rapid and robust,
Equipment-free, and Deliverable to end-users) [12]. In such a context, a growing interest
in biosensors has been observed in recent years, since they offer low-cost analysis, high
specificity and sensitivity, easy implementation and miniaturization, thus showing high
potential for meeting the REASSURED criteria. Biosensors are analytical devices that
associate a bioreceptor, like nucleic acid, aptamer, or antibody, to an active transducer that
transforms the recognition event into a measurable signal for the detection of chemical
or biological analytes [13]. Among them, electrochemical biosensors may exhibit highly
versatile detection schemes, real-time quantification, and label-free and multiplex detection,
providing a promising tool for food safety control [14]. Figure 1b shows the evolution of
the number of articles published for “electrochemical biosensors for food safety” in the
last twenty years and its future trend. The development of electrochemical biosensors is
particularly favored due to the availability of low-cost and small-size disposable electrodes
compatible with point-of-need and on-site analytical monitoring [9,15,16].

In this review, the most recent electrochemical biosensors developed for the detec-
tion of pathogens and contaminants in food are described. We present an overview of
the current approaches with interest for food safety applications. It is noteworthy that
application of nanomaterials in electrochemical biosensors, electrode modifications, and
device integration have been comprehensively described in some recent reviews [17–20].
Here, we focus on progress in different strategies applied in electrochemical detection, such
as biomolecule interaction, enzymatic and nanoparticle signal amplification, multiplexing,
and continuous monitoring. We also cover future perspectives and challenges.

2. Electrochemical Biosensors

Electrochemistry studies the electrical parameters related to chemical reactions, ana-
lyzing the electricity as an outcome of a chemical process. An electrochemical biosensor is
based on an electrochemical transducer, capable of providing selective and quantitative
analytical information on the electron transfer variations due to interaction between the
analyte and the bioreceptor [21,22], as illustrated in Figure 2. Bioreceptors serve as a recog-
nition element that binds or transforms the analyte, while the electrochemical transducer
converts the event of bioreceptor–analyte interaction into an electrical signal. Different elec-
trochemical techniques such as potentiometry, voltammetry, impedance, and amperometry
are employed in biosensors (Figure 3). In potentiometry, the potential of an electrochemical
cell under static conditions is measured, holding the current constant. In amperometry, the
potential of the electrode is held constant. In impedance techniques, such as the widely
used electrochemical impedance spectroscopy (EIS), the relationship between the alterna-
tive current and the applied sinusoidal potential in a frequency domain is measured [23]. In
voltammetry, such as differential potential voltammetry (DPV), square wave voltammetry



Micromachines 2023, 14, 1412 4 of 29

(SWV), cyclic voltammetry (CV), or linear sweep voltammetry (LSV), the current change is
analyzed under controlled but not constant potential [17,24].
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Figure 3. Different electrochemical methods that enable to evidence and quantify foodborne contami-
nants using electrochemical biosensors.

Methods for immobilizing bioreceptors to electrode surfaces have been extensively
studied aiming at both providing an intimate contact between the recognition entities and
the surface of the electrode and keeping the activity of bioreceptor. Gold and carbon-based
materials (i.e., single-wall, multiwall carbon nanotubes, and graphene) are mostly used elec-
trode materials in biosensors because they can be functionalized with biological molecules
highly efficiently in a simple way. In addition, they are compatible with chemically and
biologically active molecules and do not interfere with the recognition event. Moreover,
these surfaces can be easily modified with other materials, such as nanoparticles, giving up-
graded transducers with improved sensitivity and increased loading capacities [17]. Other
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frequently used materials for electrode fabrication are metals (platinum, silver), ceramic (in-
dium tin oxide, titanium oxide, polysilicon) and polymers (poly(acetylene), poly(pyrrole),
poly(aniline), chitosan). The silica nanoparticles showing a great biocompatibility, tunable
pore structure, and excellent uniformity also provide benefits to electrochemical sensing
platforms [25].

The immobilization of the bioreceptor is a key step in electrochemical biosensor
development because its performances, such as sensitivity, robustness, and stability, directly
depends on the orientation and conformation of the recognition element and surface density.
The immobilization of bioreceptors is usually achieved by covalent interactions (such as
gold–thiol interaction or amino link), affinity binding (such as biotin–streptavidin binding),
adsorption, or entrapment. Adsorption is the simplest method, requiring no specific
reagents or bioreceptor modifications but is the least stable and cannot provide uniform
orientation of molecules on the electrode surface. Blocking step is usually performed before
detection to prevent nonspecific absorption of the analyte or matrix component on the
electrode. For instance, 6-mercapto-1-hexanol as a blocking agent was shown to control
surface properties of immobilized thiolate–DNA probe on gold surface, serving as a spacer
between attached probes, and preventing nonspecific DNA–gold surface interaction [26].
Albumin is a blocking agent frequently used in immunosensors.

Amplification of the electrochemical signal can be achieved by using highly conduc-
tive nanomaterials conjugated with well-oriented bioreceptors or combined with specific
labeling. For instance, various electroactive species such as metallic and semiconductor
nanoparticles loaded onto the electrode surface significantly amplify the electrical signal.
Enzymes associated with functionalized electrodes sensitively boost redox cycling and
provide signal enhancement [27].

Bioreceptors used in electrochemical sensors can be natural, bioinspired, and
biomimetic. Natural bioreceptors can be found in living organisms, and the most commonly
used are antibodies, enzymes, nucleic acids (DNA and RNA), bacteriophages, and whole
cells, membranes, and organelles. Natural bioreceptors have inherent high specificity. How-
ever, they can be unstable under nonphysiological conditions, and their purity/activity
may vary from batch to batch. Bioinspired molecules (e.g., aptamers, nanobodies, peptides)
are synthetically derivatives from natural molecules obtained through rational engineering.
Molecularly imprinted polymers (MIPs) are examples of biomimetic receptors. Bioreceptors
of the two latter categories offer enhanced stability compared to natural receptors. Due to
their enhanced affinity toward the target of the analysis (similar to antibodies), they provide
the biosensor with the selectivity required for highly sensitive and specific detection [28].

Table 1 summarizes some recent electrochemical biosensors using various recogni-
tion elements and transduction systems together with their performances. Clearly, the
analytical performances of the electrochemical biosensors are remarkable compared to
classical analytical methods. The complexity of the food matrix still represents a challenge
for the food control diagnostics. Different foods are highly divers in pH, density, and
composition (X1). While tap water does not present particular complications except for
the presence of some ions, other liquid matrices such as juices may affect the analysis,
mainly due to their pH. Milk, is characterized as having a high amount of proteins and fats,
whereas fruit and vegetables can be difficult to analyze due to the presence of organic acids
and antimicrobial compounds. Meat is a protein-rich food source with low carbohydrate
content, abundant in oligo-element like iron, selenium, vitamins, and folic acid; all may be
electroactive species. Meat is also characterized by having a complex structure consisting
of a myofibrillar protein system. Considering such matrix complexity in food samples, an
electrochemical biosensor needs to have extremely high affinity and selectivity to detect a
contaminant with low abundance.
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Table 1. List of recent publications of electrochemical biosensors for food safety and control.

Target Technique Bioreceptor Electrode Lod Redox Indicator Reference

E. coli Osteryoung square wave
voltammetry (OSWV) Antibodies Graphite felt electrode 400 cells/mL TMB [29]

E. coli Electrochemical impedance
spectroscopy (EIS)

Bioorthogonal
conjugation reaction Gold electrode 12 CFU/mL Ferri/Ferrocyanide [30]

E. coli Differential pulse voltammetry
(DPV) Phages Screen-printed carbon

electrode 1 CFU/mL Ferri/Ferrocyanide [31]

E. coli Square wave voltammetry
(SWV) DNA Gold coated electrode 0.01 zM Toluidine blue [32]

E. coli, S. aureus DPV Enzyme Gold coated electrode 100 CFU/mL / [33]

Listeria EIS Aptamers Platinum–iridium electrode 3.3 CFU/mL

Hydroquinone, Hex-
aamineruthenium(III)
chloride, Potassium

ferrocyanide trihydrate

[34]

Salmonella DPV Antibodies Glassy carbon electrode 1.2 × 102 CFU/mL Ferri/Ferrocyanide [35]

S. typhimurium EIS Antibodies Interdigitated
microelectrode 19 CFU/mL MnO2/H2O2 [36]

S. typhimurium EIS Antibodies Interdigitated
microelectrode 101 CFU/mL MnO2/H2O2 [37]

S. typhimurium EIS Antibodies Glassy carbon electrode 35 CFU/mL Ferri/Ferrocyanide [38]

Salmonella DPV Antibodies Glassy carbon electrode 2.4 × 102 cfu/mL Ferri/Ferrocyanide [39]

S. typhimurium DPV Aptamers Screen-printed carbon
electrode 16 CFU/mL Methylene blue [40]

S. aureus DPV Aptamer + dsDNA Gold electrode 8 CFU/mL Ferri/Ferrocyanide [41]

S. aureus EIS Antibodies Gold electrode 2 CFU/mL Ferri/Ferrocyanide [42]

S. aureus DPV Antibodies Gold electrode 28.55 CFU/mL Potassium ferricyanide [43]

S. aureus Electrochemiluminescence
(ECL) Aptamers Glassy carbon electrode 3 CFU/mL

Tris (2,2-bipyridyl)
dichlororuthenium (II)

hexahydrate
[44]
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Table 1. Cont.

Target Technique Bioreceptor Electrode Lod Redox Indicator Reference

S. aureus DPV Aptamers + ssDNA Gold electrode 9 CFU/mL Methylene blue [45]

S. aureus DPV Antibodies Gold disk electrode 2 CFU/mL Ag2S/HNO3 [46]

S. aureus CV DNA Gold electrode 2.37 × 105 U/µL Ferri/Ferrocyanide [47]

S.aureus SWV SRCA-CRISPR (DNA) Glassy carbon electrode 3 CFU/mL Methylene blue [48]

S. aureus Chronoamperometry Aptamers Gold electrode 3 CFU/mL Tyramide/Horseradish
peroxidase/H2O2

[49]

S. aureus DPV Antibodies Gold electrode 0.04 ng/mL Silver nanoparticles [50]

S. aureus DPV Aptamers Glassy carbon electrode 1 CFU/mL Methylene blue [51]

Shigella flexneri DPV SRCA-CRISPR (DNA) Indium tin oxide electrode 10 cells/ml Ferri/Ferrocyanide [52]

B. cereus SWV Antibodies Glassy carbon electrode 101 CFU/mL Potassium ferricyanide [53]

Aphanizomenon
flos-aquae CV, EIS DNA Gold electrode 81.2 pg/mL

9.99 pg/mL Ferri/Ferrocyanide [54]

V. parahaemolyticus DPV Aptamers Screen-printed carbon
electrode 5.74 CFU/mL Ferri/Ferrocyanide [55]

Norovirus DPV Aptamers Screen-printed carbon
electrode 0.28 ng/mL Ferri/Ferrocyanide [56]

Multi bacteria EIS Peptides Gold electrode 101 CFU/mL Ferri/Ferrocyanide [57]

E. coli, S. aureus, and
S. typhimurium DPV Aptamers Screen-printed gold

electrode 3 CFU/mL Methylene blue [58]

Ochratoxin A DPV Enzymes +
CRISPR-Cas12a Glassy carbon electrode 0.74 fg/mL Ferrocene [59]

Ochratoxin A DPV DNA tetrahedron Gold electrode 0.773 pg/mL AgNCs/H2O2 [60]

Ochratoxin A DPV Aptamers Glassy carbon electrode 0.05 pg/mL Methylene blue [61]

Ochratoxin A SWV Aptamers Glassy carbon electrode 81 fg/mL Ferrocene, Methylene
blue [62]

Ochratoxin A DPV Aptamers Gold electrode 5 pM Ferri/Ferrocyanide [63]
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Table 1. Cont.

Target Technique Bioreceptor Electrode Lod Redox Indicator Reference

Ochratoxin A EIS Aptamers Screen-printed carbon
electrode 1 pg/mL Potassium

hexacyanoferrate (III) [64]

Ochratoxin A DPV Aptamers Gold electrode 0.289 pg/mL Tetraferrocene [65]

Ochratoxin A DPV Aptamers Gold electrode 6.79 fg/mL Horseradish
peroxidase/H2O2

[66]

Ochratoxin A SWV Aptamers Gold electrode 0.235 pg/mL Ferrocene, Methylene
blue [67]

Ochratoxin A DPV Aptamers Gold electrode 1.12 fg/mL Methylene blue [68]

Aflatoxin B1 DPV Aptamers Gold electrode 2.84 fg/mL Methylene blue [69]

Aflatoxin B1 DPV Aptamers Glassy carbon electrode 1.82 pg/mL Ferri/Ferrocyanide [70]

Aflatoxin B1 EIS Aptamers Titanium oxide nanotube
arrays electrode 1 pg/mL Hexacyanoferrate [71]

Aflatoxin B1 DPV Antibodies Glassy carbon electrode 0.18 ng/mL Potassium ferricyanide [72]

Aflatoxin B1 DPV Aptamers Screen-printed carbon
electrode 15.16 ag/mL Ferri/Ferrocyanide [73]

Aflatoxin B1 EIS Antibodies Screen-printed
carbon/graphite electrode 0.092 ng/mL Ferri/Ferrocyanide [74]

Aflatoxin B1 DPV Antibodies Carbon fiber microelectrode 8 pg/mL Potassium ferricyanide [75]

Aflatoxin B1 Alternating Current
Voltammetry (ACV) Aptamers Glassy carbon electrode 38.8 pg/mL Ferrocene, Methylene

blue [76]

Aflatoxin B1 DPV Aptamers Indium tin oxide electrode 0.032 pg/mL Ferrocene, Methylene
blue [77]

Aflatoxin B1 DPV Aptamers Glassy carbon electrode 0.5 pM Methylene blue [78]

Aflatoxin B1 SWV Aptamers Glassy carbon electrode 0.12 pM Ferrocene, Methylene
blue [79]

Aflatoxin B1 EIS Aptamers Screen-printed carbon
electrode 0.01 nM Potassium ferricyanide [80]
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Table 1. Cont.

Target Technique Bioreceptor Electrode Lod Redox Indicator Reference

Aflatoxin M1 Chronoamperometry Antibodies Screen-printed carbon
electrode 0.09 ng/mL Ferri/Ferrocyanide [81]

Aflatoxin M1 EIS Aptamers Pencil graphite electrode 0.3 ng/L Ferri/Ferrocyanide [82]

Aflatoxin M1 DPV Aptamers Gold electrode 0.02 ng/mL Methylene blue [83]

Total Aflatoxins Chronoamperometry Antibodies Screen-printed carbon
electrode 0.017 µg/L TMB [84]

Total Aflatoxins DPV Antibodies Glassy carbon electrode 0.05 pg mL Potassium ferricyanide [85]

Deoxynivalenol DPV Aptamers Glassy carbon electrode 0.008 ng mL N-doped Cu-metallic
organic framework [86]

Deoxynivalenol SWV Aptamers Gold electrode 6.9 × 10−9 mg/mL Methylene blue [87]

T-2 DPV Aptamers Gold electrode 0.107 fg/mL Methylene blue [88]

T-2 DPV Aptamers Gold electrode 8.74 × 10−7 ng/mL Methylene blue [89]

Patulin DPV Aptamers Gold electrode 4.14 × 10−5 ng/mL Methylene blue [90]

Patulin SWV Aptamers Glassy carbon electrode 0.043 nM
Ferrocene

monocarboxylic acid,
Methylene blue

[91]

Patulin DPV Aptamers Gold electrode 0.217 fg/mL Thionine [92]

Staphylococcal
Enterotoxin A DPV Aptamers Screen-printed carbon

electrode 7.6 fM Hematoxylin [93]

Zearalenone DPV Aptamers Gold electrode 5 fg/mL Methylene blue, Ag+ [94]

Zearalenone EIS Aptamers Gold electrode 7 fg/mL Ferri/Ferrocyanide [95]

Zearalenone DPV Aptamers Glassy carbon electrode 1.0 × 10−5 ng/mL Toluidine blue [96]

Fumonisin B1 DPV Aptamers Gold electrode 0.306 fg/mL Methylene blue [97]

Endotoxins DPV Aptamers Glassy carbon electrode 0.55 fg/mL Ferri/Ferrocyanide [98]

Lactose CV Enzyme Carbon electrode 0.15 mmol/L / [99]
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Table 1. Cont.

Target Technique Bioreceptor Electrode Lod Redox Indicator Reference

Soy DPV Molecularly imprinted
polymers

Polymer-based
screen-printed electrode 100 ppb Ferri/Ferrocyanide [100]

Gluten EIS Aptamers Screen-printed carbon
electrode 0.05 mg/L Ferri/Ferrocyanide [101]

Tropomyosin Linear sweep voltammetry
(LSV) Antibodies Screen-printed carbon

electrode 0.47 ng/mL Indigo blue/Ag+ [102]

Ara h 1/Ara h 6 LSV Antibodies Screen-printed carbon
electrode

5.2 ng/mL and 0.017
ng/mL Ag+ [103]

Ara h 1 DPV Aptamers Screen-printed carbon
electrode 1.66 nM Ferrocene Dimethanol [104]

Ara h 1 DPV Aptamers Screen-printed carbon
electrode 21.6 ng/mL Ferri/Ferrocyanide [105]

Penicillin DPV Aptamers Screen-printed carbon
electrode 0.05 nM Ferri/Ferrocyanide [106]

Arsenic Square wave stripping
voltammetry (SWSV) NPs Screen-printed carbon

electrode 16.73 µg/L Potassium ferricyanide [107]

Carbendazim, Diuron,
Paraquat, Fenitrothion DPV NPs

Glove-embedded
screen-printed carbon

electrode

4.7 × 10−8; 9.2 × 10−7;
2.4 × 10−8; 6.4 × 10−7 Ferri/Ferrocyanide [108]

Carbendazim DPV Aptamers Screen-printed carbon
electrode 4.35 nM Ferri/Ferrocyanide [109]

Fenhexamid SWV NPs Glassy carbon electrode 1.32 µmol/L BRB/methanol [110]

Quinolones EIS, CV DNA Gold electrode 0.052 ng mL Methylene blue [111]

Nickel ions LSV, CV Synthetic receptors Screen-printed carbon
electrode 0.005 mg/L Nickel ions [112]

Pb2+ SWV 3d DNA nanostructure Glassy carbon electrode 2.61 pM Methylene blue [113]

Pb2+ DPV Aptamers Glassy carbon electrode 0.33 ng/L Ferri/Ferrocyanide [114]
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Table 1. Cont.

Target Technique Bioreceptor Electrode Lod Redox Indicator Reference

Pb2+ and Cd2+ SWV Aptamers Gold electrode 89.31 pmol/L;
16.44 pmol/L

Ferrocene, Methylene
blue [115]

Acrylamide DPV Aptamers Glassy carbon electrode 0.104 nM Ferri/Ferrocyanide [116]

Ampicillin DPV Antibodies Indium tin oxide electrode 0.028 µg/mL Ferri/Ferrocyanide [117]

Parathion CV Antibodies Screen-printed carbon
electrode 2.26 pg/mL HQ/HRP/H2O2 system [118]

Nitrofurans SWV Antibodies Gold electrode 1.35 × 10−7 µg/L Methylene blue [119]

Tiamulin DPV Antibodies Gold electrode 0.003 ng/mL Ferri/Ferrocyanide [120]

Rhodamine B CV Antibodies Screen-printed carbon
electrode 0.89 pg/mL Cerium oxide [121]

Carbaryl Linear scan anodic stripping
voltammetry (LSASV) Antibodies Gold-graphite electrode 0.08 µg/kg Copper conjugate label [122]

Enrofloxacin DPV Antibodies Screen-printed dual carbon
electrode 0.003 µg/mL Aminoferrocene [123]

Sulfamethazine DPV Aptamers Glassy carbon electrode 4.0 pM Hexaamineruthenium(III)
chloride [124]

Melamine DPV Aptamers Glassy carbon electrode 6.7 × 10−13 M Ferri/Ferrocyanide [125]

Streptomycin DPV Aptamers Gold electrode 0.0033 nM Methylene blue [126]

Streptomycin DPV Aptamers Glassy carbon electrode 2.31 nM Ferri/Ferrocyanide [127]

Streptomycin DPV Aptamers Gold electrode 0.003 nM Ferri/Ferrocyanide [128]

Chloramphenicol DPV Aptamers Gold electrode 2.08 pmol/L Ferri/Ferrocyanide [129]

Chloramphenicol DPV Aptamers Glassy carbon electrode 0.03 pM Ferri/Ferrocyanide [130]

Bisphenol A DPV Aptamers Gold electrode 3.65 pM Ferri/Ferrocyanide [131]

Tetracycline DPV Aptamers Glassy carbon electrode 4.8 × 10−2 nM Ferri/Ferrocyanide [132]

Tetracycline DPV Aptamers Glassy carbon electrode 3.2 × 10−16 M Ferri/Ferrocyanide [133]

Tetracycline DPV Aptamers Glassy carbon electrode 2.28 × 10−18 M Ferri/Ferrocyanide [134]
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Table 1. Cont.

Target Technique Bioreceptor Electrode Lod Redox Indicator Reference

Di(2-ethylhexyl)
phthalate DPV Aptamers Gold electrode 0.04 ng/mL Methylene blue [135]

Paraquat DPV Aptamers Glassy carbon electrode 0.34 g/L Nickel hexacyanoferrate
nanoparticles [136]

Thiamethoxam DPV Aptamers Glassy carbon electrode 3.65 × 10−3 µg/L
Nickel hexacyanoferrate

nanoparticles [137]

Progesterone DPV Aptamers Glassy carbon electrode 1.73 × 10−15 M Ferri/Ferrocyanide [138]

Malathion and
Omethoate ACV Aptamers Glassy carbon electrode 1.3 pg/mL;

2.8 pg/mL Ferrocene, Methylene blue [139]

Tyrosin EIS Enzyme Glassy carbon electrode 9 × 10−12 mol/L / [140]

Acetoin EIS Enzyme Capacitive electrolyte-
insulator-semi-conductor Not mention / [141]

Organophosphorus
pesticides EIS Enzyme Glassy carbon electrode 2.78 × 10−11 g/L / [142]

Organophosphorus
pesticides EIS Enzyme Gold electrode 0.1 and 1.5 nM / [143]

Glyphosate EIS Enzyme Screen-printed carbon
electrode

0.015 µg/mL, 0.045
µg/mL / [144]

Malathion, Trichlorfon Amperometry Enzyme Glassy carbon electrode 0.032 µg/L Malathion;
0.001 µg/L trichlorfon / [145]

Organophosphorus
pesticides EIS Enzyme Glassy carbon electrode 7.4 nM / [146]

Soybean EIS DNA Gold electrode 1.792 ng/mL Ferri/Ferrocyanide [147]

Soybean ECL, Fast Scan Voltammetry
(FSV)

Cas12a (Cas protein
family)

Magnetic glass carbon
electrode

0.3 fmol/L (ECL);
3 fmol/L (FSV)

Ferrocene,
Bis(2,2′-bipyridine)-(5-

aminophenanthroline)ruthenium
bis(hexafluorophosphate)

[148]

GM crops ECL Antibodies Magnetic glass carbon
electrode 0.001 ng/mL PTCA and S2O8

2− [149]
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2.1. Electrochemical Genosensors

Electrochemical genosensors, also called nucleic-acid-based biosensors, enable rapid
and accurate food quality control diagnostics through detection of specific DNA or RNA
sequences. Typically, they detect DNA hybridization when a target DNA is recognized by
the immobilized single-stranded DNA (ssDNA) probe, which results in the formation of a
double-stranded hybrid DNA (dsDNA). Taking into account that DNA is more resistant to
food processing procedures than proteins, targeting specific DNA is a promising tool for
adulteration analysis, detection of genetically modified organisms (GMOs), or allergenic
proteins and peptides [150–152]. The production of DNA probes that ensure recognition
is faster and more accessible than the production of other bioreceptors, which makes
the construction of the biosensor relatively simple and affordable [22]. Unlabeled DNA
probes can be efficiently cross-linked with paper-based electrodes when exposed to the
UV light [153]. Alternatively, DNA probes can be produced with chemical modification at
their 3′- or 5′- ends for their efficient grafting onto the electrode. For instance, DNA probes
carrying thiol, biotin or amino groups are easily attached to the electrode surface carrying
gold, streptavidin, or a carboxyl group, respectively [16].

The conversion of the hybridization between the target nucleic acid sequences and
the immobilized DNA probe into an electrical signal usually requires the use of DNA
intercalants or other redox active molecules. The most used DNA intercalants are methy-
lene blue, a two-electron redox molecule that covalently binds guanine bases in ssDNA,
[Os(bpy)2dppz]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine), a reversible one-electron ox-
idizing metal complex that strongly binds to dsDNA, and Ru(NH3)6

3+, a reversible one-
electron metal complex that electrostatically interacts with the anionic DNA
backbone [154,155]. The most used nonintercalant redox indicators are potassium ferro/
ferricyanide, ferrocene, Nile blue, Toluidine blue, ethidium bromide, and tripropy-
lamine [24,156]. Razmi et al. [32] developed a highly sensitive electrochemical genosensor,
for the detection of E. coli O157:H7 in environmental water. To increase the electrode con-
ductivity and the surface area available for the immobilization of the probe, gold nanostars
were deposited onto a gold electrode. A thiolate ssDNA probe, designed to specifically
target E. coli O157:H7, was then immobilized onto the electrode surface and labeled with
the electroactive toluidine blue by drop-casting method. The authors reported a linear
concentration range of 7.3 to 1 × 10−17 µM in environmental water samples, with a limit of
detection (LOD) as low as 0.01 zM. Although extremely sensitive, this label-based genosen-
sor showed limited selectivity and variability at lower bacterial concentrations or under
pH variation.

Nonintercalant redox molecules are not considered as a labeling, but their utilization
in genosensors increases the price and complexity of the analysis. Electrochemical enzyme-
linked detection of DNA hybridization employs enzymes, such as alkaline phosphatase,
peroxidase, or glucose oxidase in combination with their appropriate substrates. In these
sensors, electrochemically active indicator is produced by enzymatic conversion of the
substrate [157]. This strategy results in signal amplification due to the ability of the
enzyme to convert many molecules of the substrate. Finally, some label-free electrochemical
genosensors that do not require the introduction of redox active molecule in the food matrix
were also reported. For instance, DNA probe was immobilized on a screen-printed carbon
electrode modified with graphene acid to improve the charge transport properties of the
electrode [150]. The presence of pork mitochondrial DNA was detected in beef samples
using nonfaradaic EIS without the need of redox indicators (Figure 4).

Recently, Somayeh et al. [47] proposed an alternative genosensing approach for the
detection of Staphylococcus aureus in milk. In their assay, a specific extracellular endoexonu-
clease of S. aureus, micrococcal nuclease, was detected using a DNA probe unrelated to the
bacterium. To do this, they created a U-shaped DNA structure on the gold electrode surface
by immobilizing two oligonucleotide sequences, and subsequently drop-casted comple-
mentary sequences. The formation of the dsDNA prevented the redox indicators to access
the gold surface, thereby providing a low baseline electrochemical signal. In the presence of
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micrococcal nuclease, the hydrolyzation of the oligonucleotides facilitated the redox indica-
tor to reach the surface, dramatically increasing the signal. This electrochemical biosensor
had a dynamic range from 0.0002 U/µL to 0.0033 U/µL and a LOD of 2.15 × 10−5 U/µL in
spiked milk samples. However, the test showed limits for a rapid analysis when samples
contaminated with S. aureus were cocontaminated with other bacteria, such as E. coli, that
also produced the micrococcal nuclease enzyme.
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2.2. Electrochemical Immunosensors

Antibodies are molecules naturally present in the serum of vertebrate organisms and
play a fundamental role in the defense mechanism that constitutes the acquired immune
system. They have a direct recognition ability characterized by the excellent specificity
for some antigens that can be present in food such as proteins, peptides, nucleic acids,
nanoplastics and toxins. This is why a number of electrochemical immunosensors have been
proposed (Table 1). However, the analytical properties of immunosensors are limited by the
stability of antibodies under the storage and working conditions employed. When applied
to bacterial detection, antibodies cannot distinguish between live and dead cells [158].

To obtain well-ordered layers of antibodies on the electrode surface, usually a self-
assembled monolayers (SAM) immobilization method is used [16,159,160]. Thiol SAMs-
modified gold electrodes are the most reported substrates in electrochemical immunosen-
sors. Some nanomaterials, such as carboxyl graphene, which exposes the carboxylic acid
and phenolic hydroxyl groups when dispersed in water, gave a possibility to covalently
graft antibodies via amide or ester linkages [161]. Most impedimetric immunosensors are
in label-free format, while other electrochemical methods require redox indicators and/or
amplification of the antibody-antigen interaction signal. Redox indicator may be associated
with the electrode material to simplify the detection procedure, as it was reported for
influenza virus detection using ferrocene-bearing polypyrrole electrode [162,163].

Other attractive materials for electrode functionalization are metal-organic frame-
works (MOF) with large surface area, high conductivity, and good stability. A label-free
electrochemical immunosensor based on (MOF)-derived carbon material, gold nanoparti-
cles (AuNPs)/Zn/Ni-ZIF-8-800@Graphene, was developed for the detection of aflatoxin
B1 in peanut oil [72]. Carcinogenic Aflatoxin B1, produced by the molds Aspergillus flavus
and A. parasitica, is the strongest mycotoxin among different types of aflatoxins that stay
stable even at the temperature above 100 ◦C. To achieve its sensitive detection, the authors
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modified the glassy carbon electrode with bimetallic organic framework material (Zn/Ni-
ZIF-8-800), chitosan, and gold nanoparticles. Chitosan was used as an efficient dispersant of
graphene, since it has excellent film-forming ability and good adhesion while AuNPs were
added to increase electrode conductivity, biocompatibility, and for direct immobilization of
the monoclonal antiaflatoxin antibody. The obtained electrochemical sensor showed low
experimental cost, high selectivity, and long-term stability. Under the optimal conditions,
its linear range was between 0.18–100 ng/mL of aflatoxin B1, and the detection limit was
0.18 ng/mL.

An electrochemical immunosensor can be integrated into a microfluidic system for
a real-time electrochemical measurement. For this, a design of the biochip is highly im-
portant because the fabrication of the electrode array integrating the microfluidics and
electronic connections is usually expensive, time-consuming, and labor-intensive. Altintas
et al. proposed such a fully automated microfluidic-based electrochemical biosensor for
E. coli detection [164]. A specific anti-E. coli antibody was immobilized using the SAM
method on the electrode to capture bacterial cells from the sample. Captured cells were
electrochemically detected after the addition of a horseradish peroxidase-labeled anti-E.
coli antibody and its substrate 3,3′,5,5′-tetramethylbenzidine (TMB)/H2O2 (Figure 5). The
cost of the system can be significantly reduced through the electrode surface multiple
regeneration using an agent that breaks antibody–antigen interaction.
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2.3. Electrochemical Sensors Based on Artificial Bioreceptors

Aptamers, peptides, and molecular imprinted polymers are attractive bioreceptors
for pathogen detection because they target the entire microorganism, which enormously
simplifies the detection protocols [24,28,165,166]. Sample preparation is the most time-
consuming and expensive step in most protocols for foodborne pathogen detection [9]. In
addition, artificial bioreceptors may target a variety of other food contaminates such as
toxins, allergens, or micro-nano-plastics.

Aptamers are single-stranded oligonucleotides (RNA or DNA), able to recognize
and bind a large variety of targets including toxins, metals, drugs, and pathogens. They
are selected by Systematic Evolution of Ligands by Exponential Enrichment (SELEX) for
their morphological affinity for specific targets, similarly to those of antibodies. The
development of electrochemical biosensors implemented with aptamer technology has
seen an important growth in recent years, due to their promising advantages, compared to
antibodies, such as high tolerance and chemical stability, low-cost production, and easy
chemical modifications [167]. Yuan et al. [115] developed an electrochemical aptasensor
for the simultaneous detection of Pb2+ and Cd2+ ions in fruits and vegetables. For this,
DNA sequences, complementary to the aptamers specific for Pb2+ and Cd2+ ions, were
immobilized on an electrode surface. When aptamers, previously labelled with methylene
blue and ferrocene as redox probes, interacted with immobilized complementary probes,
dsDNA were formed onto electrode surface. Upon drop-casting of orange or lettuce
samples containing Pb2+ and Cd2+ ions, aptamers dissociated from the complementary
sequences; therefore, the redox probes were removed from the electrode surface, provoking
a reduction of the signal. The sensor allowed a detection with a linear range from 0.1
to 1000 nmol/mL and a LOD of 89.31 pmol/L and 16.44 pmol/L for Cd2+ and Pb2+

ions, respectively.
Svigelj et al. [101] reported an electrochemical aptasensor for gluten screening in gluten-

free beer and soy sauce. Gluten is a two-component molecule composed of gliadin and
glutenin proteins. Thiolate aptamers, selected for their affinity to gliadin, were immobilized
on AuNPs deposited on a screen-printed carbon electrode. The gliadin binding to the
aptamer was directly detected in a label-free impedance assay with a LOD of 0.05 mg/L,
corresponding to 0.1 mg/L of gluten. This sensor was successfully applied for the analysis
of real food containing gluten in its hydrolyzed form.

Click chemistry reaction as an immobilization or sensing strategy in electrochemi-
cal aptasensors is also highly attractive. One of the most used common click reactions
is the Cu+-catalyzed alkyne-azide cycloaddition (CuAAC). Wei et al. [168] applied dual
signal amplification of Cu3(PO4)2-mediated click chemistry and DNAzymes to quantify
Salmonella typhimurium with high accuracy. Bacterial cells were captured in a sandwich
between aptamer-modified magnetic beads and Concavalin A-Cu3(PO4)2 hybrid nanoflow-
ers. Selected aptamers recognized specific epitopes on the S. typhimurium surface, while
Concavalin from the hybrid nanoflowers recognized O-antigen present on the bacterial sur-
face. After bacterial capturing, Cu3(PO4)2 from the hybrid nanoflowers was dissolved with
EDTA to release Cu2+, which was further reduced to Cu+ that triggered a CuAAC reaction
on the electrode surface. The electrical signal was amplified by DNAzymes immobilized
onto the gold electrode. A detection limit of 10 CFU/mL was obtained using the assay.

Very recently, Lai et al. [96] presented a signal-off electrochemical aptasensor for the
detection of zearalenone mycotoxin. The sensor was constructed using a functionalized
nanocomposite of Ce-based metal-organic framework and multiwalled carbon nanotubes to
obtain large surface area and high electrochemical activity (Figure 6). To enhance the signal
response, the redox probe toluidine blue was bound to aptamers, while Platinum@Au
nanoparticles were used to immobilize specific aptamers. When zearalenone was present
in the sample, aptamers dissociated from the electrode surface to bind to it, leading to
a decrease in the electrochemical signal generated by toluidine blue. The aptasensor
exhibited a linear range of 5.0 × 10−5 to 50.0 ng/mL, with a LOD of 1.0 × 10−5 ng/mL in
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buffer. The developed aptasensor was successfully applied to detect zearalenone in semen
coccis powder.
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Although aptamers present high potential as recognition elements in electrochemical
biosensors, they can be degraded by nucleases present in the food matrix, compromising
the biosensor stability. Moreover, food matrix may modify their 3D structure, which can
drastically decrease their recognition efficiency when applied in-field. Finally, aptamers
may nonspecifically bind different molecules in complex samples, increasing the challenges
for an accurate detection and quantification of the target. In some cases, these drawbacks
can be eliminated by the sample preparation prior to analysis, such as EDTA treatment, or
targets magnetic preconcentration and washing [167,169,170].

Peptides are also an attractive alternative to antibodies in electrochemical biosensors,
since they exhibit good affinity to specific targets and can be easily synthetized and chemi-
cally modified. Compared to antibodies, peptides show higher stability to temperature, pH,
and ionic strength, and have longer shelf life and lower cost. Peptides, due to high variety
of their amino acid composition and stability of their secondary structure, have remarkable
recognition flexibility. In the last decade, various biological and chemical techniques for
the rapid screening of peptide libraries identified various synthetic peptides that were
used for biosensor development. Peptides are not redox active molecules and produce
no measurable electrochemical signal directly in response to a binding event. However,
peptide structure can be easily conjugated with a redox indicator, such as ferrocene, to
enable direct conversion of the analyte detection into a measurable signal [171]. We recently
reviewed peptide-based biosensors for foodborne pathogen detection [28]. Peptide-based
electrochemical biosensors were reported for a broad spectrum of other targets including
proteins, antibodies, toxins, DNA, and metallic ions. Gold electrodes are mostly used in
peptide-based sensors because peptides can be efficiently immobilized using thiol–gold
chemistry based on SAM methods. Moreover, some peptides can functionalize 2D nanoma-
terials, such as carbon nanotubes, graphene, and other semiconductors, by self-assembling
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controlled by noncovalent bonds. For instance, an electrochemical biosensor for the de-
tection of botulinum neurotoxins produced by the soil bacterium Clostridium botulinum
employed the methylene blue labeled peptide [172]. The peptide was immobilized on
electrode carrying AuNPs by drop casting. In the presence of the botulinum neurotoxins,
the peptide was cleaved, leading to the decrease of the signal due to the removal of methy-
lene blue from the electrode surface (Figure 7). The electrode combined with a portable
potentiostat and smartphone detected botulinum neurotoxins with a LOD of 10 pM in
spiked samples of orange juice [173].
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Direct application of peptide-based biosensors in foods may be impeded by the pres-
ence of peptidase and their degradation. The most reactive proteases in fresh and unpro-
cessed foods are thermolysine, carboxypeptidases, and trypsin. Heating of the food sample
prior to analysis may result in deactivation of proteases without the target alternation.
For instance, this pretreatment can be applied when thermostable toxins are targeted by
peptide-based biosensors. Alternatively, peptides can be chemically modified to make
them resistant to proteolytic degradation. Lorenzon et al. [174] used click chemistry to in-
duce peptide dimerization and multimerization in order to increase their stability. Specific
molecules like sugars or fatty acids can be conjugated to N-, C-terminal, or side-chains, to
make peptide cleavage sites inaccessible to the enzyme [175,176]. Nevertheless, there is no
universal chemical modification that can be applied in peptide-based biosensors because
structural modification may modify its recognition efficiency.

Molecularly imprinted polymers have been developed to overcome such limitations
in bioreceptor stability. MIPs are fabricated by a monomer polymerization in the presence
of target entities, which is extracted after the polymerization. In this way, the target
serves as a template to generate selective cavities. Using various templates, polymers, and
crosslinking agents and varying their ratios enable the formation of cavities with size and
shape highly complementary to the target [177]. Besides being produced at low cost, MIPs
have remarkable physical and chemical resistance, with affinity and selectivity toward
targets comparable to natural receptors [178]. Tailor-made synthetic MIP receptors have
been employed to produce stable, robust, and cheap recognition elements of target analytes
in food, such as pesticides, veterinary drugs, mycotoxins, viruses, and bacterial cells [173].

The natural polymer chitosan was employed to quantify antioxidant catechol in
wine [179]. MIP was formed using chitosan-encapsulated AuNP-decorated multiwalled
carbon nanotubes matrix in the presence of catechol on a boron-doped diamond electrode.
The voltammetric response of the sensor showed excellent reproducibility and repeatability
to catechol detection in the range of 0 to 1 mM, with a LOD of 3.7× 10−5 M. In another study,
the MIP-based sensor for food allergen detection was shown to detect soy genistein in foods
and resolve genistein from other structurally analogous isoflavones and flavones [100]. The
analytical performances of the sensor were demonstrated in a range of solid and liquid
foods, having over 100 different ingredients. The synthesis of MIPs for small molecular
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targets such as pesticides, antibiotic traces, or allergens is now well established. However,
the production of MIPs with the much larger cavities that recognize whole microorganisms
remains a challenge.

Electronically conductive polymer 3-thiopheneacetic acid (TAA) was applied as a func-
tional monomer for imprinting whole cells of S. aureus, which produced micrometer-sized
cavities (Figure 8). This MIP receptor was formed directly on gold electrode surface using
one-step electropolymerization and subsequent template elution [42]. Electrodeposition
as a simple and fast technique allows the deposition of very porous films in a controlled
manner. Under the optimized conditions, S. aureus was detected in contaminated milk
samples within 10 min with a very low LOD of 2 CFU/mL and wide linear range from 10
to 108 CFU/mL. The affinity of MIPs for whole bacterial cell detection can be improved
by monomer modifications. For instance, it was shown that phenylboronic acid improves
nonspecific adhesion of bacterial cells to the polymers but also creates specific interaction
with cis-diol groups present on the bacterial surface [180].
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Despite substantial progress in the development of MIP-based electrochemical sen-
sors for food safety, this technology is still in its beginning. Many challenges related to
nonspecific binding, incomplete removal of templates, and undesired adsorption have to
be overcome. For instance, nonspecific binding of molecules from food matrix can plague
detection of diluted targets. Moreover, the synthesis of some MIPs requires organic solvents
that represents an environmental problem. Recent studies pointed out that MIPs show
limited selectivity and mass transport ability [181–183]. Finally, it is still difficult to adapt
MIP sensors for the detection of multiple analytes in food matrices.

2.4. Other Electrochemical Biosensors

Phages and phage receptor binding proteins are attractive recognition elements in
biosensors for bacterial detection because they target whole cells and require no special
sample preparation step, which significantly simplify the analysis. In addition, phage can
be genetically modified to replace its native sequence of the receptor binding protein by
sequences encoding for different peptides in order to modify the phage binding affinity.
Shin et al. [184] performed phage display using two M13 phage libraries with cyclic and
linear form of peptides to select peptides capable of binding specifically to food allergen
ovomucoid. Selected whole phage viral particles were attached to a SAM-functionalized
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gold electrode using crosslinking chemistry. The cyclic peptide-displayed phage sensor
exhibited significantly better analytical properties than linear phage sensor with LOD of
0.12 µg/mL for ovomucoid. The sensor was successfully applied for allergen detection in
egg and white wine samples.

Bacteriophages have been also used as elements in biosensors for their lytic activity.
Interaction of a lytic phage with the target bacterium causes bacterial cell lysis and liber-
ation of intracellular enzymes that can be electrochemically detected. Another approach
relies on genetic modification of the native bacteriophage by inserting genes encoding for
exogeneous enzyme. Upon infection, the inserted enzyme is expressed in the living bacte-
rial cell of the host. El-Moghazy et al. [31] engineered E. coli-targeting bacteriophage T7
by inserting a gene encoding alkaline phosphatase expression into its genome. A portable
sensing platform was developed by association of this engineered bacteriophage with
a disposable single-walled carbon nanotube modified screen-printed electrode. During
infection of E. coli with the engineered phage, intracellular alkaline phosphatase is released.
The enzyme was detected using its nonelectroactive substrate 1-naphthyl phosphate which
hydrolyzed into the electroactive 1-naphthol, which is easily detectable. When the sen-
sitivity of E. coli detection was investigated in spinach leaf samples, a very low bacterial
concentration of 1 CFU/mL was detected within 7 h.

Electrochemical enzymatic biosensors couple the catalytic activity of enzymes and the
electrochemical signal generation. Enzymes catalyze specific reactions, which may lead
to the production or consumption of electroactive species or to electron transfer, which
can then be electrochemically detected. The resulting electrical signal is proportional to
the concentration of the target analyte, allowing for accurate quantification without the
need of a redox probe. Enzymatic electrochemical biosensors have considerably evolved
since the initial use of the glucose oxidase enzyme as a sensing element in a device that
turned a therapeutic concentration of glucose into a digital signal [185]. Enzymes, being
proteins, can be immobilized on the electrode surface through chemical and physical
interactions ranging from classical adsorption, covalent binding, entrapment, cross-linking,
or affinity [186]. The choice of the immobilization method represents an important factor
that influences structure and catalytic activity of the enzyme and thus affects the sensor
stability, sensitivity, and selectivity. Enzymatic biosensors are highly sensitive because of
the enzymatic amplification produced.

De Brito et al. [99] reported an electrochemical quantification of lactose in skimmed
milk using enzyme lactase. Milk is of great importance in human nutrition, as it is a source
of calcium. To enable lactose-intolerant people to consume milk, the dairy industries are
investing in the production of milk and dairy products with reduced content of lactose
or zero lactose. Lactase enzyme was immobilized by adsorption onto the carbon paste
electrode modified with carbon nanotubes. The LOD of the electrochemical biosensor for
lactose was 0.15 mmol/L and showed high stability and strong repeatability. Therefore,
the proposed biosensor, allowing a reliable and quick monitoring of lactose, is extremely
promising for the dairy sector and consumers.

Tyrosine is one of the essential amino acids necessary to support nutritional bal-
ance, and its level in the body indicates a person’s health status closely related to the
consummated food. Varmira et al. [140] developed an enzymatic electrochemical biosensor
for monitoring of tyrosine in food samples. For this, tyrosine hydroxylase enzyme was
immobilized onto palladium–platinum bimetallic alloy nanoparticles/chitosan-1-ethyl-
3methylimidazolium bis(trifluoromethylsulfonyl) imide/graphene-multiwalled carbon
nanotubes-IL/glassy carbon electrode. Immobilization of the enzyme was achieved by
cross-linking tyrosine hydroxylase and chitosan with glutaraldehyde. The electrode was
applied for quantification of L-tyrosine in some high tyrosine foods like cheese, egg and
yogurt and showed an LOD of 9 × 10−12 mol/L.

We recently developed an electrochemical biosensor based on the NADPH-dependent
quinone reductase enzyme for rapid and redox probe-free detection of vitamin K3 [187].
Vitamin K is a group of vitamins that play an important role in blood coagulation but their
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excess may cause severe side effects. The enzyme was immobilized onto the disposable
carbon screen printed electrode using the drop-casting method. When vitamin K3 was
added to the electrode, quinone reductase reduced it to the hydroquinone form in the pres-
ence of NADPH and riboflavin. Formed hydroquinone oxidized on the electrode surface,
generating a specific and strong electrochemical signal (Figure 9). The practical potential of
the biosensor, when tested in spiked milk samples, achieved 15-min quantification of the
vitamin K3 with an LOD of 0.86 µM.
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Many challenges in this type of electrochemical biosensors still need to be resolved,
including the high expense of enzyme production and purification, lack of reliable responses
at low concentrations, interference reactions, and the stability of the enzymes, which can be
denatured by various factors such as temperature, pH, and food matrix component.

3. Conclusions and Perspectives

In this review, we have presented the advances in electrochemical biosensors from
the last few years with an emphasis on the concept of assays. In the field of food analysis,
the development of biosensors has changed the safety control practice and procedures
for the detection of contaminants. As outlined electrochemical biosensors may simplify
procedure and significantly reduce time, cost and reagent consumption of analysis com-
pared to traditional and molecular methods. Since the first commercialization of glucose
electrochemical biosensors, huge efforts have been made in the development of new electro-
chemical designs for other analytes such as pathogens, antibiotics, heavy metals, allergens,
and pesticides. Enzymes are being substituted with less expensive and more resistant
bioreceptors such as aptamers, peptides, DNA probes, or MIP that are less dependent
on reaction media and thus more adapted for direct measurements in food matrices. For
the detection of a low-concentration contaminant in food, electrochemical biosensors are
designed for specific bioreceptors, signal amplifiers, and electrode surface modifications
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to increase specific surface and its electroconductivity. Notable advances have been made
to enhance the sensitivity, enable evaluation of complex samples, decrease the price, and
provide ease of operation and rapid time to result.

The future trends and challenges concerning electrochemical biosensor for food analy-
sis will include the development of new types of low-cost, biocompatible, and eco-friendly
electrodes, innovative engineering of bioreceptors, and application of novel functional
nanomaterials for signal enhancement together with further device miniaturization to hand-
held and multiplex format. Such disposable sensors may be integrated with blockchain
technologies for quality control along a production and supply food chain. To address such
a complex challenge, cooperation among diverse researchers with professional food control
analysts is needed. This would compensate for the need for expensive traditional testing
and offer significant benefits.
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