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Abstract: The process of forming metal components through selective laser melting (SLM) results
in inherent spherical effects, powder adhesion, and step effects, which collectively lead to surface
roughness in stainless steel, limiting its potential for high-end applications. This study utilizes a
laser-electrochemical hybrid process to polish SLM-formed 316L stainless steel (SS) and examines
the influence of process parameters such as laser power and scanning speed on surface roughness
and micro-morphology. A comparative analysis of the surface roughness, microstructure, and wear
resistance of SLM-formed 316L SS polished using laser, electrochemical, and laser-electrochemical
hybrid processes is presented. The findings demonstrate that, compared to laser and electrochemical
polishing alone, the laser-electrochemical hybrid polishing exhibits the most significant improvement
in surface roughness and the highest material wear resistance. Additionally, the hybrid process
results in a surface free of cracks and only a small number of tiny corrosion holes, making it more
suitable for polishing the surface of 316L SS parts manufactured via SLM.

Keywords: selective laser melting; 316L stainless steel; laser-electrochemical; surface roughness

1. Introduction

Additive manufacturing (AM), also known as 3D printing, is an advanced technology
for directly fabricating digital models into solid parts by accumulating materials layer by
layer. It has garnered increasing attention due to its advantages in manufacturing high-
strength and complex parts [1–3]. Among the various technologies in AM, SLM stands
out for its ability to prepare high-strength, fine, and complex structures by melting metal
powders in a predetermined scanning path with a high-energy laser beam, followed by
rapid solidification to obtain the desired solid part [4,5].

The 316L austenitic stainless steel is widely utilized in the fields of chemistry, ma-
rine engineering, food, and biomedicine due to its excellent mechanical properties and
corrosion resistance [6–9]. Compared to conventional processes, SLM offers numerous
advantages in preparing 316L SS, including high material utilization and the ability to
fabricate complex structures within short fabrication cycles [10–12]. However, the inherent
spheroidization effect, powder adhesion, and step effect in SLM result in poor surface
roughness of the prepared parts [13–16], necessitating post-treatment and polishing to meet
application requirements.

Currently, the processes employed for surface polishing of SLM additively manufac-
tured 316L SS components primarily consist of mechanical, chemical, laser, and electrolytic
polishing [17–20]. Low efficiency, difficulty in processing complex internal surfaces, and
environmental pollution hinder applications of mechanical and chemical polishing. Laser
polishing offers numerous advantages, such as being non-contact, non-polluting, and
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highly efficient [21–23]. However, the thermal effect generated during laser polishing is
prone to causing recast layers and microcracks [24,25]. Electrochemical polishing has been
widely utilized for the fine treatment of metal surfaces and can achieve a mirror finish for
initial surfaces with a roughness (Ra) of about 1 µm [26,27]. However, due to the substantial
surface roughness of 316L SS components prepared using SLM (Ra > 5 µm), conventional
electrochemical polishing leads to non-selective and non-uniform smoothing/removal of
the surface structure [28] and can even damage its original structure.

In order to address the challenges posed by individual manufacturing processes in
terms of processing efficiency and quality, hybrid machining technology is increasingly
being applied in high-end manufacturing fields [29,30]. Among these, laser and electro-
chemical hybrid machining technology integrates the advantages of high laser machining
efficiency, flexibility, and the superior surface quality of electrolytic machining, making it
a precision machining technology of great interest both domestically and internationally.
Wang et al. [31] proposed the use of a laser–electrochemical hybrid machining process for
small-hole machining. The study’s results demonstrated that laser assistance can increase
the current density of the electrochemical machining area, thereby improving the electro-
chemical material removal rate. The machining accuracy and material removal rate were
increased by 60.7% and 122.7%, respectively. Lescuras et al. [32] demonstrated that pulsed
lasers can enhance the accuracy of machined edges. Silva et al. [33] developed a mathemat-
ical model to account for the localization effect of lasers in the electrochemical dissolution
process. The results indicated that laser-assisted machining increased the removal rate by
54% and accuracy by 38% compared to electrochemical machining alone. Additionally,
Silva et al. [34] showed that microcavities can be machined with high efficiency and without
thermal damage using the laser–electrochemical hybrid addition technique.

There have been studies on the processing of metal micropores and microcavities using
the laser–electrochemical hybrid process, but the polishing of large-area metals has not been
addressed. Therefore, to address the current challenges associated with single-polishing
technology in terms of processing efficiency and surface quality, this study proposes using
the laser-electrochemical hybrid process to polish SLM-formed metal components. The
study aims to investigate the effects of different process parameters on surface rough-
ness and micro-morphology. Additionally, this study compares the surface roughness,
microstructure, and mechanical properties of SLM-formed 316L SS after polishing using
laser, electrochemical, and laser–electrochemical hybrid processes.

2. Experimental Method
2.1. Experimental Materials

The experimental material utilized for SLM additive manufacturing, 316L SS powder,
was provided by Hart 3D. Table 1 presents the main chemical composition of the powder.
The powder morphology, depicted in Figure 1a, shows that the 316L SS powder is spherical,
which facilitates part formation. The particle size of the powder ranges from 15 to 65 µm,
with an average diameter of 39.0 µm and a standard deviation of 8.1 µm (Figure 1b).

Table 1. Main chemical composition of 316L SS powder.

Element Ni Cr Mo C Mn Si Fe

Percent (wt%) 10.72 16.96 2.44 0.01 0.73 0.51 Bal.
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2.3. Microstructure and Mechanical Property Test Methods 
The surface roughness of the samples was assessed using a 3D laser confocal micro-
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Figure 1. The 316L SS powder: (a) SEM morphology, (b) particle size distribution.

A 15 × 15 × 3 mm³ 316L SS batch was prepared under a nitrogen environment using
SLM equipment (Daqo Laser Co., Ltd., SLM-100, Shenzhen, China). The laser power was
180 W, the layer thickness was 0.03 mm, the scanning speed was 300 mm/s, and the laser
scanning direction of the adjacent formed layers differed by 67◦ during the SLM process.
Following preparation, the samples were cut from the substrate with an EDM cutter and
subsequently cleaned sequentially in ethanol and deionized water using ultrasonication
for 10 min to remove residual powder particles.

2.2. Experimental Device

The laser-electrochemical hybrid polishing experimental system, as depicted in Figure 2,
primarily consists of a laser processing system and an electrochemical processing system.
The laser processing system comprises a laser, scanning microscope, and industrial control
machine. The electrochemical processing system includes a DC power supply, electrolytic
tank, electrode fixture, cathode, metal anode workpiece, and electrolyte. The anode work-
piece material is SLM-formed 316L SS, with dimensions of 15 × 15 × 3 mm3. The cathode is
a lead plate, and the electrolyte is a mixture of phosphoric acid, sulfuric acid, and deionized
water in a volume fraction ratio of 6:3:1, kept at a temperature of 60 ◦C, with a processing
area of 5 × 5 mm2.

Micromachines 2024, 15, x FOR PEER REVIEW 3 of 17 
 

 

Table 1. Main chemical composition of 316L SS powder. 

Element Ni Cr Mo C Mn Si Fe 
Percent (wt%) 10.72 16.96 2.44 0.01 0.73 0.51 Bal. 

 
Figure 1. The 316L SS powder: (a) SEM morphology, (b) particle size distribution. 

2.2. Experimental Device 
The laser-electrochemical hybrid polishing experimental system, as depicted in Fig-

ure 2, primarily consists of a laser processing system and an electrochemical processing 
system. The laser processing system comprises a laser, scanning microscope, and indus-
trial control machine. The electrochemical processing system includes a DC power supply, 
electrolytic tank, electrode fixture, cathode, metal anode workpiece, and electrolyte. The 
anode workpiece material is SLM-formed 316L SS, with dimensions of 15 × 15 × 3 mm3. 
The cathode is a lead plate, and the electrolyte is a mixture of phosphoric acid, sulfuric 
acid, and deionized water in a volume fraction ratio of 6:3:1, kept at a temperature of 60 
°C, with a processing area of 5 × 5 mm2. 

 
Figure 2. Laser–electrochemical hybrid polishing experimental system. 

2.3. Microstructure and Mechanical Property Test Methods 
The surface roughness of the samples was assessed using a 3D laser confocal micro-

scope (Olympus, OLS5000, Tokyo, Japan), while the surface morphology was examined 
with a scanning electron microscope (Carl Zeiss, GeminiSEM300, Oberkochen, Germany). 

Figure 2. Laser–electrochemical hybrid polishing experimental system.

2.3. Microstructure and Mechanical Property Test Methods

The surface roughness of the samples was assessed using a 3D laser confocal micro-
scope (Olympus, OLS5000, Tokyo, Japan), while the surface morphology was examined
with a scanning electron microscope (Carl Zeiss, GeminiSEM300, Oberkochen, Germany).
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Surface hardness was characterized using an indentation Vickers hardness tester. Each
surface underwent five measurements, and the average value was taken as the specimen’s
average microhardness, employing a pressurized load of 300 g and a holding time of 15 s.

The wear resistance of the samples was evaluated using a reciprocating friction and
wear tester (Yihua, MXW-1, Jinan, China). A GCr15 steel ball with a diameter of 5 mm was
employed as the friction vice, with experimental parameters set as follows: experimental
load of 10 N, reciprocating distance of 10 mm, frequency of 2 Hz, and test duration of
20 min.

3. Results and Discussion
3.1. Effect of Laser Power Parameters on Surface Roughness

Figure 3 illustrates the impact of laser power on material surface roughness. The
experiment employed laser powers of 8 W, 12 W, 16 W, and 20 W, with a DC power supply
current of 4 A and a processing time of 3 min. The results indicate that as laser power
increases, surface roughness initially decreases, followed by an increase. At 16 W, the
roughness reaches a minimum of 2.8 µm.
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Figure 3. Surface roughness changes with laser power.

The microscopic surface morphology of the laser–electrochemical hybrid polished
specimen under different powers is depicted in Figure 4. The original surface of SLM-
formed 316L SS exhibits roughness with micron-sized bumps and ripples (Figure 4a).
At 12 W, the surface displays bumps and corrosion pits due to the low laser power and
material removal rate, making it unable to eliminate micron-level surface bumps (Figure 4b)
completely. When the laser power is set to 16 W, the micron-level bumps are entirely
eliminated, rendering the rough surface smooth (Figure 4c). However, at 20 W, the increased
formation of bubbles at the solid–liquid interface leads to uneven polishing and the re-
emergence of micron-sized bumps, resulting in increased roughness (Figure 4d).
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3.2. Effect of Laser Scanning Speed Parameters on Surface Roughness

Figure 5 depicts the impact of laser scanning speed on surface roughness. The experi-
ment encompassed a scanning speed range of 100 mm/s to 400 mm/s, with a DC power
supply current of 5 A and a processing time of 3 min. The results indicate that specimen sur-
face roughness gradually rises as scanning speed increases. However, within the scanning
speed range of 300–400 mm/s, surface roughness exhibits no significant change.
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As illustrated in Figure 6, the surface micro-morphology of the specimens after laser-
electrochemical hybrid polishing at different scanning speeds is presented. At a scanning
speed of 100 mm/s (Figure 6a), compared to the initial sample (Figure 4a), the disappear-
ance of surface ripples and micrometer-sized bumps is evident, resulting in a relatively
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flat state. With increasing scanning speed, surface undulations become more pronounced,
giving rise to a rough appearance, while micrometer-sized bumps remain observable
(Figure 6b–d).
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3.3. The Effect of Laser Processing Time on Surface Roughness

Figure 7 presents the surface roughness evolution of the laser-electrochemical hybrid
polished specimen over time. The time range utilized spans 3–7 min, with a current of
5 A, laser power of 16 W, scanning speed of 100 mm/s, and repetition frequency of 40 kHz.
Experimental findings reveal that surface roughness decreases before ascending as time
progresses, reaching its lowest point at 5 min of processing time, achieving a value of
1.9 µm.
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Figure 8 shows the microscopic surface morphology of the laser-electrochemical hybrid
polished specimen at various time intervals. At 3 min of processing time, compared to
the initial sample (Figure 4a), the surface ripples and micrometer-sized bumps are entirely
eradicated (Figure 8a), albeit with a noticeable presence of corrosion pits. Conversely, at
5 min of processing time (Figure 8b), material surface flatness is further enhanced, with
clearly visible laser processing traces and a diminished presence of corrosion pits. Upon
further extension of the polishing time to 7 min, overcorrosion of the material surface
becomes apparent, accompanied by larger corrosion pits and the resurgence of micrometer-
sized bumps, resulting in increased roughness (Figure 8c,d).
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3.4. Comparison of the Effect of Laser/Electrochemical and Laser-Electrochemical Hybrid
Polishing Processes

Figure 9 exhibits the impact of laser polishing (LP), electrochemical polishing (EP),
and laser-electrochemical hybrid polishing (LEP) on SLM-formed 316L SS, focusing on
changes in surface roughness. To ensure rapid and efficient polishing, all processes were
set to a duration of 3 min. Table 2 presents the processing parameters. Figure 9 illustrates
that electrochemical, laser, and laser–electrochemical hybrid polishing processes result in
reduced surface roughness, decreasing from an initial 15.63 µm to 8.2 µm, 3.7 µm, and
2.6 µm, respectively, representing reductions of 47.5%, 76.3%, and 83.4%. It is evident that
laser–electrochemical hybrid polishing yields the best results, followed by laser polishing,
with electrochemical polishing exhibiting the least-favorable outcomes.

Table 2. Processing parameters for comparison experiments.

Samples P/W V/(mm/s) f/kHz n I/A Time/min

LP 16 100 40 2 - -
EP - - - - 5 3

LEP 16 100 40 2 5 3

Figure 10 shows the microscopic surface morphology of the specimens after under-
going the three polishing processes. Figure 10a presents the original rough surface of
SLM-formed 316L SS samples. Following electrochemical polishing, micrometer structures
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with lower roughness were removed, but larger micrometer-sized bumps persisted, accom-
panied by the emergence of corrosion pits in certain areas (Figure 10b). Laser polishing
resulted in a substantial improvement in surface roughness; however, thermal stresses
during the process led to the formation of microcracks (Figure 10c,d). The surface of the
laser-electrochemical hybrid polished samples appeared flatter compared to the two indi-
vidual polishing processes. The cooling effect of the polishing solution prevented re-melting
and microcracking, significantly reducing the number of corrosion pits (Figure 10e,f).
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3.5. Comparison of Microhardness of Laser/Electrochemical and Laser-Electrochemical
Hybrid Polishing

Figure 11 presents the microhardness of the sample surface following polishing via
different processes. Microhardness test pictures are shown in Figure A2 in Appendix A.
The average hardness of the original surface of SLM-formed 316L SS samples measured
217.3 HV. Subsequent to polishing using laser, electrochemical, and laser-electrochemical
hybrid processes, the microhardness of the 316L SS surface was recorded at 237.3 HV,
158.6 HV, and 226.2 HV, respectively. The microhardness of the samples subjected to
laser and laser-electrochemical hybrid polishing exhibited an increase, whereas the mi-
crohardness of the specimen surface following electrochemical polishing decreased. This
phenomenon may be attributed to the higher hardness of the top of the samples com-
pared to the bottom. Electrochemical polishing dissolved the top of the samples with high
hardness, resulting in lower overall hardness.
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3.6. Comparison of Wear Resistance of Laser/Electrochemical and Laser-Electrochemical
Hybrid Polishing
3.6.1. Friction Coefficient

Figure 12a,b depict the curves of the friction coefficient over time and the average
friction coefficient of the sample surface after three distinct polishing processes, respec-
tively. Upon examination of the figures, it becomes evident that the friction coefficients
experienced rapid escalation during the initial stages of the friction experiments, with the
most pronounced increase observed for the laser polished and laser-electrochemical hybrid
polished samples. As the friction experiments progressed, the friction coefficient of each
sample gradually stabilized. The findings reveal that the average friction coefficients of the
pristine surface and the surfaces treated by electrochemical, laser, and hybrid processes
amount to 0.47, 0.47, 0.45, and 0.41, respectively. Notably, the friction coefficients are di-
rectly linked to the roughness of the material surface, with higher roughness corresponding
to higher friction coefficients.
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3.6.2. Specific Wear Rate

Figure 13 displays the cross-sectional profiles of the surface wear marks on the un-
treated and polished samples of SLM-formed 316L SS. The results indicate that the depths
of the surface wear marks on the original sample and the surfaces following electrochem-
ical, laser, and hybrid process polishing are approximately 50 µm, 30 µm, 28 µm, and
20 µm, respectively. It is noteworthy that the wear marks on the polished specimens are
all shallower than those on the initial sample surface. The laser-electrochemical hybrid
polishing samples exhibited the lowest depth of wear marks, attributable to their reduced
surface roughness and enhanced microhardness. In contrast, the electrochemical polishing
samples demonstrated increased roughness and decreased microhardness, resulting in a
greater depth of wear marks compared to the other two polishing processes.
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The wear rate of the specimen is calculated as follows [35]:

W = ∆V/(L × D) (1)

where ∆V represents the volume of wear marks in mm3, D is the sliding distance in meters,
and L denotes the applied load in Newtons. The wear volume ∆V is calculated as:

∆V =
Lh
6b

(3h2 + 4b2) (2)
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In the above equation, L is the length of the abrasion mark (mm), h is the depth of the
abrasion mark (mm), and b is the width of the abrasion mark (mm), where h and b are both
measured with a laser confocal microscope (Figure A2).

As depicted in Figure 14, the wear resistance of the polished surfaces exhibited no-
table improvement in comparison to the original sample surface. Notably, the specimens
subjected to the hybrid polishing process demonstrated the highest level of wear resistance.
This enhancement can be primarily attributed to the surface roughness and microhardness
improvements achieved through the polishing process.
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3.6.3. Wear Morphology

Figure 15 illustrates the surface micro-morphology of the specimen after wear. The
presence of abrasive particles and furrow scratches on the original specimen surface fol-
lowing abrasion (Figure 15a) can be attributed to the micro-cutting action of the steel ball
during the experimental process, resulting in plastic deformation and material spalling.
The spalled material is then refined into small-sized abrasive particles due to the grinding
action of the steel ball, and the wear mechanism at this point is mainly abrasive wear and
adhesive wear. In the case of the laser-polished specimen, the size of the furrows on the
surface due to abrasion is significantly reduced (Figure 15b), with a drastic reduction in
the number of abrasive grains. This reduction can be attributed to the decrease in surface
roughness and the increase in hardness of the material, and the abrasion mechanism at this
time is mainly adhesive wear. On the other hand, the degree of abrasion on the surface of
the electrochemically polished sample falls between the above two specimens. Although
its roughness is comparable to that of the laser-polished sample, it is exacerbated by the
lower surface hardness (Figure 15c), and the wear mechanism is mainly adhesive wear and
abrasive grain wear. In contrast, the hybrid-polished sample exhibits the smallest size of
abrasive marks and fewer abrasive grains on the surface, resulting in a flat and relatively
smooth surface (Figure 15d), and the wear mechanism is mainly slight abrasive wear. These
findings further validate that the laser-electrochemical hybrid polishing process effectively
reduces surface roughness and enhances the microhardness of the material.
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4. Conclusions

In this study, the laser-electrochemical hybrid process was employed to polish SLM-
formed 316L SS, with a focus on investigating the impact of various process parameters
on surface roughness and micromorphology. Additionally, a comparative analysis was
conducted among the laser, electrochemical, and laser-electrochemical hybrid processes
with regard to surface roughness, microstructure, and mechanical properties of the polished
material. The key findings are summarized as follows:

(1) Increasing the laser power and polishing time both contribute to improved surface
flatness. However, excessively high laser power can generate bubbles, resulting in
severe scattering and uneven surface polishing. Similarly, prolonged polishing time
may cause excessive corrosion of the material surface;

(2) The hybrid process demonstrates higher polishing efficiency and superior surface
quality than individual laser and electrochemical polishing methods. Furthermore, to
some extent, the surface hardness of stainless steel is enhanced through the hybrid
process, leading to the lowest coefficient of friction and specific wear rate in friction
and wear tests. This process also results in reduced surface abrasion and superior
wear resistance;

(3) The best laser-electrochemical hybrid polishing results were obtained when the laser
power was 16 W, the scanning speed was 100 mm/s, and the current was 5 A. Com-
pared with the original samples, the roughness was reduced by 83.4%, the microhard-
ness was increased by 4%, and the specific wear rate was reduced by 70%;

(4) The laser-electrochemical hybrid process exhibits promising potential for applica-
tions in the efficient and high-quality surface polishing of additive-manufactured
metal components.
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Figure A3 shows the EDS patterns of the sample surface for all samples, from which it
can be seen that there is no obvious change in the content of the major elemental compo-
nents before and after polishing. This indicates that there is no new substance produced
after polishing.
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