
Citation: Hou, J.; Liu, Z.; Yang, Z.;

Yang, C. Hardware Trojan Attacks on

the Reconfigurable Interconnections

of Field-Programmable Gate

Array-Based Convolutional Neural

Network Accelerators and a

Physically Unclonable Function-Based

Countermeasure Detection Technique.

Micromachines 2024, 15, 149. https://

doi.org/10.3390/mi15010149

Academic Editor: Arman Roohi

Received: 5 December 2023

Revised: 29 December 2023

Accepted: 16 January 2024

Published: 19 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Hardware Trojan Attacks on the Reconfigurable Interconnections
of Field-Programmable Gate Array-Based Convolutional Neural
Network Accelerators and a Physically Unclonable
Function-Based Countermeasure Detection Technique
Jia Hou, Zichu Liu, Zepeng Yang and Chen Yang *

School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China; hjwst0314@stu.xjtu.edu.cn (J.H.);
daolzc199947@stu.xjtu.edu.cn (Z.L.); yangzepeng@stu.xjtu.edu.cn (Z.Y.)
* Correspondence: chyang00@xjtu.edu.cn; Tel.: +86-13810103039

Abstract: Convolutional neural networks (CNNs) have demonstrated significant superiority in mod-
ern artificial intelligence (AI) applications. To accelerate the inference process of CNNs, reconfigurable
CNN accelerators that support diverse networks are widely employed for AI systems. Given the
ubiquitous deployment of these AI systems, there is a growing concern regarding the security of
CNN accelerators and the potential attacks they may face, including hardware Trojans. This paper
proposes a hardware Trojan designed to attack a crucial component of FPGA-based CNN accelera-
tors: the reconfigurable interconnection network. Specifically, the hardware Trojan alters the data
paths during activation, resulting in incorrect connections in the arithmetic circuit and consequently
causing erroneous convolutional computations. To address this issue, the paper introduces a novel
detection technique based on physically unclonable functions (PUFs) to safeguard the reconfigurable
interconnection network against hardware Trojan attacks. Experimental results demonstrate that by
incorporating a mere 0.27% hardware overhead to the accelerator, the proposed hardware Trojan can
degrade the inference accuracy of popular neural network architectures, including LeNet, AlexNet,
and VGG, by a significant range of 8.93% to 86.20%. The implemented arbiter-PUF circuit on a Xilinx
Zynq XC7Z100 platform successfully detects the presence and location of hardware Trojans in a recon-
figurable interconnection network. This research highlights the vulnerability of reconfigurable CNN
accelerators to hardware Trojan attacks and proposes a promising detection technique to mitigate
potential security risks. The findings underscore the importance of addressing hardware security
concerns in the design and deployment of AI systems utilizing FPGA-based CNN accelerators.

Keywords: convolutional neural network; reconfigurable CNN accelerator; hardware Trojan; physical
unclonable function; field-programmable gate array (FPGA)

1. Introduction

Nowadays, convolutional neural networks (CNNs) have become popular for a wide
range of tasks, including medical diagnosis [1,2], stock market prediction [3,4], facial recog-
nition [5,6], and semantic segmentation [7,8]. The computational requirements of CNNs can
be significant, with hundreds of megabytes of weights and billions of operations needed per
inference. To accelerate CNN processing, CNN accelerators have been increasingly utilized
to improve inference speed. These accelerators are designed on various platforms, such
as central processing units (CPUs), graphics processing units (GPUs), application-specific
integrated circuits (ASICs), and field-programmable gate array (FPGAs). One promising
approach is the use of dynamically reconfigurable computing architecture [9], which offers
both high energy efficiency and flexibility. As a result, numerous reconfigurable CNN
accelerators [10–15] have been proposed to accelerate different CNN models. Figure 1

Micromachines 2024, 15, 149. https://doi.org/10.3390/mi15010149 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi15010149
https://doi.org/10.3390/mi15010149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-8221-7670
https://doi.org/10.3390/mi15010149
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi15010149?type=check_update&version=1

Micromachines 2024, 15, 149 2 of 19

provides a high-level overview of a typical accelerator design, which includes a neural net-
work model, a toolchain, and a CNN accelerator. CNN models are trained using extensive
datasets to generate weights, while the toolchain translates these models into executable
instructions for the accelerator [16]. CNN accelerators effectively utilize hardware resources
to perform rapid model inference. As CNN accelerators are widely deployed in AI sys-
tems, the security of these accelerators is of the utmost importance for the overall system.
Previous research has shown that CNNs are not as robust as desired. Previous studies
on CNN security threats have primarily focused on datasets and models, exploring areas
such as adversarial examples [17], data poisoning [18], and fault injection [19]. Moreover,
security threats associated with CNN accelerators have extended into the hardware domain.
Prior works have introduced various hardware attack methods, including reverse engi-
neering [20] and hardware Trojans [21–27]. Among these threats, hardware Trojan attacks
are considered a major security concern [28–30]. Integrated circuits (ICs), including those
used for designing and manufacturing CNN accelerators, increasingly rely on untrusted
parties throughout their lifetime, including unverified individuals, design tools, third-party
intellectual property (IP), and components [31]. Such a complex supply chain in IC design
houses poses significant challenges in maintaining control over the entire process, from
design to manufacture. This vulnerability opens up opportunities for malicious manipu-
lations and compromises. Additionally, FPGA, being the main hardware platform, is not
immune to hardware Trojan attacks. In the context of FPGA, hardware Trojans can be clas-
sified into three types: Trojans in FPGA fabric, Trojans in the FPGA toolchain, and Trojans
in the FPGA bitstream [32]. Trojans in FPGA fabric can be inserted during fabrication at an
untrusted foundry or during the design phase by a rogue employee. These Trojans have the
ability to add or delete gates to conduct malicious activities or modify device parameters
to compromise the reliability of the FPGA [33,34]. The threat posed by design tools to
hardware designs has long been recognized [35–37]. Design compromise can occur either
due to compromised design tools, where attackers include malicious code that is compiled
into a binary version of the tools, or through collaboration between design tool vendors
and intellectual property (IP) vendors, where malicious behavior is embedded into the IP
cores during synthesis. Hardware Trojans can also be inserted by modifying the FPGA
configuration bitstream, and this can be conducted in two ways: Type-I Trojans and Type-II
Trojans. Type-I Trojans are defined as Trojan circuits that do not overlap with the original
circuit in terms of resources and area. In contrast, Type-II Trojan circuits are interconnected
with the original circuits, resulting in resource overlap within the FPGA. It is important
to note that even a small disturbance caused by a hardware Trojan can lead to significant
reductions in accuracy or unexpected classification results for CNNs. Therefore, attacks
through hardware Trojans pose significant challenges for FPGA-based CNN accelerators
and have the potential to cause severe damage to AI systems.

Micromachines 2024, 15, x FOR PEER REVIEW 2 of 20

(FPGAs). One promising approach is the use of dynamically reconfigurable computing
architecture [9], which offers both high energy efficiency and flexibility. As a result, nu-
merous reconfigurable CNN accelerators [10–15] have been proposed to accelerate differ-
ent CNN models. Figure 1 provides a high-level overview of a typical accelerator design,
which includes a neural network model, a toolchain, and a CNN accelerator. CNN models
are trained using extensive datasets to generate weights, while the toolchain translates
these models into executable instructions for the accelerator [16]. CNN accelerators effec-
tively utilize hardware resources to perform rapid model inference. As CNN accelerators
are widely deployed in AI systems, the security of these accelerators is of the utmost im-
portance for the overall system. Previous research has shown that CNNs are not as robust
as desired. Previous studies on CNN security threats have primarily focused on datasets
and models, exploring areas such as adversarial examples [17], data poisoning [18], and
fault injection [19]. Moreover, security threats associated with CNN accelerators have ex-
tended into the hardware domain. Prior works have introduced various hardware attack
methods, including reverse engineering [20] and hardware Trojans [21–27]. Among these
threats, hardware Trojan attacks are considered a major security concern [28–30]. Inte-
grated circuits (ICs), including those used for designing and manufacturing CNN accel-
erators, increasingly rely on untrusted parties throughout their lifetime, including unver-
ified individuals, design tools, third-party intellectual property (IP), and components [31].
Such a complex supply chain in IC design houses poses significant challenges in main-
taining control over the entire process, from design to manufacture. This vulnerability
opens up opportunities for malicious manipulations and compromises. Additionally,
FPGA, being the main hardware platform, is not immune to hardware Trojan attacks. In
the context of FPGA, hardware Trojans can be classified into three types: Trojans in FPGA
fabric, Trojans in the FPGA toolchain, and Trojans in the FPGA bitstream [32]. Trojans in
FPGA fabric can be inserted during fabrication at an untrusted foundry or during the de-
sign phase by a rogue employee. These Trojans have the ability to add or delete gates to
conduct malicious activities or modify device parameters to compromise the reliability of
the FPGA [33,34]. The threat posed by design tools to hardware designs has long been
recognized [35–37]. Design compromise can occur either due to compromised design
tools, where attackers include malicious code that is compiled into a binary version of the
tools, or through collaboration between design tool vendors and intellectual property (IP)
vendors, where malicious behavior is embedded into the IP cores during synthesis. Hard-
ware Trojans can also be inserted by modifying the FPGA configuration bitstream, and
this can be conducted in two ways: Type-I Trojans and Type-II Trojans. Type-I Trojans are
defined as Trojan circuits that do not overlap with the original circuit in terms of resources
and area. In contrast, Type-II Trojan circuits are interconnected with the original circuits,
resulting in resource overlap within the FPGA. It is important to note that even a small
disturbance caused by a hardware Trojan can lead to significant reductions in accuracy or
unexpected classification results for CNNs. Therefore, attacks through hardware Trojans
pose significant challenges for FPGA-based CNN accelerators and have the potential to
cause severe damage to AI systems.

Figure 1. Typical CNN model and reconfigurable accelerator.

Micromachines 2024, 15, 149 3 of 19

In the current landscape, several hardware Trojans have been specifically designed
to target CNN accelerators [21–27]. These attacks primarily focus on the process elements
(PEs) [21,22], memory [23,24], prediction results [25], bias buffer [26], and activation pa-
rameters [27], but they often overlook the reconfigurable interconnection network, which
is another vital component. As depicted in Figure 1, a typical reconfigurable accelerator
consists of a PE array that can be dynamically configured to perform convolution oper-
ations in different computation modes. The configuration of the PE array relies on the
reconfigurable interconnection network to adjust data paths. Therefore, the reconfigurable
interconnection network plays a crucial role in ensuring accurate computations of CNN
models. Consequently, attacking the reconfigurable interconnection network through hard-
ware Trojans is a noteworthy consideration. To address this issue, countermeasures must
be taken to protect the reconfigurable interconnection network. This paper proposes a
hardware Trojan that specifically targets the dynamically reconfigurable interconnection
network between PEs on CNN accelerators. Furthermore, to defend against hardware
Trojan attacks and safeguard the reconfigurable interconnection network, a countermeasure
based on physically unclonable functions (PUFs) is introduced. The main contributions of
this paper can be summarized as follows:

(1) An attack method is designed to exploit a hardware Trojan on the reconfigurable inter-
connection network of an FPGA-based CNN accelerator. The objective of this attack
is to manipulate the data path once the hardware Trojan is activated. Through this
manipulation, the consequences become evident, as the PE array becomes incapable
of performing the required calculations.

(2) A detection technique based on physical unclonable functions (PUFs) is proposed
as a countermeasure to protect the reconfigurable interconnection network of an
FPGA-based CNN accelerator against hardware Trojan attacks. The designed PUF
serves a dual purpose: it can detect the presence of hardware Trojans and identify
their specific locations within the system.

(3) The implemented hardware Trojan is embedded within the interconnection network
of an in-house reconfigurable CNN accelerator. To evaluate its effectiveness, the
Trojan attack was carried out on popular CNN architectures such as LeNet, AlexNet,
and VGG. The experimental results reveal a significant degradation in accuracy for
the CNN accelerator, ranging from 8.93% to 86.20% once the Trojan is activated.
Furthermore, a detection technique based on an arbiter-based PUF is implemented
on a Xilinx Zynq XC7Z100 platform. This PUF serves to detect hardware Trojans
within the reconfigurable interconnection network. The effectiveness of the proposed
detection technique is validated through these experimental implementations.

Our paper consists of five sections. Section 2 provides an introduction to the related
work focusing on significant threats and the motivation behind studying the security issue.
This section is divided into two subsections. The Section 2.1 highlights prior works related
to hardware Trojan attacks on traditional ICs, various threats to CNN models, and attack
methods for CNN accelerators. Section 2.2 specifically discusses the main motivations
that drove us to study the security issue for FPGA-based CNN accelerators. In Section 3,
we delve into the methods of hardware Trojan attacks on reconfigurable interconnection
networks, along with the corresponding countermeasure utilizing PUF-based detection
techniques. Section 3.1 presents the structure of the reconfigurable interconnection network
and the threat model concerning the hardware Trojan targeting this network. Section 3.2
introduces the arbiter-based PUF and its application as a countermeasure against hardware
Trojan attacks. Section 4 focuses on presenting the evaluation results for both the hardware
Trojan attacks and the PUF-based detection technique. Section 4.1 provides insights into
the experimental setup, including the utilization of an in-house CNN accelerator, an FPGA
platform, CNN models, and datasets. Section 4.2 offers the evaluation results of the
hardware Trojan attack from three key aspects. Section 4.3 presents the detection results for
the PUF-based detection technique. Finally, the Section 5 discusses the entirety of our work
and outlines possible future directions for research and development.

Micromachines 2024, 15, 149 4 of 19

2. Related Work and Motivation
2.1. Related Work

The significant threat posed by hardware Trojan attacks in the field of integrated
circuits (ICs) and their wide application in the field of artificial intelligence (AI) have
prompted extensive research efforts.

Advancements in the understanding and mitigation of hardware Trojan attacks have
been made since the seminal paper on hardware Trojans in 2007 [38]. A comprehensive
overview of research on hardware Trojans was provided in [39,40], which discussed the
potential threats posed by hardware Trojans, presented attack models, and explored coun-
termeasures against such attacks. Novel triggering techniques, such as utilizing do not-care
states in designs, were introduced [41]. MOLES [42] proposed the use of new payloads
that could generate intentional side-channel signals to leak secret information. To evade
detection, a circuit with gate resizing was redesigned at minimal cost without impacting
the circuit’s functionality [43]. Zero overhead malicious modifications were proposed for
high-performance and embedded microprocessors, where hardware Trojans were activated
under specific conditions to obfuscate modifications [44]. Regarding FPGAs, hardware
Trojans inserted via software-based bitstream modifications were discussed, with a focus
on unencrypted bitstreams [45]. The lack of verification mechanisms for bitstream file
correctness makes this type of modification particularly challenging to detect. Additionally,
an attack targeting FPGA design tools was presented, demonstrating the injection of mali-
cious hardware Trojans into designs during synthesis, thereby evading certain hardware
Trojan detection techniques [35]. Side-channel analysis techniques were utilized to detect
malicious inclusions that affect power consumption [46]. Security monitors embedded
within ICs during the design phase were introduced to detect unexpected or illegal behavior
caused by Trojans [47]. This approach complements other detection methods. Furthermore,
a real-time online learning approach [48] was proposed to proactively prevent unforeseen
attacks. This adaptive approach, based on machine learning, enables the real-time detection
of new attacks as they emerge, thereby enhancing the security of designs.

For CNNs, several studies [17–19] have focused on attacking the models and training
data. Adversarial examples were designed to deceive deep learning models, and existing
defense mechanisms were discussed [17]. Data poisoning attacks were devised to manipu-
late forecasting models in markets for malicious gains [18]. Another approach involved
modifying the parameters of a DNN through fault injection to misclassify specific input
patterns into adversarial classes [19]. More recently, attacks targeting the hardware side of
CNNs have emerged. A reverse engineering attack leveraging side-channel information
leaks was proposed to infer the underlying network structure, even in the presence of data
encryption [20]. The first study to explore the hardware Trojan threat on CNN-based image
classification inserted a Trojan into a Multiplier and Adder Tree (MAT) module of an FPGA
accelerator [21]. The experimental results demonstrated precise control over CNN classifi-
cation results with minimal overhead and modification. Another novel technique injected
a hardware Trojan into a rectified linear unit (ReLU) function block, achieving adversarial
goals [22]. The experimental results showcased the stealthiness and effectiveness of these
injected hardware Trojans. Different from previous approaches that required knowledge of
both the model and toolchain, a memory Trojan was designed for a neural network acceler-
ator. This Trojan performed an accuracy degradation attack by accessing memory bus data,
effectively activated by specific trigger images [23]. A sequence-triggered hardware Trojan
was proposed to control the prediction results of neural network systems. This method
relied on a sequence of input images rather than modifying individual pixels, making it
robust to image pre-processing and imperceptible to human observers [25]. Experiments
conducted on MNIST, CIFAR100, and ISLVRC datasets demonstrated the Trojan’s capability
to activate selectively with minimal hardware overhead. Int-Monitor, a hardware Trojan
targeting DNN accelerators, was designed to attack the global bias buffer. By implanting
an interrupt monitor between the host processor and the DNN accelerator, this Trojan
prevented the activation of neurons in a DNN model, rendering the network’s forward

Micromachines 2024, 15, 149 5 of 19

propagation invalid and the accelerator unresponsive [26]. Runtime experiments on various
DNN models showed the successful exploitation of FPGA-based DNN accelerator SoCs
by Int-Monitor. The Trojan incurred minimal hardware overhead and negligible power
consumption, with average hardware overhead of 0.5% and 0.2% and power consumption
of 0.622% and 0.187% in SIMD and NVDLA accelerators, respectively [26]. Novel hardware
Trojan attacks specifically targeting DNN hardware accelerators implemented on FPGA
were introduced [27]. These hardware Trojans aim to modify the activation parameters
of the DNN within the accelerator. The experimental results illustrate that the proposed
hardware Trojan attacks exhibit high levels of stealthiness, making them difficult to detect.
When activated, these Trojans lead to substantial degradation in the accuracy of the DNN
in terms of its inference capabilities.

2.2. Motivation

There are two main motivations that drive us to study this security issue for FPGA-
based CNN accelerators.

Firstly, there is a noticeable gap in research focusing on hardware attacks specifically
targeting CNN accelerators. Existing hardware attacks have primarily focused on process
elements (PEs), memory, and other components of CNN accelerators [21–23]. However,
there is a lack of studies investigating hardware attacks on the reconfigurable intercon-
nection network. This network plays a crucial role in achieving accurate and efficient
inferences in accelerators. Its function is to facilitate communication between PEs by con-
necting their data paths. The structure of the reconfigurable interconnection network is not
fixed and can vary depending on the requirements of the application. It needs to strike a
balance between flexibility and efficiency. Accelerators designed with this interconnection
concept can leverage the advantages of reconfigurable computing architecture, such as low
power consumption, high performance, and extensibility. Figure 2 illustrates three common
reconfigurable interconnection network architectures used in reconfigurable processors.
The MESH structure (Figure 2a) connects adjacent PEs and enables efficient execution
of complex operations like matrix multiplication and inverse. The MESH_PLUS struc-
ture (Figure 2b) and the MORPHOSYS structure (Figure 2c) are extensions of the MESH
structure that offer more flexible connections, allowing for a greater variety of operator
mappings. In any type of reconfigurable interconnection network, the implementation
relies on multiplexers (MUXs). MUXs select the appropriate data paths based on control
signals. Reconfigurable CNN accelerators, such as Eyeriss [10], Thinker [11], and oth-
ers [13–15], employ MUXs to construct their interconnection networks. It is evident that the
reconfigurable interconnection network, particularly the MUXs, is a fundamental module
for achieving flexibility in reconfigurable CNN accelerators. MUXs ensure that the PE
array can be configured to perform accurate computations. Therefore, hardware Trojan
attacks targeting the reconfigurable interconnection network, especially the MUXs, can
have detrimental effects on the prediction accuracy of CNN accelerators.

Secondly, the motivation for studying security issues in CNN accelerators is the
scarcity of targeted countermeasures against hardware attacks. CNN accelerators play
a critical role as decision makers in various AI systems. Therefore, once these accelera-
tors become compromised, significant damage can be inflicted on the entire AI system.
Traditional hardware attack methods can be adapted to target CNN accelerators, posing
a serious threat to their security. Hardware Trojan attacks, in particular, are highly con-
cerning. A hardware Trojan is a malicious design component that is covertly inserted
into original circuits and can evade detection during conventional post-manufacturing
tests. When triggered under specific conditions, the Trojan can leak sensitive information
or manipulate the logic functions of the system. Hardware Trojan attacks can be cate-
gorized into combinational logic and sequential logic, depending on the type of circuits
involved. Figure 3 illustrates the structure of a hardware Trojan, consisting of a trigger and
a payload. In Figure 3, A, B, C are input signals and superscript * indicates the modified
signal. The trigger activates the payload under rare conditions, allowing it to modify the

Micromachines 2024, 15, 149 6 of 19

original values. Various Trojan detection technologies have been proposed to mitigate
the threats posed by hardware Trojans, but no single method can detect and eliminate all
Trojans and their associated hazards [49,50]. Furthermore, existing studies lack adequate
protection against hardware Trojan attacks specifically targeting CNN accelerators. There-
fore, exploring countermeasures against hardware Trojan attacks is crucial. PUFs [51] are
functional circuits that rely on physical quantities, such as distance, time, and direction.
PUFs leverage inherent process variations during manufacturing to achieve the unique
functionality of generating a challenge–response pair (CRP) that is practically impossible
to replicate in another device. PUFs have been utilized in various applications, including
hardware-based security, anti-counterfeiting measures, and secure key storage. They offer
a means to enhance device security by leveraging natural variations in the manufacturing
process, making it difficult for attackers to replicate or forge device identities. Taking
advantage of PUF techniques, this paper proposes a detection technique to protect the re-
configurable interconnection network from hardware Trojan attacks. This detection method
can also be applied to safeguard similar structures with reconfigurable interconnection
networks in CNN accelerators. By integrating PUF-based protection, the security of CNN
accelerators can be enhanced against hardware Trojan threats, ensuring the reliability and
trustworthiness of these critical components in AI systems.

Micromachines 2024, 15, x FOR PEER REVIEW 6 of 20

(a) (b) (c)

Figure 2. Three typical reconfigurable interconnection networks: (a) MESH structure; (b)
MESH_PLUS structure; (c) MORPHOSYS structure.

Secondly, the motivation for studying security issues in CNN accelerators is the scar-
city of targeted countermeasures against hardware attacks. CNN accelerators play a criti-
cal role as decision makers in various AI systems. Therefore, once these accelerators be-
come compromised, significant damage can be inflicted on the entire AI system. Tradi-
tional hardware attack methods can be adapted to target CNN accelerators, posing a seri-
ous threat to their security. Hardware Trojan attacks, in particular, are highly concerning.
A hardware Trojan is a malicious design component that is covertly inserted into original
circuits and can evade detection during conventional post-manufacturing tests. When
triggered under specific conditions, the Trojan can leak sensitive information or manipu-
late the logic functions of the system. Hardware Trojan attacks can be categorized into
combinational logic and sequential logic, depending on the type of circuits involved. Fig-
ure 3 illustrates the structure of a hardware Trojan, consisting of a trigger and a payload.
In Figure 3, A, B, C are input signals and superscript * indicates the modified signal. The
trigger activates the payload under rare conditions, allowing it to modify the original val-
ues. Various Trojan detection technologies have been proposed to mitigate the threats
posed by hardware Trojans, but no single method can detect and eliminate all Trojans and
their associated hazards [49,50]. Furthermore, existing studies lack adequate protection
against hardware Trojan attacks specifically targeting CNN accelerators. Therefore, ex-
ploring countermeasures against hardware Trojan attacks is crucial. PUFs [51] are func-
tional circuits that rely on physical quantities, such as distance, time, and direction. PUFs
leverage inherent process variations during manufacturing to achieve the unique func-
tionality of generating a challenge–response pair (CRP) that is practically impossible to
replicate in another device. PUFs have been utilized in various applications, including
hardware-based security, anti-counterfeiting measures, and secure key storage. They offer
a means to enhance device security by leveraging natural variations in the manufacturing
process, making it difficult for attackers to replicate or forge device identities. Taking ad-
vantage of PUF techniques, this paper proposes a detection technique to protect the re-
configurable interconnection network from hardware Trojan attacks. This detection
method can also be applied to safeguard similar structures with reconfigurable intercon-
nection networks in CNN accelerators. By integrating PUF-based protection, the security
of CNN accelerators can be enhanced against hardware Trojan threats, ensuring the reli-
ability and trustworthiness of these critical components in AI systems.

Figure 2. Three typical reconfigurable interconnection networks: (a) MESH structure; (b) MESH_PLUS
structure; (c) MORPHOSYS structure.

Micromachines 2024, 15, x FOR PEER REVIEW 7 of 20

Figure 3. Typical structure of hardware Trojan.

3. Methods
3.1. Hardware Trojan against Reconfigurable Interconnection Network

In this subsection, an in-house CNN accelerator with a reconfigurable interconnec-
tion network is presented as the foundation for a hardware Trojan attack model. By ana-
lyzing and targeting the interconnection network, the proposed hardware Trojan attack
models can be deployed against an in-house CNN accelerator [52]. The design of this re-
configurable interconnection network is not specific to a particular CNN accelerator but
is applicable to most CNN accelerators. As a result, the proposed hardware Trojan attack
model can be adapted to target other CNN accelerators with similar interconnection struc-
tures.

3.1.1. FPGA-Based CNN Accelerator and Reconfigurable Interconnection Network
An FPGA-based CNN accelerator named RNA [12,53] features a reconfigurable in-

terconnection structure designed specifically for accelerating neural network inference.
This particular interconnection structure is commonly found in dynamic accelerators like
Eyeriss [10], Thinker [11], and other similar accelerators [13–15]. Figure 4 illustrates the
architecture of the RNA accelerator. It comprises Normal Processing Elements (NPEs),
which are responsible for carrying out multiplication and addition operations, and Special
Processing Elements (SPEs), which additionally incorporate an activation function. When
the activation function is not required, the SPEs can be switched to function as NPEs. The
selection values of multiplexers (MUXs), denoted as m1–m7, control the data paths within
the accelerator. By manipulating these MUXs, the PE array can be dynamically configured
to support three computation modes, representing kernel sizes of 3 × 3, 5 × 5, and 11 × 11.
Table 1 outlines the configuration words necessary for performing the three different ker-
nel sizes mentioned above. To illustrate, consider the 3 × 3 kernel size mode. According to
the configuration words for the first row in Figure 3, every two NPEs and one SPE form a
subset within the PE array. In this case, m1, m3, and m5 are set to 0, while m2 and m6 are
set to 1. Furthermore, m4 is set to 01, and m7 is set to 00. As a result, the PE array can be
partitioned into four subsets for performing convolutional operations: NPE1, NPE2, and
SPE1; NPE3, NPE4, and SPE2; NPE5, NPE6, and SPE3; and NPE7, NPE8, and SPE4. The
reconfigurable interconnection network plays a crucial role in ensuring the correct com-
putation of the PE array. Consequently, hardware Trojan attacks targeting this component
can have detrimental effects on the prediction accuracy of CNN accelerators.

Figure 4. The reconfigurable interconnection of a dynamically reconfigurable accelerator.

Figure 3. Typical structure of hardware Trojan.

3. Methods
3.1. Hardware Trojan against Reconfigurable Interconnection Network

In this subsection, an in-house CNN accelerator with a reconfigurable interconnection
network is presented as the foundation for a hardware Trojan attack model. By analyzing
and targeting the interconnection network, the proposed hardware Trojan attack models can
be deployed against an in-house CNN accelerator [52]. The design of this reconfigurable
interconnection network is not specific to a particular CNN accelerator but is applicable to

Micromachines 2024, 15, 149 7 of 19

most CNN accelerators. As a result, the proposed hardware Trojan attack model can be
adapted to target other CNN accelerators with similar interconnection structures.

3.1.1. FPGA-Based CNN Accelerator and Reconfigurable Interconnection Network

An FPGA-based CNN accelerator named RNA [12,53] features a reconfigurable in-
terconnection structure designed specifically for accelerating neural network inference.
This particular interconnection structure is commonly found in dynamic accelerators like
Eyeriss [10], Thinker [11], and other similar accelerators [13–15]. Figure 4 illustrates the
architecture of the RNA accelerator. It comprises Normal Processing Elements (NPEs),
which are responsible for carrying out multiplication and addition operations, and Special
Processing Elements (SPEs), which additionally incorporate an activation function. When
the activation function is not required, the SPEs can be switched to function as NPEs.
The selection values of multiplexers (MUXs), denoted as m1–m7, control the data paths
within the accelerator. By manipulating these MUXs, the PE array can be dynamically
configured to support three computation modes, representing kernel sizes of 3 × 3, 5 × 5,
and 11 × 11. Table 1 outlines the configuration words necessary for performing the three
different kernel sizes mentioned above. To illustrate, consider the 3 × 3 kernel size mode.
According to the configuration words for the first row in Figure 3, every two NPEs and
one SPE form a subset within the PE array. In this case, m1, m3, and m5 are set to 0, while
m2 and m6 are set to 1. Furthermore, m4 is set to 01, and m7 is set to 00. As a result, the
PE array can be partitioned into four subsets for performing convolutional operations:
NPE1, NPE2, and SPE1; NPE3, NPE4, and SPE2; NPE5, NPE6, and SPE3; and NPE7, NPE8,
and SPE4. The reconfigurable interconnection network plays a crucial role in ensuring the
correct computation of the PE array. Consequently, hardware Trojan attacks targeting this
component can have detrimental effects on the prediction accuracy of CNN accelerators.

Micromachines 2024, 15, x FOR PEER REVIEW 7 of 20

Figure 3. Typical structure of hardware Trojan.

3. Methods
3.1. Hardware Trojan against Reconfigurable Interconnection Network

In this subsection, an in-house CNN accelerator with a reconfigurable interconnec-
tion network is presented as the foundation for a hardware Trojan attack model. By ana-
lyzing and targeting the interconnection network, the proposed hardware Trojan attack
models can be deployed against an in-house CNN accelerator [52]. The design of this re-
configurable interconnection network is not specific to a particular CNN accelerator but
is applicable to most CNN accelerators. As a result, the proposed hardware Trojan attack
model can be adapted to target other CNN accelerators with similar interconnection struc-
tures.

3.1.1. FPGA-Based CNN Accelerator and Reconfigurable Interconnection Network
An FPGA-based CNN accelerator named RNA [12,53] features a reconfigurable in-

terconnection structure designed specifically for accelerating neural network inference.
This particular interconnection structure is commonly found in dynamic accelerators like
Eyeriss [10], Thinker [11], and other similar accelerators [13–15]. Figure 4 illustrates the
architecture of the RNA accelerator. It comprises Normal Processing Elements (NPEs),
which are responsible for carrying out multiplication and addition operations, and Special
Processing Elements (SPEs), which additionally incorporate an activation function. When
the activation function is not required, the SPEs can be switched to function as NPEs. The
selection values of multiplexers (MUXs), denoted as m1–m7, control the data paths within
the accelerator. By manipulating these MUXs, the PE array can be dynamically configured
to support three computation modes, representing kernel sizes of 3 × 3, 5 × 5, and 11 × 11.
Table 1 outlines the configuration words necessary for performing the three different ker-
nel sizes mentioned above. To illustrate, consider the 3 × 3 kernel size mode. According to
the configuration words for the first row in Figure 3, every two NPEs and one SPE form a
subset within the PE array. In this case, m1, m3, and m5 are set to 0, while m2 and m6 are
set to 1. Furthermore, m4 is set to 01, and m7 is set to 00. As a result, the PE array can be
partitioned into four subsets for performing convolutional operations: NPE1, NPE2, and
SPE1; NPE3, NPE4, and SPE2; NPE5, NPE6, and SPE3; and NPE7, NPE8, and SPE4. The
reconfigurable interconnection network plays a crucial role in ensuring the correct com-
putation of the PE array. Consequently, hardware Trojan attacks targeting this component
can have detrimental effects on the prediction accuracy of CNN accelerators.

Figure 4. The reconfigurable interconnection of a dynamically reconfigurable accelerator.

Figure 4. The reconfigurable interconnection of a dynamically reconfigurable accelerator.

Table 1. Configuration words for different kernel sizes.

Kernel Size MUX1 MUX2 MUX3 MUX4 MUX5 MUX6 MUX7

3 × 3 0 1 0 01 0 1 00
5 × 5 1 0 1 01 0 1 10

11 × 11 1 1 0 00 1 0 01

3.1.2. The Presence of Hardware Trojans in the Interconnection Network

Dynamically reconfigurable computing architectures have the potential to achieve
high energy efficiency and flexibility [9]. As a result, several reconfigurable CNN accelera-
tors, such as Eyeriss [10], Thinker [11], and RNA [12,53], have been proposed to accelerate
various CNN models. These accelerators share a common structure, featuring a PE (Process-
ing Element) array that can be dynamically configured to perform convolution operations
based on specific computation modes. The configuration of the PE array relies on the
reconfigurable interconnection network, which plays a crucial role in adjusting data paths.
Consequently, the interconnection network is a critical component of CNN accelerators. In
contrast to previous Trojan attacks that targeted PEs and memory, the proposed hardware
Trojan specifically attacks the reconfigurable interconnection network in CNN accelerators.
The attack consists of two phases: the triggering phase and the payload phase. In the
triggering phase, there are two possible triggering conditions: configuration words and
input images. In the first case, the configuration words determine the computation mode

Micromachines 2024, 15, 149 8 of 19

of the PE array. The configuration words serve as the triggering condition, meaning that
the Trojan will be activated whenever the computation mode related to the configuration
words is used. Consequently, this can lead to severe damage to the accelerators. In the
second case, the trigger relies on input images. The adversary can choose specific bits of
the input images to act as the triggering condition. Ordinary images will not trigger the
payload, allowing the adversary to selectively initiate the attack against the accelerators.
This provides the adversary with control over the attack process. During the payload phase,
once the Trojan is activated, it maliciously modifies the connections between the PEs. This
results in the misconfiguration of the computational circuit, thereby achieving the objective
of an accuracy degradation attack.

3.1.3. Threat Model for Hardware Trojans against the Interconnection Network

In our work, hardware Trojans are specifically implemented in a crucial component of
CNN accelerators: the reconfigurable interconnection network. Figure 5 illustrates how a
hardware Trojan modifies the selection value of MUX1 (m1) in this interconnection network.
The trigger for this Trojan utilizes input images as the triggering condition, and the payload
is designed with an exclusive or (XOR) gate to corrupt, when triggered, an internal signal.
To demonstrate the impact of a hardware Trojan against CNN accelerators, we consider the
example of performing convolution computation with a 3 × 3 kernel size. Theoretically,
signal m1 should have a value of 0 when the kernel size is 3 × 3. However, when the Trojan
is activated (i.e., tr signal is 1), signal m1 is modified to its opposite, m1′ under the action
of the XOR gate. This modification causes the output of SPE1 to be connected with the
input of NPE3. In other words, it introduces the output result of the first subset of PEs
(NPE1, NPE2, and SPE1) into the second subset (NPE3, NPE4, and SPE2). As a result, the
second subset of PEs generates an incorrect output value. Consequently, using this subset
of PEs for convolutional computation leads to incorrect results. It is worth mentioning
that hardware Trojans can also be connected to other MUXs, causing different types of
attack consequences.

Micromachines 2024, 15, x FOR PEER REVIEW 9 of 20

Figure 5. Hardware Trojan insertion at the MUX1.

Table 2 lists potential attack consequences that can arise from hardware Trojans at
different positions within the interconnection structure shown in Figure 4. The table de-
fines various variables: N represents the output results of the NPE element, SP represents
the output results of the SPE element, S represents the normal result of a subset, and S’
represents the questionable result after modification due to a Trojan attack. To illustrate
the attack consequences described in Table 2, let us consider two examples. In the first
case, we observe that S’2 is equal to S2 minus N3 and N4 (i.e., the first row, third column).
In a normal scenario where no Trojan is activated or present, the output result of the sec-
ond subset should be S2. However, when the Trojan is activated, the actual output result
becomes S’2, which equals S2 minus N3 and N4. This alteration means that the result after
the malicious modification no longer contains the output of NPE3 and NPE4. In terms of
convolutional computation, this attack consequence signifies that the first two lines of the
convolution kernel and the input image are not computed correctly. Another case men-
tioned is S’2 being equal to S2 plus S1 (i.e., the first row, first column). This case aligns
with the depiction in Figure 5, wherein the output of a PE subset is additionally added to
other output results. These two cases represented here are examples of the different cases
listed in Table 2. In essence, hardware Trojan attacks on the reconfigurable interconnection
network can lead to either overlapping adjacent image data blocks or the exclusion of
pixels from an image data block during convolutional computing. Consequently, these
attack scenarios indicate that the proposed hardware Trojan attack can result in incorrect
convolutional computation, leading to degradation in terms of accelerator performance.

Table 2. Conditions of wrong connections caused by hardware Trojans

Kernel Size m1 m2 m3 m5 m6

3 × 3 S’2 = S2 + S1 S’2 = S2 − N3
S’2 = S2 − N3 −

N4 S’4 = S4 + S3 S’4 = S4 − N7

5 × 5 S’1 = S1 − N1 −
N2 − SP1

S’1 = S1 S’1 = S1 − N1 −
N2 − SP1 − N3

S’2 = S2 − N5 −
N6 − SP3

S’2 = S2

11 × 11 S’1 = S1 − N1 −
N2 − SP1

S’1 = S1 − N1 −
N2 − SP1 − N3

S’1= S1 − N1 −
N2 − SP1 − N3

− N4

S’1= S1 − N1 −
N2 − SP1 − N3
− N4 − SP2 −

N5 − N6 − SP3

S’1 = S1

3.2. Corresponding Countermeasure of PUF-Based Detection Technique
PUF is a functional circuit that relies on various physical quantities such as distance,

time, and direction. It takes advantage of unescapable process errors that occur during the
manufacturing process to achieve the unique function of a challenge–response pair (CRP).
This uniqueness makes it practically impossible to construct an object with an identical

Figure 5. Hardware Trojan insertion at the MUX1.

Table 2 lists potential attack consequences that can arise from hardware Trojans at
different positions within the interconnection structure shown in Figure 4. The table defines
various variables: N represents the output results of the NPE element, SP represents
the output results of the SPE element, S represents the normal result of a subset, and S’
represents the questionable result after modification due to a Trojan attack. To illustrate
the attack consequences described in Table 2, let us consider two examples. In the first
case, we observe that S’2 is equal to S2 minus N3 and N4 (i.e., the first row, third column).
In a normal scenario where no Trojan is activated or present, the output result of the
second subset should be S2. However, when the Trojan is activated, the actual output result
becomes S’2, which equals S2 minus N3 and N4. This alteration means that the result after
the malicious modification no longer contains the output of NPE3 and NPE4. In terms

Micromachines 2024, 15, 149 9 of 19

of convolutional computation, this attack consequence signifies that the first two lines
of the convolution kernel and the input image are not computed correctly. Another case
mentioned is S’2 being equal to S2 plus S1 (i.e., the first row, first column). This case aligns
with the depiction in Figure 5, wherein the output of a PE subset is additionally added to
other output results. These two cases represented here are examples of the different cases
listed in Table 2. In essence, hardware Trojan attacks on the reconfigurable interconnection
network can lead to either overlapping adjacent image data blocks or the exclusion of
pixels from an image data block during convolutional computing. Consequently, these
attack scenarios indicate that the proposed hardware Trojan attack can result in incorrect
convolutional computation, leading to degradation in terms of accelerator performance.

Table 2. Conditions of wrong connections caused by hardware Trojans.

Kernel Size m1 m2 m3 m5 m6

3 × 3 S’2 = S2 + S1 S’2 = S2 − N3 S’2 = S2 − N3 − N4 S’4 = S4 + S3 S’4 = S4 − N7

5 × 5 S’1 = S1 − N1 −
N2 − SP1 S’1 = S1 S’1 = S1 − N1 − N2

− SP1 − N3
S’2 = S2 − N5 − N6 −

SP3 S’2 = S2

11 × 11 S’1 = S1 − N1 −
N2 − SP1

S’1 = S1 − N1 −
N2 − SP1 − N3

S’1 = S1 − N1 − N2
− SP1 − N3 − N4

S’1 = S1 − N1 − N2 −
SP1 − N3 − N4 − SP2
− N5 − N6 − SP3

S’1 = S1

3.2. Corresponding Countermeasure of PUF-Based Detection Technique

PUF is a functional circuit that relies on various physical quantities such as distance,
time, and direction. It takes advantage of unescapable process errors that occur during the
manufacturing process to achieve the unique function of a challenge–response pair (CRP).
This uniqueness makes it practically impossible to construct an object with an identical
structure [51]. This inherent uniqueness provides a high level of security and resilience
against unauthorized replication or tampering attempts.

Taking advantage of the unique properties of PUF, the PUF-based countermeasure
has been utilized to safeguard the interconnection network addressed in the paper. By
integrating PUFs into the interconnection network, the countermeasure adds an additional
layer of protection against hardware Trojan attacks. The unique challenge–response pairs
generated by the PUFs can be utilized to authenticate the configurations of the network.
This helps in detecting and mitigating any potential hardware Trojans that might be present.

3.2.1. Arbiter-Based PUF

An arbiter-based PUF [54] harnesses the statistical delay variation of wires and tran-
sistors across integrated circuits (ICs) to generate CRPs. This type of PUF comprises switch
components and an arbiter positioned at the end of delay paths, as illustrated in Figure 6.
The PUF consists of 64 switch components, and each switch component is represented by a
red dotted line in the figure. Each switch component, implemented with a pair of 2-to-1
multiplexers and buffers, is composed of two input ports (i0 and i1), one control port (C[i]),
and two output ports (O0 and O1). The fundamental idea behind this design is that the
arbiter determines the speed of signal transmission along two symmetrical delay paths.
The circuit takes 64 challenge bits (C[0]~C[63]) as inputs to configure the delay paths and
generate a 1-bit response as an output [54]. If the signal traveling through the bottom path
arrives first at the arbiter, the output response is set to 1; otherwise, the output response
is 0.

Micromachines 2024, 15, 149 10 of 19

Micromachines 2024, 15, x FOR PEER REVIEW 10 of 20

structure [51]. This inherent uniqueness provides a high level of security and resilience
against unauthorized replication or tampering attempts.

Taking advantage of the unique properties of PUF, the PUF-based countermeasure
has been utilized to safeguard the interconnection network addressed in the paper. By
integrating PUFs into the interconnection network, the countermeasure adds an addi-
tional layer of protection against hardware Trojan attacks. The unique challenge–response
pairs generated by the PUFs can be utilized to authenticate the configurations of the net-
work. This helps in detecting and mitigating any potential hardware Trojans that might
be present.

3.2.1. Arbiter-Based PUF
An arbiter-based PUF [54] harnesses the statistical delay variation of wires and tran-

sistors across integrated circuits (ICs) to generate CRPs. This type of PUF comprises
switch components and an arbiter positioned at the end of delay paths, as illustrated in
Figure 6. The PUF consists of 64 switch components, and each switch component is rep-
resented by a red dotted line in the figure. Each switch component, implemented with a
pair of 2-to-1 multiplexers and buffers, is composed of two input ports (i0 and i1), one
control port (C[i]), and two output ports (O0 and O1). The fundamental idea behind this
design is that the arbiter determines the speed of signal transmission along two symmet-
rical delay paths. The circuit takes 64 challenge bits (C[0]~C[63]) as inputs to configure the
delay paths and generate a 1-bit response as an output [54]. If the signal traveling through
the bottom path arrives first at the arbiter, the output response is set to 1; otherwise, the
output response is 0.

Figure 6. Arbiter-based PUF circuit.

3.2.2. PUF-Based Countermeasure against Hardware Trojans Attack
A dynamically reconfigurable chip combines the benefits of high performance in

static situations, similar to ASICs, with the dynamic configurability necessary to meet the
diverse requirements of different applications in dynamic scenarios.

In the case of a hardware Trojan in a reconfigurable interconnection network, its im-
pact is observed in the modification of control bits for the multiplexers (MUXs) among
processing elements (PEs), specifically the configuration bits that influence the intercon-
nection network. Once triggered, the hardware Trojan alters the interconnecting structure
between PEs, leading to disruptions in data transmission and potentially causing calcula-
tion errors. To detect hardware Trojans in a reconfigurable interconnection network, a
mapping technique can be employed. Figure 7 showcases the mapping of configuration
contexts to an arbiter-based PUF. In this configuration, all the configuration contexts for
22 lines of PEs (represented as Context L1, Context L2, ..., and Context L22) are connected
to 64 challenge ports (C[0]~C[63]) through a MUX matrix. The matrix consists of 64 MUXs,
each responsible for selecting one bit out of the nine or ten configuration bits.

Figure 6. Arbiter-based PUF circuit.

3.2.2. PUF-Based Countermeasure against Hardware Trojans Attack

A dynamically reconfigurable chip combines the benefits of high performance in static
situations, similar to ASICs, with the dynamic configurability necessary to meet the diverse
requirements of different applications in dynamic scenarios.

In the case of a hardware Trojan in a reconfigurable interconnection network, its impact
is observed in the modification of control bits for the multiplexers (MUXs) among process-
ing elements (PEs), specifically the configuration bits that influence the interconnection
network. Once triggered, the hardware Trojan alters the interconnecting structure between
PEs, leading to disruptions in data transmission and potentially causing calculation er-
rors. To detect hardware Trojans in a reconfigurable interconnection network, a mapping
technique can be employed. Figure 7 showcases the mapping of configuration contexts
to an arbiter-based PUF. In this configuration, all the configuration contexts for 22 lines
of PEs (represented as Context L1, Context L2, . . ., and Context L22) are connected to 64
challenge ports (C[0]~C[63]) through a MUX matrix. The matrix consists of 64 MUXs, each
responsible for selecting one bit out of the nine or ten configuration bits.

Micromachines 2024, 15, x FOR PEER REVIEW 11 of 20

Figure 7. The map of configuration context on MUXs matrix.

In order to defend against the proposed attack, a PUF-based countermeasure is de-
signed, as shown in Figure 8. This countermeasure leverages the dynamic configurability
characteristic of the reconfigurable chip to configure an arbiter-PUF using 2-to-1 multi-
plexers (MUXs) in the MUX matrix. The proposed design extends a traditional arbiter-
based PUF by adding an additional 2-to-1 MUX to select the final output. By enabling this
MUX, the countermeasure increases the possible output variations, making it challenging
for an attacker to predict or crack the response and thereby enhancing the security level.
Furthermore, all the switch components are divided into 16 sets, with each set containing
4 switch components. At the end of each set, a pair of 2-to-1 MUXs is employed to deter-
mine whether the current set is involved in the PUF. This configuration allows for flexible
configuration of the delay paths. When the control bit choose[i] is set to 1, the delay paths
bypass the current set, meaning that the input signal does not pass through the paths of
that set. Conversely, for choose[i] = 0, the input signal traverses the delay path of that set.
By utilizing this countermeasure design with the dynamic configurability of the reconfig-
urable chip, the circuit can effectively defend against the proposed hardware Trojan attack
in the interconnection network, enhancing security and preventing potential disruptions
in data transmission.

Figure 8. The framework of PUF-based hardware Trojan detection technique.

The PUF-based countermeasure offers two effective functions: detecting the presence
of hardware Trojans and locating their positions within the interconnection network. For
the first function, when hardware Trojans modify the control bit (C[i]) of the MUXs, the
resulting delay path will differ from that without the modification. By applying constant
challenges to the input signal of the PUF, a set of responses can be obtained. To detect
hardware Trojans, these resulting response sets are compared with the original set. If there
is a significant difference, it indicates the presence of hardware Trojans. For the second

Figure 7. The map of configuration context on MUXs matrix.

In order to defend against the proposed attack, a PUF-based countermeasure is de-
signed, as shown in Figure 8. This countermeasure leverages the dynamic configurability

Micromachines 2024, 15, 149 11 of 19

characteristic of the reconfigurable chip to configure an arbiter-PUF using 2-to-1 multiplex-
ers (MUXs) in the MUX matrix. The proposed design extends a traditional arbiter-based
PUF by adding an additional 2-to-1 MUX to select the final output. By enabling this
MUX, the countermeasure increases the possible output variations, making it challenging
for an attacker to predict or crack the response and thereby enhancing the security level.
Furthermore, all the switch components are divided into 16 sets, with each set contain-
ing 4 switch components. At the end of each set, a pair of 2-to-1 MUXs is employed to
determine whether the current set is involved in the PUF. This configuration allows for
flexible configuration of the delay paths. When the control bit choose[i] is set to 1, the
delay paths bypass the current set, meaning that the input signal does not pass through the
paths of that set. Conversely, for choose[i] = 0, the input signal traverses the delay path
of that set. By utilizing this countermeasure design with the dynamic configurability of
the reconfigurable chip, the circuit can effectively defend against the proposed hardware
Trojan attack in the interconnection network, enhancing security and preventing potential
disruptions in data transmission.

Micromachines 2024, 15, x FOR PEER REVIEW 11 of 20

Figure 7. The map of configuration context on MUXs matrix.

In order to defend against the proposed attack, a PUF-based countermeasure is de-
signed, as shown in Figure 8. This countermeasure leverages the dynamic configurability
characteristic of the reconfigurable chip to configure an arbiter-PUF using 2-to-1 multi-
plexers (MUXs) in the MUX matrix. The proposed design extends a traditional arbiter-
based PUF by adding an additional 2-to-1 MUX to select the final output. By enabling this
MUX, the countermeasure increases the possible output variations, making it challenging
for an attacker to predict or crack the response and thereby enhancing the security level.
Furthermore, all the switch components are divided into 16 sets, with each set containing
4 switch components. At the end of each set, a pair of 2-to-1 MUXs is employed to deter-
mine whether the current set is involved in the PUF. This configuration allows for flexible
configuration of the delay paths. When the control bit choose[i] is set to 1, the delay paths
bypass the current set, meaning that the input signal does not pass through the paths of
that set. Conversely, for choose[i] = 0, the input signal traverses the delay path of that set.
By utilizing this countermeasure design with the dynamic configurability of the reconfig-
urable chip, the circuit can effectively defend against the proposed hardware Trojan attack
in the interconnection network, enhancing security and preventing potential disruptions
in data transmission.

Figure 8. The framework of PUF-based hardware Trojan detection technique.

The PUF-based countermeasure offers two effective functions: detecting the presence
of hardware Trojans and locating their positions within the interconnection network. For
the first function, when hardware Trojans modify the control bit (C[i]) of the MUXs, the
resulting delay path will differ from that without the modification. By applying constant
challenges to the input signal of the PUF, a set of responses can be obtained. To detect
hardware Trojans, these resulting response sets are compared with the original set. If there
is a significant difference, it indicates the presence of hardware Trojans. For the second

Figure 8. The framework of PUF-based hardware Trojan detection technique.

The PUF-based countermeasure offers two effective functions: detecting the presence
of hardware Trojans and locating their positions within the interconnection network. For
the first function, when hardware Trojans modify the control bit (C[i]) of the MUXs, the
resulting delay path will differ from that without the modification. By applying constant
challenges to the input signal of the PUF, a set of responses can be obtained. To detect
hardware Trojans, these resulting response sets are compared with the original set. If there
is a significant difference, it indicates the presence of hardware Trojans. For the second
function, let us consider a scenario where the hardware Trojan modifies C[3] by placing a
switch component. Under choose[1] = 1 (skipping the first set), the challenge–response pairs
(CRPs) remain the same as the original CRPs. However, under choose[1] = 0, the CRPs differ
from the original. This provides a clue to locate the position of the Trojan in the first set.
Similarly, if hardware Trojans exist in multiple sets, a comparison of CRPs under different
configurations can help identify the affected sets. Table 3 illustrates the possible results for
Trojans in two sets in Figure 9. To summarize the process, when comparing CRPs under
different cases, mismatches indicate the existence of Trojans within the corresponding sets.
By controlling the choose signals and analyzing the CRP differences, it becomes possible
to detect Trojans and pinpoint their specific positions within the interconnection network.
This method remains valid for detecting Trojans in multiple sets by adjusting the choose
signals and comparing the CRPs accordingly.

Table 3. The possible results for Trojans existing in two sets.

The State of Choose Signal Comparison of CRPs

choose[1] = 1, choose[2] = 1 =
choose[1] = 1, choose[2] = 0 ̸=
choose[1] = 0, choose[2] = 1 ̸=
choose[1] = 0, choose[2] = 0 ̸=

Micromachines 2024, 15, 149 12 of 19

Micromachines 2024, 15, x FOR PEER REVIEW 12 of 20

function, let us consider a scenario where the hardware Trojan modifies C[3] by placing a
switch component. Under choose[1] = 1 (skipping the first set), the challenge–response
pairs (CRPs) remain the same as the original CRPs. However, under choose[1] = 0, the
CRPs differ from the original. This provides a clue to locate the position of the Trojan in
the first set. Similarly, if hardware Trojans exist in multiple sets, a comparison of CRPs
under different configurations can help identify the affected sets. Table 3 illustrates the
possible results for Trojans in two sets in Figure 9. To summarize the process, when com-
paring CRPs under different cases, mismatches indicate the existence of Trojans within
the corresponding sets. By controlling the choose signals and analyzing the CRP differ-
ences, it becomes possible to detect Trojans and pinpoint their specific positions within
the interconnection network. This method remains valid for detecting Trojans in multiple
sets by adjusting the choose signals and comparing the CRPs accordingly.

Figure 9. Hardware Trojans in two sets.

Table 3. The possible results for Trojans existing in two sets.

The State of Choose Signal Comparison of CRPs
choose[1] = 1, choose[2] = 1 =
choose[1] = 1, choose[2] = 0 ≠
choose[1] = 0, choose[2] = 1 ≠
choose[1] = 0, choose[2] = 0 ≠

4. Results
4.1. Experimental Setup

To evaluate the proposed hardware Trojan design, the work utilized an in-house re-
configurable CNN accelerator called RNA [51]. The RNA accelerator is implemented on a
Xilinx Zynq XC7Z100 platform, which provides both programmable logic and processing
capabilities. This accelerator is designed to support three popular network models: LeNet,
AlexNet, and VGGNet. The models were trained to classify different datasets: CIFAR-10
for AlexNet and VGGNet, and MNIST for LeNet. In the evaluation process, configuration
words and 24-bit image data were used as the triggering conditions to activate the payload
of the hardware Trojan. These conditions were carefully chosen to simulate a real-world
scenario in which the Trojan payload would be triggered during the operation of the re-
configurable CNN accelerator. By conducting experiments and analysis on the RNA ac-
celerator with the trained network models and appropriate triggering conditions, the re-
searchers were able to evaluate the impact and effectiveness of the proposed hardware
Trojan design in terms of its ability to modify control bits and potentially cause calculation
errors in the interconnection network.

4.2. Hardware Trojan Attack Evaluation
The proposed hardware Trojan attack is evaluated based on three key aspects:

stealthiness, attack effectiveness, and hardware overhead. Stealthiness evaluates how well
a hardware Trojan hides its existence from detection methods. The goal of a stealthy Tro-
jan is to remain undetected for as long as possible to either gather information or wait for
a specific trigger condition before activating. Evaluating stealthiness helps ensure that the
attack mechanisms are designed to operate covertly, minimizing the risk of being detected

Figure 9. Hardware Trojans in two sets.

4. Results
4.1. Experimental Setup

To evaluate the proposed hardware Trojan design, the work utilized an in-house
reconfigurable CNN accelerator called RNA [51]. The RNA accelerator is implemented on
a Xilinx Zynq XC7Z100 platform, which provides both programmable logic and processing
capabilities. This accelerator is designed to support three popular network models: LeNet,
AlexNet, and VGGNet. The models were trained to classify different datasets: CIFAR-10
for AlexNet and VGGNet, and MNIST for LeNet. In the evaluation process, configuration
words and 24-bit image data were used as the triggering conditions to activate the payload
of the hardware Trojan. These conditions were carefully chosen to simulate a real-world
scenario in which the Trojan payload would be triggered during the operation of the
reconfigurable CNN accelerator. By conducting experiments and analysis on the RNA
accelerator with the trained network models and appropriate triggering conditions, the
researchers were able to evaluate the impact and effectiveness of the proposed hardware
Trojan design in terms of its ability to modify control bits and potentially cause calculation
errors in the interconnection network.

4.2. Hardware Trojan Attack Evaluation

The proposed hardware Trojan attack is evaluated based on three key aspects: stealth-
iness, attack effectiveness, and hardware overhead. Stealthiness evaluates how well a
hardware Trojan hides its existence from detection methods. The goal of a stealthy Trojan
is to remain undetected for as long as possible to either gather information or wait for a
specific trigger condition before activating. Evaluating stealthiness helps ensure that the
attack mechanisms are designed to operate covertly, minimizing the risk of being detected
by security systems or vigilant users. Attack effectiveness is a metric that assesses the
impact or damage caused by a hardware Trojan once it is activated. It measures the success
of the attack in achieving its specific goals, such as significant accuracy degradation in
the system. The evaluation of attack effectiveness helps users understand the potential
harm that can be inflicted by hardware Trojan attack mechanisms. By assessing this met-
ric, it becomes possible to gauge the severity and seriousness of an attack and develop
appropriate defense strategies to mitigate its impact. For the overhead of hardware Trojan
attacks, it is important to keep them as minimal as possible to avoid detection and maintain
the functionality and performance of the accelerator. Evaluating the overhead helps us
understand the practicality and effectiveness of such attacks and allows for the develop-
ment of countermeasures to detect and mitigate the risks associated with hardware Trojans.
These evaluations aim to provide a comprehensive understanding of the attack’s impact
and feasibility.

Stealthiness is indeed a crucial metric for evaluating attack mechanisms to ensure that
triggering conditions stay hidden and evade suspicion from normal users. In the conducted
experiment, 50,000 images from the CIFAR-10 and MNIST datasets were used to test the
triggering results with different predefined triggering conditions. Figure 10 illustrates the
percentage of original images from both datasets that successfully triggered the hardware
Trojans. The results indicate that when using eight bits of the original images as the
triggering condition, 99.98% and 86.23% of the images from CIFAR-10 and MNIST datasets,
respectively, were able to activate the hardware Trojans. When the triggering condition
was increased to 12 bits of image data, the proportion of images triggering the Trojans

Micromachines 2024, 15, 149 13 of 19

remained high, with 94.99% of CIFAR-10 images being successful triggers. However, the
proportion decreased significantly for the MNIST dataset, with only 30.49% of the images
triggering the Trojans. Continuing to increase the number of bits in the triggering condition
to 16 bits resulted in a further decrease in the activation percentages for both datasets. For
the CIFAR-10 dataset, 37.53% of the original images were successful triggers, while for the
MNIST dataset, the percentage dropped to 4.15%. Using 20 bits as the triggering condition,
the experiments showed a scarcity of images that could activate the hardware Trojans. Only
5.42% of the CIFAR-10 dataset and 0.45% of the MNIST dataset’s original images were
successful triggers. Finally, when using 24 bits of image data as the triggering condition,
it was observed that almost none of the original images from both datasets were able to
activate the hardware Trojan payloads. It is evident from the experimental results that
as more bits of image data are used as the triggering condition, it becomes increasingly
challenging to trigger the hardware Trojans. Notably, almost no original images were able
to trigger the Trojans with 28 or 32 bits of image data.

Micromachines 2024, 15, x FOR PEER REVIEW 13 of 20

by security systems or vigilant users. Attack effectiveness is a metric that assesses the im-
pact or damage caused by a hardware Trojan once it is activated. It measures the success
of the attack in achieving its specific goals, such as significant accuracy degradation in the
system. The evaluation of attack effectiveness helps users understand the potential harm
that can be inflicted by hardware Trojan attack mechanisms. By assessing this metric, it
becomes possible to gauge the severity and seriousness of an attack and develop appro-
priate defense strategies to mitigate its impact. For the overhead of hardware Trojan at-
tacks, it is important to keep them as minimal as possible to avoid detection and maintain
the functionality and performance of the accelerator. Evaluating the overhead helps us
understand the practicality and effectiveness of such attacks and allows for the develop-
ment of countermeasures to detect and mitigate the risks associated with hardware Tro-
jans. These evaluations aim to provide a comprehensive understanding of the attack’s im-
pact and feasibility.

Stealthiness is indeed a crucial metric for evaluating attack mechanisms to ensure
that triggering conditions stay hidden and evade suspicion from normal users. In the con-
ducted experiment, 50,000 images from the CIFAR-10 and MNIST datasets were used to
test the triggering results with different predefined triggering conditions. Figure 10 illus-
trates the percentage of original images from both datasets that successfully triggered the
hardware Trojans. The results indicate that when using eight bits of the original images
as the triggering condition, 99.98% and 86.23% of the images from CIFAR-10 and MNIST
datasets, respectively, were able to activate the hardware Trojans. When the triggering
condition was increased to 12 bits of image data, the proportion of images triggering the
Trojans remained high, with 94.99% of CIFAR-10 images being successful triggers. How-
ever, the proportion decreased significantly for the MNIST dataset, with only 30.49% of
the images triggering the Trojans. Continuing to increase the number of bits in the trig-
gering condition to 16 bits resulted in a further decrease in the activation percentages for
both datasets. For the CIFAR-10 dataset, 37.53% of the original images were successful
triggers, while for the MNIST dataset, the percentage dropped to 4.15%. Using 20 bits as
the triggering condition, the experiments showed a scarcity of images that could activate
the hardware Trojans. Only 5.42% of the CIFAR-10 dataset and 0.45% of the MNIST da-
taset’s original images were successful triggers. Finally, when using 24 bits of image data
as the triggering condition, it was observed that almost none of the original images from
both datasets were able to activate the hardware Trojan payloads. It is evident from the
experimental results that as more bits of image data are used as the triggering condition,
it becomes increasingly challenging to trigger the hardware Trojans. Notably, almost no
original images were able to trigger the Trojans with 28 or 32 bits of image data.

Figure 10. Percentage of original images that trigger hardware Trojans.

In the experiment, modifications were made to some image data in order to activate
the hardware Trojans. To ensure that these modifications would not be easily detectable
by humans, a comparison was made between the original images and the modified images

Figure 10. Percentage of original images that trigger hardware Trojans.

In the experiment, modifications were made to some image data in order to activate
the hardware Trojans. To ensure that these modifications would not be easily detectable by
humans, a comparison was made between the original images and the modified images
using python 3. Figure 11 illustrates this comparison for both the MNIST dataset and
the CIFAR-10 dataset. In the case where 20 bits of image data served as the triggering
condition, the 20 bits of image data corresponding to the numbers ‘6’ and ‘8’ in the MNIST
dataset were modified according to the triggering condition. As shown in Figure 11a, the
modified images appear almost identical to the original images, making it difficult for the
human eye to detect any differences. This lack of noticeable aberrations helps to evade
suspicion. Similarly, in Figure 11b, the comparison between the original and modified
images of the CIFAR-10 dataset is shown. For this dataset, the 20-bits data of a ‘car’ and
a ‘dog’ were modified, and the differences between the original and modified images are
again extremely challenging for humans to discern. These alterations are designed to go
unnoticed, thus minimizing the chances of raising suspicion. However, it is crucial to
note that even though the modifications are imperceptible to human observers, once these
modified images are passed through the accelerator with the hardware Trojans, the Trojans
are activated, leading to changes in data paths during computation.

In assessing the attack effectiveness of the designed hardware Trojan attack, the
degree of damage to accelerators is evaluated based on accuracy degradation. Table 4
presents the accuracy of the normal mode (no Trojans) and the triggering modes (activated
Trojans). Figure 12 visualizes the results of the attack effectiveness, where the accuracy
of different modes from Table 4 is normalized with respect to the normal mode. First,
the attack effectiveness of using model configuration words as the triggering condition is
evaluated. This scenario represents the maximum attack effectiveness of hardware Trojans
in a reconfigurable interconnection network. The experimental results demonstrate that the
attack is highly effective, resulting in accuracy degradations of 90.91% for LeNet, 88.48%

Micromachines 2024, 15, 149 14 of 19

for AlexNet, and 88.82% for VGG. Next, the attack effectiveness of using 20-bit image
data as the triggering condition is evaluated. The results indicate that the attack reduces
accuracy by 12.23% for LeNet, 16.23% for AlexNet, and 12.75% for VGG. These accuracy
degradations highlight the considerable attack effectiveness of the proposed hardware
Trojan attack. By modifying the data path, the hardware Trojans lead to misconfiguration
of the arithmetic circuit, thereby impacting the accuracy of the accelerator. Overall, the
experimental findings demonstrate that the designed hardware Trojan attack has substantial
attack effectiveness. The modifications made by the Trojans, which alter the data path,
directly contribute to the misconfiguration of the arithmetic circuit, resulting in significant
accuracy degradation in the system.

Micromachines 2024, 15, x FOR PEER REVIEW 14 of 20

using python 3. Figure 11 illustrates this comparison for both the MNIST dataset and the
CIFAR-10 dataset. In the case where 20 bits of image data served as the triggering condi-
tion, the 20 bits of image data corresponding to the numbers ‘6’ and ‘8’ in the MNIST
dataset were modified according to the triggering condition. As shown in Figure 11a, the
modified images appear almost identical to the original images, making it difficult for the
human eye to detect any differences. This lack of noticeable aberrations helps to evade
suspicion. Similarly, in Figure 11b, the comparison between the original and modified im-
ages of the CIFAR-10 dataset is shown. For this dataset, the 20-bits data of a ‘car’ and a
‘dog’ were modified, and the differences between the original and modified images are
again extremely challenging for humans to discern. These alterations are designed to go
unnoticed, thus minimizing the chances of raising suspicion. However, it is crucial to note
that even though the modifications are imperceptible to human observers, once these
modified images are passed through the accelerator with the hardware Trojans, the Tro-
jans are activated, leading to changes in data paths during computation.

(a) (b)

Figure 11. The comparison between original and modified images for different datasets: (a) the com-
parison between original and modified images for MNIST dataset; (b) the comparison between orig-
inal and modified images for CIFAR-10 dataset.

In assessing the attack effectiveness of the designed hardware Trojan attack, the de-
gree of damage to accelerators is evaluated based on accuracy degradation. Table 4 pre-
sents the accuracy of the normal mode (no Trojans) and the triggering modes (activated
Trojans). Figure 12 visualizes the results of the attack effectiveness, where the accuracy of
different modes from Table 4 is normalized with respect to the normal mode. First, the
attack effectiveness of using model configuration words as the triggering condition is eval-
uated. This scenario represents the maximum attack effectiveness of hardware Trojans in
a reconfigurable interconnection network. The experimental results demonstrate that the
attack is highly effective, resulting in accuracy degradations of 90.91% for LeNet, 88.48%
for AlexNet, and 88.82% for VGG. Next, the attack effectiveness of using 20-bit image data
as the triggering condition is evaluated. The results indicate that the attack reduces accu-
racy by 12.23% for LeNet, 16.23% for AlexNet, and 12.75% for VGG. These accuracy deg-
radations highlight the considerable attack effectiveness of the proposed hardware Trojan
attack. By modifying the data path, the hardware Trojans lead to misconfiguration of the
arithmetic circuit, thereby impacting the accuracy of the accelerator. Overall, the experi-
mental findings demonstrate that the designed hardware Trojan attack has substantial at-
tack effectiveness. The modifications made by the Trojans, which alter the data path, di-
rectly contribute to the misconfiguration of the arithmetic circuit, resulting in significant
accuracy degradation in the system.

Figure 11. The comparison between original and modified images for different datasets: (a) the
comparison between original and modified images for MNIST dataset; (b) the comparison between
original and modified images for CIFAR-10 dataset.

Table 4. The accuracy of normal mode (no Trojan) and trigger modes (containing Trojans).

CNN Model

Accuracy

Normal Mode
Triggered Mode

Configuration Words 20-Bit Image Data

LeNet 98.21% 8.93% 86.20%
AlexNet 86.82% 10.00% 72.73%

VGG 90.26% 10.00% 78.75%

Micromachines 2024, 15, x FOR PEER REVIEW 15 of 20

Table 4. The accuracy of normal mode (no Trojan) and trigger modes (containing Trojans).

CNN Model
Accuracy

Normal Mode
Triggered Mode

Configuration Words 20-Bit Image Data
LeNet 98.21% 8.93% 86.20%

AlexNet 86.82% 10.00% 72.73%
VGG 90.26% 10.00% 78.75%

Figure 12. Attack effectiveness of hardware Trojans.

The overhead of hardware Trojans plays a crucial role in determining the feasibility
of a Trojan attack. Trojans with high hardware overhead are more likely to be detected, so
it is essential to keep the overhead as minimal as possible to avoid detection. In the context
of this study, the trigger component and the payload component are the main contributors
to the hardware costs of the hardware Trojan attacks. These components are separate from
critical paths and consume logic hardware resources. The trigger component is often im-
plemented using comparators, while the payload component is typically realized using
XOR gates. As described in relation to the stealthiness evaluation, when using 24 bits of
image data as the triggering condition, almost none of the original images from both da-
tasets were able to activate the hardware Trojan payloads. Therefore, the trigger compo-
nent in a hardware Trojan can be designed to have a specific bit sequence, typically con-
sisting of 24 bits, representing the triggering condition. Table 5 presents the hardware
overheads of the original accelerator (without Trojans) and the malicious accelerator (con-
taining Trojans). The results indicate that the hardware overhead introduced by the Tro-
jans is remarkably low, with an increase of only 0.27%. Such a minimal increase in re-
source consumption, primarily in terms of LUT (Look-Up Table) usage in an FPGA, sug-
gests that the hardware Trojans are highly unlikely to be detected. This low overhead fur-
ther reinforces the feasibility of hardware Trojan attacks against CNN accelerators.

Table 5. The hardware overheads comparison between a clean accelerator (no Trojans) and a mali-
cious accelerator (containing Trojans).

 Original Accelerator Malicious Accelerator Comparison
Overhead (LUT) 84.350 K 84.578 K 0.27% ↑ *

* ↑means the increase.

4.3. Detection Effectiveness
In Section 3.2, the proposed countermeasure design is introduced regarding two

cases involving single Trojans in one set and multiple Trojans in multiple sets. To conduct
these experiments, configuration contexts are employed as challenges and fed into the
PUF structure based on a matrix of multiplexers (MUXs) to obtain challenge–response
pairs (CRPs). These CRPs are subsequently compared with the original CRP samples. The

Figure 12. Attack effectiveness of hardware Trojans.

The overhead of hardware Trojans plays a crucial role in determining the feasibility
of a Trojan attack. Trojans with high hardware overhead are more likely to be detected,
so it is essential to keep the overhead as minimal as possible to avoid detection. In the
context of this study, the trigger component and the payload component are the main
contributors to the hardware costs of the hardware Trojan attacks. These components are

Micromachines 2024, 15, 149 15 of 19

separate from critical paths and consume logic hardware resources. The trigger component
is often implemented using comparators, while the payload component is typically realized
using XOR gates. As described in relation to the stealthiness evaluation, when using
24 bits of image data as the triggering condition, almost none of the original images
from both datasets were able to activate the hardware Trojan payloads. Therefore, the
trigger component in a hardware Trojan can be designed to have a specific bit sequence,
typically consisting of 24 bits, representing the triggering condition. Table 5 presents
the hardware overheads of the original accelerator (without Trojans) and the malicious
accelerator (containing Trojans). The results indicate that the hardware overhead introduced
by the Trojans is remarkably low, with an increase of only 0.27%. Such a minimal increase
in resource consumption, primarily in terms of LUT (Look-Up Table) usage in an FPGA,
suggests that the hardware Trojans are highly unlikely to be detected. This low overhead
further reinforces the feasibility of hardware Trojan attacks against CNN accelerators.

Table 5. The hardware overheads comparison between a clean accelerator (no Trojans) and a malicious
accelerator (containing Trojans).

Original Accelerator Malicious Accelerator Comparison

Overhead (LUT) 84.350 K 84.578 K 0.27% ↑ *
* ↑ means the increase.

4.3. Detection Effectiveness

In Section 3.2, the proposed countermeasure design is introduced regarding two cases
involving single Trojans in one set and multiple Trojans in multiple sets. To conduct these
experiments, configuration contexts are employed as challenges and fed into the PUF struc-
ture based on a matrix of multiplexers (MUXs) to obtain challenge–response pairs (CRPs).
These CRPs are subsequently compared with the original CRP samples. The objective of
these experiments is to assess the effectiveness of the proposed countermeasures in detect-
ing and mitigating the presence of hardware Trojans. By utilizing configuration contexts
as challenges and obtaining CRPs, the proposed countermeasure design can identify any
discrepancies or abnormalities between the obtained CRPs and the original CRP samples.
This comparison enables the detection of potential hardware Trojan attacks and facilitates
the implementation of countermeasures to neutralize their effects. By conducting these
evaluations and comparisons, the effectiveness of the proposed countermeasure design can
be gauged in terms of its ability to identify and counteract hardware Trojan attacks based
on the differences observed in the CRPs obtained from the PUF structured on the MUX
matrix compared to the original CRP samples.

Table 6 presents the experimental results for the first case, where a Trojan is injected
into the first set in advance. In this case, the enable signal is set to 1 to select output Q,
and only one of the “choose” signals is set to 1 while the other signals are set to 0. This
configuration allows the skipping of the set where “choose[i] = 1”. The results show that
when the first set is skipped, the comparison of CRPs remains the same as the original CRPs,
indicating that the delay path is not altered. However, for the remaining sets, the CRP
comparison does not yield a 100% match. This indicates that the delay path is modified
when these sets are skipped, suggesting the presence of a Trojan in those sets. By observing
the differences in the CRP comparisons, it can be concluded that a hardware Trojan exists
in the first set. In the second case, Figure 13 illustrates the comparison between the original
CRPs and the triggered CRPs. In this experiment, any two sets are selected to be skipped,
resulting in a total of 64 possible combinations. The x-axis in Figure 13 represents the first
set number, while the bars represent the second set number that is skipped. For example,
the red bar at the x-axis 1 represents the first and eighth skipping sets. Similar to the first
case, the enable signal is set to 1, and two “choose” signals are set to 0 while the remaining
signals are set to 1. When the fourth and eleventh sets are skipped (represented by the
purple bar at the x-axis 4), the comparison between the original CRPs and the triggered
CRPs shows no difference, indicating a 100% match. This result suggests that the delay

Micromachines 2024, 15, 149 16 of 19

path remains unchanged when these two sets are skipped, implying that the components
in this delay path do not contain any Trojans. However, when other sets are skipped, the
comparison results differ, indicating the presence of hardware Trojans in those specific sets.

Table 6. The comparison of CRPs for the case of a Trojan in one set.

Skipping Set Number Match Skipping Set Number Match

1 100% 9 98%
2 97% 10 96%
3 98% 11 95%
4 95% 12 97%
5 95% 13 95%
6 98% 14 96%
7 91% 15 93%
8 97% 16 91%

Micromachines 2024, 15, x FOR PEER REVIEW 17 of 20

Figure 13. The comparison of original CRPs and triggered CRPs in the case of two hardware Trojans.

The PUF consists of three main components: the delay path, enable logic, and arbiter.
Table 7 shows the hardware overhead of the implemented based-PUF detection method.
The implementation of a PUF in a digital circuit can consume 484 LUTs, resulting in a
0.57% increase in the size of the accelerator compared to the version without PUF. The
resource utilization of the based-PUF detection methods is significantly low compared to
the available resources, making them efficient applications in terms of defending CNN
accelerators.

Table 7. The hardware overheads comparison between accelerators with and without PUF.

 The Accelerator without PUF The Accelerator with PUF Comparison
Overhead (LUT) 84.350 K 84.834 K 0.57% ↑ *

* ↑means the increase.

5. Discussion
This paper presents a study on hardware Trojan attacks in reconfigurable intercon-

nection networks of FPGA-based CNN accelerators, followed by the proposal of a PUF-
based countermeasure detection technique to mitigate these attacks. The hardware attack
is evaluated based on its stealthiness, attack effectiveness, and hardware overhead. Addi-
tionally, the effectiveness of the countermeasure technique is tested to determine its ability
to detect the presence and location of hardware Trojans. The experimental results high-
light the impact of hardware Trojans on the accuracy of CNN accelerators, with significant
accuracy degradations observed while incurring minimal hardware overhead. This show-
cases the potential threat posed by hardware Trojans in reconfigurable interconnection
networks. Furthermore, the proposed countermeasure demonstrates promising capabili-
ties in identifying the existence and specific locations of hardware Trojans. This detection
technique provides a means to safeguard CNN accelerators against hardware attacks and
enhance their security.

In future work, we intend to delve deeper into the study of various influences on
CNN accelerators through different types of hardware Trojans. Additionally, we aim to
explore and develop more countermeasures to fortify CNN accelerators against potential
hardware attacks. In order to demonstrate that our research is based on a solid and rea-
sonable experimental foundation, some popular open-source and publicly available accel-
erators will be incorporated into our experiments to further validate our findings, which
can strengthen the credibility and reproducibility of the results. This ongoing research will
contribute to the advancement of hardware security in the context of CNN accelerators.

Figure 13. The comparison of original CRPs and triggered CRPs in the case of two hardware Trojans.

The PUF consists of three main components: the delay path, enable logic, and arbiter.
Table 7 shows the hardware overhead of the implemented based-PUF detection method.
The implementation of a PUF in a digital circuit can consume 484 LUTs, resulting in a 0.57%
increase in the size of the accelerator compared to the version without PUF. The resource uti-
lization of the based-PUF detection methods is significantly low compared to the available
resources, making them efficient applications in terms of defending CNN accelerators.

Table 7. The hardware overheads comparison between accelerators with and without PUF.

The Accelerator without PUF The Accelerator with PUF Comparison

Overhead (LUT) 84.350 K 84.834 K 0.57% ↑ *

* ↑ means the increase.

5. Discussion

This paper presents a study on hardware Trojan attacks in reconfigurable interconnec-
tion networks of FPGA-based CNN accelerators, followed by the proposal of a PUF-based
countermeasure detection technique to mitigate these attacks. The hardware attack is eval-
uated based on its stealthiness, attack effectiveness, and hardware overhead. Additionally,
the effectiveness of the countermeasure technique is tested to determine its ability to detect
the presence and location of hardware Trojans. The experimental results highlight the
impact of hardware Trojans on the accuracy of CNN accelerators, with significant accuracy
degradations observed while incurring minimal hardware overhead. This showcases the
potential threat posed by hardware Trojans in reconfigurable interconnection networks.
Furthermore, the proposed countermeasure demonstrates promising capabilities in iden-
tifying the existence and specific locations of hardware Trojans. This detection technique

Micromachines 2024, 15, 149 17 of 19

provides a means to safeguard CNN accelerators against hardware attacks and enhance
their security.

In future work, we intend to delve deeper into the study of various influences on CNN
accelerators through different types of hardware Trojans. Additionally, we aim to explore
and develop more countermeasures to fortify CNN accelerators against potential hardware
attacks. In order to demonstrate that our research is based on a solid and reasonable
experimental foundation, some popular open-source and publicly available accelerators
will be incorporated into our experiments to further validate our findings, which can
strengthen the credibility and reproducibility of the results. This ongoing research will
contribute to the advancement of hardware security in the context of CNN accelerators.

Author Contributions: Conceptualization, J.H., Z.Y. and C.Y.; methodology, J.H. and Z.L.; software,
Z.Y.; validation, J.H., Z.L. and Z.Y.; formal analysis, Z.Y.; investigation, J.H.; resources, J.H., Z.L. and
Z.Y.; data curation, J.H.; writing—original draft preparation, J.H.; writing—review and editing, J.H.
and C.Y.; visualization, J.H.; supervision, C.Y.; project administration, C.Y.; funding acquisition, C.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 62176206.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Okamoto, T.; Odagawa, M.; Koide, T.; Tanaka, S.; Tamaki, T.; Raytchev, B.; Kaneda, K.; Yoshida, S.; Mieno, H. Feature Extraction

of Colorectal Endoscopic Images for Computer-Aided Diagnosis with CNN. In Proceedings of the 2019 2nd International
Symposium on Devices, Circuits and Systems (ISDCS), Sapporo, Japan, 26–29 May 2019; pp. 1–4. [CrossRef]

2. Kido, S.; Hirano, Y.; Hashimoto, N. Detection and classification of lung abnormalities by use of convolutional neural network
(CNN) and regions with CNN features (R-CNN). In Proceedings of the 2018 Interndational Workshop on Advanced Image
Technology (IWAIT), Chiang Mai, Thailand, 7–9 January 2018; pp. 1–4. [CrossRef]

3. Eapen, J.; Bein, D.; Verma, A. Novel Deep Learning Model with CNN and Bi-Directional LSTM for Improved Stock Market Index
Prediction. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las
Vegas, NV, USA, 7–9 January 2019; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2019; pp. 264–270.
[CrossRef]

4. Shin, H.-G.; Ra, I.; Choi, Y.-H. A Deep Multimodal Reinforcement Learning System Combined with CNN and LSTM for Stock
Trading. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence
(ICTC), Jeju Island, Republic of Korea, 16–18 October 2019; pp. 7–11. [CrossRef]

5. He, R.; Wu, X.; Sun, Z.; Tan, T. Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 2018, 41, 1761–1773. [CrossRef]

6. Qu, D.; Huang, Z.; Gao, Z.; Zhao, Y.; Zhao, X.; Song, G. An Automatic System for Smile Recognition Based on CNN and Face
Detection. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur,
Malaysia, 12–15 December 2018; pp. 243–247. [CrossRef]

7. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587. [CrossRef]

8. Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International
Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1520–1528. [CrossRef]

9. Liu, L.; Zhu, J.; Li, Z.; Lu, Y.; Deng, Y.; Han, J.; Yin, S.; Wei, S. A Survey of Coarse-Grained Reconfigurable Architecture and
Design. ACM Comput. Surv. 2019, 52, 1–39. [CrossRef]

10. Chen, Y.-H.; Krishna, T.; Emer, J.; Sze, V. 14.5 Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional
neural networks. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA,
31 January–4 February 2016; pp. 262–263. [CrossRef]

11. Yin, S.; Ouyang, P.; Tang, S.; Tu, F.; Li, X.; Zheng, S.; Lu, T.; Gu, J.; Liu, L.; Wei, S. A High Energy Efficient Reconfigurable Hybrid
Neural Network Processor for Deep Learning Applications. IEEE J. Solid-State Circuits 2017, 53, 968–982. [CrossRef]

12. Yang, C.; Wang, Y.; Zhang, H.; Wang, X.; Geng, L. A Reconfigurable CNN Accelerator using Tile-by-Tile Computing and Dynamic
Adaptive Data Truncation. In Proceedings of the 2019 IEEE International Conference on Integrated Circuits, Technologies and
Applications (ICTA), Chengdu, China, 13–15 November 2019; pp. 73–74. [CrossRef]

https://doi.org/10.1109/ISDCS.2019.8719104
https://doi.org/10.1109/iwait.2018.8369798
https://doi.org/10.1109/ccwc.2019.8666592
https://doi.org/10.1109/ICTC46691.2019.8939991
https://doi.org/10.1109/TPAMI.2018.2842770
https://doi.org/10.1109/ROBIO.2018.8665310
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.178
https://doi.org/10.1145/3357375
https://doi.org/10.1109/ISSCC.2016.7418007
https://doi.org/10.1109/JSSC.2017.2778281
https://doi.org/10.1109/ICTA48799.2019.9012913

Micromachines 2024, 15, 149 18 of 19

13. Yang, C.; Wang, Y.; Wang, X.; Geng, L. WRA: A 2.2-to-6.3 TOPS Highly Unified Dynamically Reconfigurable Accelerator Using a
Novel Winograd Decomposition Algorithm for Convolutional Neural Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66,
3480–3493. [CrossRef]

14. Fujii, T.; Toi, T.; Tanaka, T.; Togawa, K.; Kitaoka, T.; Nishino, K.; Nakamura, N.; Nakahara, H.; Motomura, M. New Generation
Dynamically Reconfigurable Processor Technology for Accelerating Embedded AI Applications. In Proceedings of the 2018 IEEE
Symposium on VLSI Circuits, Honolulu, HI, USA, 18–22 June 2018; pp. 41–42. [CrossRef]

15. Liu, L.; Li, Z.; Yang, C.; Deng, C.; Yin, S.; Wei, S. HReA: An Energy-Efficient Embedded Dynamically Reconfigurable Fabric for
13-Dwarfs Processing. IEEE Trans. Circuits Syst. II Express Briefs 2017, 65, 381–385. [CrossRef]

16. Guo, K.; Sui, L.; Qiu, J.; Yao, S.; Han, S.; Wang, Y.; Yang, H. From model to FPGA: Software-hardware co-design for efficient neural
network acceleration. In Proceedings of the 2016 IEEE Hot Chips 28 Symposium (HCS), Cupertino, CA, USA, 21–23 August 2016;
pp. 1–27. [CrossRef]

17. Zhang, J.; Li, C. Adversarial Examples: Opportunities and Challenges. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 2578–2593.
[CrossRef] [PubMed]

18. Alfeld, S.; Zhu, X.; Barford, P. Data poisoning attacks against autoregressive models. In Proceedings of the Association for the
Advance of Artificial Intelligence (AAAI), Phoenix, AZ, USA, 12–17 February 2016; pp. 1452–1458.

19. Liu, Y.; Wei, L.; Luo, B.; Xu, Q. Fault injection attack on deep neural network. In Proceedings of the 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–16 November 2017; pp. 131–138. [CrossRef]

20. Hua, W.; Zhang, Z.; Suh, G.E. Reverse Engineering Convolutional Neural Networks Through Side-channel Information Leaks. In
Proceedings of the 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 24–29 June 2018;
pp. 1–6. [CrossRef]

21. Ye, J.; Hu, Y.; Li, X. Hardware Trojan in FPGA CNN Accelerator. In Proceedings of the 2018 IEEE 27th Asian Test Symposium
(ATS), Hefei, China, 15–18 October 2018; pp. 68–73. [CrossRef]

22. Clements, J.; Lao, Y. Hardware Trojan Design on Neural Networks. In Proceedings of the 2019 IEEE International Symposium on
Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [CrossRef]

23. Zhao, Y.; Hu, X.; Li, S.; Ye, J.; Deng, L.; Ji, Y.; Xu, J.; Wu, D.; Xie, Y. Memory Trojan Attack on Neural Network Accelerators. In
Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 25–29 March 2019;
pp. 1415–1420. [CrossRef]

24. Hu, X.; Zhao, Y.; Deng, L.; Liang, L.; Zuo, P.; Ye, J.; Lin, Y.; Xie, Y. Practical Attacks on Deep Neural Networks by Memory
Trojaning. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2020, 40, 1230–1243. [CrossRef]

25. Liu, Z.; Ye, J.; Hu, X.; Li, H.; Li, X.; Hu, Y. Sequence Triggered Hardware Trojan in Neural Network Accelerator. In Proceedings of
the 2020 IEEE 38th VLSI Test Symposium (VTS), San Diego, CA, USA, 5–8 April 2020; pp. 1–6. [CrossRef]

26. Li, P.; Hou, R. Int-Monitor: A model triggered hardware trojan in deep learning accelerators. J. Supercomput. 2022, 79, 3095–3111.
[CrossRef]

27. Mukherjee, R.; Chakraborty, R.S. Novel Hardware Trojan Attack on Activation Parameters of FPGA-Based DNN Accelerators.
IEEE Embed. Syst. Lett. 2022, 14, 131–134. [CrossRef]

28. Zou, M.; Cui, X.; Shi, L.; Wu, K. Potential Trigger Detection for Hardware Trojans. IEEE Trans. Comput. Des. Integr. Circuits Syst.
2017, 37, 1384–1395. [CrossRef]

29. Liu, L.; Zhou, Z.; Wei, S.; Zhu, M.; Yin, S.; Mao, S. DRMaSV: Enhanced Capability Against Hardware Trojans in Coarse Grained
Reconfigurable Architectures. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2017, 37, 782–795. [CrossRef]

30. De, A.; Khan, M.N.I.; Nagarajan, K.; Ghosh, S. HarTBleed: Using Hardware Trojans for Data Leakage Exploits. IEEE Trans. Very
Large Scale Integr. Syst. 2020, 28, 968–979. [CrossRef]

31. Chen, X.; Liu, Q.; Yao, S.; Wang, J.; Xu, Q.; Wang, Y.; Liu, Y.; Yang, H. Hardware Trojan Detection in Third-Party Digital Intellectual
Property Cores by Multilevel Feature Analysis. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2017, 37, 1370–1383. [CrossRef]

32. Mal-Sarkar, S.; Karam, R.; Narasimhan, S.; Ghosh, A.; Krishna, A.; Bhunia, S. Design and Validation for FPGA Trust under
Hardware Trojan Attacks. IEEE Trans. Multi-Scale Comput. Syst. 2016, 2, 186–198. [CrossRef]

33. Jyothi, V.; Thoonoli, M.; Stern, R.; Karri, R. FPGA Trust Zone: Incorporating trust and reliability into FPGA designs. In Proceedings
of the 2016 IEEE 34th International Conference on Computer Design (ICCD), Phoenix, AZ, USA, 2–5 October 2016; pp. 600–605.
[CrossRef]

34. Pino, Y.; Jyothi, V.; French, M. Intra-die process variation aware anomaly detection in FPGAs. In Proceedings of the 2014 IEEE
International Test Conference (ITC), Seattle, WA, USA, 20–23 October 2014; pp. 1–6. [CrossRef]

35. Krieg, C.; Wolf, C.; Jantsch, A. Malicious LUT: A stealthy FPGA Trojan injected and triggered by the design flow. In Proceedings
of the 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 7–10 November 2016;
pp. 1–8. [CrossRef]

36. Roy, J.A.; Koushanfar, F.; Markov, I.L. Extended abstract: Circuit CAD tools as a security threat. In Proceedings of the 2008
IEEE International Workshop on Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA, 9 June 2008; pp. 65–66.
[CrossRef]

37. Thompson, K. Reflections on trusting trust. Commun. ACM 1984, 27, 761–763. [CrossRef]
38. Agrawal, D.; Baktir, S.; Karakoyunlu, D.; Rohatgi, P.; Sunar, B. Trojan Detection using IC Fingerprinting. In Proceedings of the

2007 IEEE Symposium on Security and Privacy (SP ‘07), Berkeley, CA, USA, 20–23 May 2007; pp. 296–310. [CrossRef]

https://doi.org/10.1109/TCSI.2019.2928682
https://doi.org/10.1109/VLSIC.2018.8502438
https://doi.org/10.1109/TCSII.2017.2728814
https://doi.org/10.1109/HOTCHIPS.2016.7936208
https://doi.org/10.1109/TNNLS.2019.2933524
https://www.ncbi.nlm.nih.gov/pubmed/31722487
https://doi.org/10.1145/3474376.3487281
https://doi.org/10.1109/DAC.2018.8465773
https://doi.org/10.1109/ATS.2018.00024
https://doi.org/10.1109/ISCAS.2019.8702493
https://doi.org/10.23919/DATE.2019.8715027
https://doi.org/10.1109/TCAD.2020.2995347
https://doi.org/10.1109/VTS48691.2020.9107582
https://doi.org/10.1007/s11227-022-04759-y
https://doi.org/10.1109/LES.2022.3159541
https://doi.org/10.1109/TCAD.2017.2753201
https://doi.org/10.1109/TCAD.2017.2729340
https://doi.org/10.1109/TVLSI.2019.2961358
https://doi.org/10.1109/TCAD.2017.2748021
https://doi.org/10.1109/TMSCS.2016.2584052
https://doi.org/10.1109/ICCD.2016.7753346
https://doi.org/10.1109/TEST.2014.7035343
https://doi.org/10.1145/2966986.2967054
https://doi.org/10.1109/HST.2008.4559052
https://doi.org/10.1145/358198.358210
https://doi.org/10.1109/SP.2007.36

Micromachines 2024, 15, 149 19 of 19

39. Bhunia, S.; Hsiao, M.S.; Banga, M.; Narasimhan, S. Hardware Trojan Attacks: Threat Analysis and Countermeasures. Proc. IEEE
2014, 102, 1229–1247. [CrossRef]

40. Xiao, K.; Forte, D.; Jin, Y.; Karri, R.; Bhunia, S.; Tehranipoor, M. Hardware Trojans: Lessons Learned after One Decade of Re-search.
ACM Trans. Des. Autom. Electron. Syst. 2016, 22, 1–23. [CrossRef]

41. Dunbar, C.; Qu, G. Designing Trusted Embedded Systems from Finite State Machines. ACM Trans. Embed. Comput. Syst. 2014, 13,
1–20. [CrossRef]

42. Lin, L.; Burleson, W.; Paar, C. MOLES: Malicious off-chip leakage enabled by side-channels. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, 2009 (ICCAD’09), San Jose, CA, USA, 2–5 November 2009; pp. 117–122.

43. Cha, B.; Gupta, S.K. A Resizing Method to Minimize Effects of Hardware Trojans. In Proceedings of the 2014 IEEE 23rd Asian
Test Symposium (ATS), Hangzhou, China, 16–19 November 2014; pp. 192–199. [CrossRef]

44. Tsoutsos, N.G.; Maniatakos, M. Fabrication Attacks: Zero-Overhead Malicious Modifications Enabling Modern Microprocessor
Privilege Escalation. IEEE Trans. Emerg. Top. Comput. 2013, 2, 81–93. [CrossRef]

45. Chakraborty, R.S.; Saha, I.; Palchaudhuri, A.; Naik, G.K. Hardware Trojan Insertion by Direct Modification of FPGA Configuration
Bitstream. IEEE Des. Test 2013, 30, 45–54. [CrossRef]

46. Narasimhan, S.; Du, D.; Chakraborty, R.S.; Paul, S.; Wolff, F.G.; Papachristou, C.A.; Roy, K.; Bhunia, S. Hardware Trojan Detection
by Multiple-Parameter Side-Channel Analysis. IEEE Trans. Comput. 2012, 62, 2183–2195. [CrossRef]

47. Bhunia, S.; Abramovici, M.; Agrawal, D.; Bradley, P.; Hsiao, M.S.; Plusquellic, J.; Tehranipoor, M. Protection Against Hardware
Trojan Attacks: Towards a Comprehensive Solution. IEEE Des. Test 2013, 30, 6–17. [CrossRef]

48. Kulkarni, A.; Pino, Y.; Mohsenin, T. Adaptive real-time Trojan detection framework through machine learning. In Proceedings of
the 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA, 3–5 May 2016;
pp. 120–123. [CrossRef]

49. Elnaggar, R.; Chakrabarty, K.; Tahoori, M.B. Hardware Trojan Detection Using Changepoint-Based Anomaly Detection Techniques.
IEEE Trans. VLSI 2019, 27, 2706–2719. [CrossRef]

50. Nguyen, L.N.; Cheng, C.-L.; Prvulovic, M.; Zajic, A. Creating a Backscattering Side Channel to Enable Detection of Dormant
Hardware Trojans. IEEE Trans. Very Large Scale Integr. Syst. 2019, 27, 1561–1574. [CrossRef]

51. Pappu, R.; Recht, B.; Taylor, J.; Gershenfeld, N. Physical One-Way Functions. Science 2002, 297, 2026–2030. [CrossRef] [PubMed]
52. Yang, C.; Hou, J.; Wu, M.; Mei, K.; Geng, L. Hardware Trojan Attacks on the Reconfigurable Interconnections of Convolutional

Neural Networks Accelerators. In Proceedings of the 2020 IEEE 15th International Conference on Solid-State & Integrated Circuit
Technology (ICSICT), Kunming, China, 3–6 November 2020; pp. 1–3. [CrossRef]

53. Yang, C.; Hou, J.; Wang, Y.; Zhang, H.; Wang, X.; Geng, L. RNA: A Flexible and Efficient Accelerator Based on Dynamically
Reconfigurable Computing for Multiple Convolutional Neural Networks. J. Circuits Syst. Comput. 2022, 31, 1–32. [CrossRef]

54. Lim, D.; Lee, J.; Gassend, B.; Suh, G.; van Dijk, M.; Devadas, S. Extracting secret keys from integrated circuits. IEEE Trans. Very
Large Scale Integr. Syst. 2005, 13, 1200–1205. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JPROC.2014.2334493
https://doi.org/10.1145/2906147
https://doi.org/10.1145/2638555
https://doi.org/10.1109/ATS.2014.44
https://doi.org/10.1109/TETC.2013.2287186
https://doi.org/10.1109/MDT.2013.2247460
https://doi.org/10.1109/TC.2012.200
https://doi.org/10.1109/MDT.2012.2196252
https://doi.org/10.1109/HST.2016.7495568
https://doi.org/10.1109/TVLSI.2019.2925807
https://doi.org/10.1109/TVLSI.2019.2906547
https://doi.org/10.1126/science.1074376
https://www.ncbi.nlm.nih.gov/pubmed/12242435
https://doi.org/10.1109/ICSICT49897.2020.9278162
https://doi.org/10.1142/S0218126622502899
https://doi.org/10.1109/tvlsi.2005.859470

	Introduction
	Related Work and Motivation
	Related Work
	Motivation

	Methods
	Hardware Trojan against Reconfigurable Interconnection Network
	FPGA-Based CNN Accelerator and Reconfigurable Interconnection Network
	The Presence of Hardware Trojans in the Interconnection Network
	Threat Model for Hardware Trojans against the Interconnection Network

	Corresponding Countermeasure of PUF-Based Detection Technique
	Arbiter-Based PUF
	PUF-Based Countermeasure against Hardware Trojans Attack

	Results
	Experimental Setup
	Hardware Trojan Attack Evaluation
	Detection Effectiveness

	Discussion
	References

